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Abstract 

Background: Pressure mapping technology has been adapted to monitor over prolonged periods to 

evaluate pressure ulcer risk in individuals during extended lying postures. However, temporal 

pressure distribution signals are not currently used to identify posture or mobility. The present study 

was designed to examine the potential of an automated approach for the detection of a range of static 

lying postures and corresponding transitions between postures. 

Methods: Healthy subjects (n = 19) adopted a range of sagittal and lateral lying postures. Parameters 

reflecting both the interactions at the support surface and body movements were continuously 

monitored. Subsequently, the derivative of each signal was examined to identify transitions between 

postures. Three machine learning algorithms, namely Naïve-Bayes, k-Nearest Neighbors and Support 

Vector Machine classifiers, were assessed to predict a range of static postures, established with a 

training model (n = 9) and validated with new input from test data (n = 10). 

Findings: Results showed that the derivative signals provided a means to detect transitions between 

postures, with actimetry providing the most distinct signal perturbations. The accuracy in predicting 
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the range of postures from new test data ranged between 82%–100%, 70%–98% and 69%–100% for 

Naïve-Bayes, k-Nearest Neighbors and Support Vector Machine classifiers, respectively. 

Interpretation: The present study demonstrated that detection of both static postures and their 

corresponding transitions was achieved by combining machine learning algorithms with robust 

parameters from two monitoring systems. This approach has the potential to provide reliable 

indicators of posture and mobility, to support personalised pressure ulcer prevention strategies. 

 

Keywords: Continuous pressure monitoring, Actimetry systems, Machine learning, Postures detection 

 

1. Introduction 

Systems capable of automatically classifying patterns of movement performed by a human subject 

e.g. wearable actimetry sensors, are widely used in many clinical and research applications in 

healthcare through advanced human-machine interfaces (Manini and Sabatini, 2010; Mathie et al., 

2003; Mohammed et al., 2016). Recently, their use has been shown to improve the provision of 

optimal turning critical for PU prevention (Ifedili et al., 2018; Pickham et al., 2018). Nonetheless, 

there are issues with compliance to body worn sensors, and the information gleamed from actimetry 

does not correspond to interface pressure measurements (Stinson et al., 2018), which currently 

represents one of the primary means to assess PU risk. 

In recent years, interface pressure measurements systems have been adapted to continuously monitor 

subject-support surface interactions, with the resulting data being used to indirectly classify a range 

ofpostures and movements (Duvall et al., 2019; Kim et al., 2018; Wai  et al., 2010; Yousefi et al., 

2011). However, the predictive power of these algorithms for early PU risk is largely dependent on 

the magnitude of the applied pressure in pre-determined areas of the pressure sensing mat (Wai et al., 

2010) and are commonly associated with arbitrary thresholds. Only a few studies have combined 

interface pressure measurements and actimetry signals for classifying postures, none of which were 

directly focused on pressure ulcers (Zemp et al., 2016). 
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In a recent publication, the authors have identified a series of robust signals estimated from both 

continuous pressure mapping and actimetry systems, which can accurately track postures and mobility 

during different evoked postures (Caggiari et al., 2019). However, the signals in isolation 

demonstrated limited sensitivity and specificity, therefore a combined signal analysis approach was 

recommended. These signals resulted in large data sets (Bogie et al., 2008), which would benefit from 

intelligent data processing. While it is well known that actimetry systems can detect posture and 

mobility with a high degree of accuracy (Edwardson et al., 2016; Lyden et al., 2016), there is limited 

evidence that parameters estimated from pressure distribution could act as a surrogate for detecting 

both postures and corresponding transitions between postures during prolonged lying. 

Accordingly, the present study was designed to develop a robust methodology for detecting static 

postures and transitions between postures, using data acquired for pressure monitoring and actimetry 

systems. Three conventional machine learning algorithms, namely Naïve-Bayes (NB), k-Nearest 

Neighbors algorithm (KNN) and Support Vector Machine (SVM) classifiers, each of which have been 

adopted in previous research studies to classify range of postures (Chi-Chun et al., 2008; Duvall et al., 

2019; Foubert et al., 2012) were included in the evaluation. 

The accuracy for detecting a range of static postures and their corresponding transitions, namely 

changes in posture, were assessed using the following objectives: 

i. Perform data reduction and feature extraction of the raw actimetry and pressure monitoring 

signals 

ii. Create a methodology for the automatically detection of changes in posture from the set of 

data and 

iii. Apply the machine learning algorithms, cross-validated with leave one-out testing, and 

evaluate their accuracy in classifying the range of prescribed lying postures. 
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2. Methods 

2.1. Participants 

The training data set was derived from the previous study evaluating the performance of pressure 

monitoring and actimetry signals to distinguish postures (Caggiari et al., 2019), which was conducted 

with institutional ethical approval (Ref: 26379). The data from nine of the healthy participants (5 male 

and 4 female) were allocated into the training group, each of whom were observed to performed a 

number of minimal postural adjustments during the static postures (Caggiari et al., 2019). Participants 

were aged between 27 and 36 years (mean = 32 years) with an average height and weight of 1.70 m 

and 72.0 kg (standard deviation = 0.1 m and 17.0 kg), respectively. The corresponding BMIs ranged 

between 19 and 30 kg/m2. 

A separate cohort of ten healthy participants (4 male and 6 female) were recruited into the test group, 

under the same institutional ethics. Participants were aged between 27 and 56 years (mean = 34 years) 

with an average height and weight of 1.73 m and 68.9 kg (standard deviation = 0.1 m and 15.7 kg), 

respectively. The corresponding BMIs ranged between 19 and 28 kg/m2. 

Exclusion criteria for both groups included participants with a history of skin conditions, neurological 

or vascular pathologies that could affect tissue health or those were unable to lie in a supine posture 

for a period of 2 h. Informed consent was obtained from each participant of both groups prior to 

testing. 

 

2.2. Test equipment 

The equipment and test protocol has been described in the recent paper (Caggiari et al., 2019). To 

review briefly, interface pressure measurements were recorded using a full body pressure monitoring 

system (ForeSite PT, XSENSOR Technology Corporation, Canada). The fitted mattress cover 

incorporates 5664 pressure measuring sensor cells, with a spatial resolution of 15.9 mm, covering a 

sensing area of 762mm × 1880mm. Each sensor operates within a range of 5-200 mmHg (0.7-26.6 

kPa) and an acquisition rate of 1 Hz. Three actimetry sensors (Shimmer Platform, Realtime 
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Technologies Ltd, Dublin, Ireland) were attached to the sternum and the left and right anterior iliac 

crests with a Velcro strap. Each device represents a small wireless sensor (53mm × 32mm × 25mm), 

integrating a tri-axial accelerometer and gyroscope, that records real-time calibrated Euler angles data 

at 51 Hz (range = 2g).  

 

2.3. Test Protocols 

All test procedures were performed in the Biomechanics Testing Laboratory in the Clinical Academic 

Facility in Southampton General Hospital, where room temperature was maintained at 24o. 

Participants were requested to wear loose fitting clothing and adopt a series of sagittal and lateral 

postures on a standard hospital bed frame (Hill-Rom, AvantGuardTM) and a castellated foam mattress 

(Solace Foam Mattress, Invacare UK). A continuous lateral rotational system (CLRS) (Vikta 

KomfitiltR) placed underneath the support surface enabled left and right 20-25o tilt of the overlying 

mattress in the lateral plane with an automated 10 min cycle time. 

Each of the subjects in the training group adopted a series of prescribed sagittal postures held for 10 

min, achieved by adjusting the head of the bed (HOB) in 10° increments to a maximum of 60o and 

then lowering by 10o to supine. In addition, lateral postures were evoked through a continuous lateral 

rotational system (CLRS). An adapted version of the protocol was used for the test group intended to 

evaluate the performance of the classifiers. Here, sagittal postures were held for 20 min starting in the 

supine posture followed by raising the HOB angle by 20° increments to a maximum of 60°. The HOB 

was then lowered in 20° increments to supine. Subsequently lateral postures were adopted through the 

CLRS system, as for the training group. Interface pressure distribution and actimetry data were 

continuously recorded throughout the two hours test period for both training and test groups. 

Participants were instructed to remain as still as possible on the mattress. 

2.4. Outcome parameters 

The results of the previous study (Caggiari et al., 2019) involving a comprehensive ROC analysis 

revealed a number of parameters as the most accurate in detecting changes in posture, which included: 
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• Tilt angles (TA) of the trunk with respect to the sagittal and the lateral planes and 

• Percentage variation of contact area (CA) of sensors recording a minimum threshold pressure 

of 20 mmHg estimated at the whole body ROI. 

These parameters were estimated for all subjects from both training and test groups. For the 

estimation of contact area, pressure readings equal or above a 20 mmHg (2.7kPa) threshold were 

included, as they were most indicative of evoked postural changes (Caggiari, 2020). 

Furthermore, signals from training group were adapted to consider static postures in 20o increments of 

HOB. As an example, Fig. 1 shows the temporal trend of the variations of contact area and the 

corresponding pressure distribution during sagittal and lateral postures, for one subject of the training 

group. It is evident that changes in the HOB angle are reflected in the incremental step changes in the 

signal and changes in the pressure distribution. In particular, the relative change in signal was 

dependent on the HOB angle, with angles < 20o revealing reduced variation in contact area. This was 

also evident for lateral postures. In addition, it is evident that there were differences in the signal 

dependent on whether the HOB was increasing or decreasing corresponding to 20o HOB and supine 

postures (Fig. 1). 
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Fig. 1: Temporal profile of the percentage variation of contact area at the whole body ROI and the 

corresponding pressure distribution for 8 sagittal and lateral postures, involving 20o HOB increments. 

 

2.5. Post-processing of the signals from training group 

The flowchart in Fig. 2 illustrates the processing of the signals from both training and test groups. 

This included a moving average filter with a time window of 30 samples for the pressure data from 

both groups, to remove the high frequency noise. The corresponding actimetry signals, which were 

originally acquired at 51 Hz, were re-sampled at 1 Hz and filtered using a window of 15 samples 

(Caggiari, 2019). 

The signals from training group were then manually annotated, by denoting the beginning and the end 

of each evoked posture. The transitions between postures were not included as they contained noise 

due to natural adjustments in posture observed in all participants. Each of the signals was then 
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interpolated in order to encompass 600 data points, for each posture, resulting in a total of 4800 data 

points per signal. The interpolation was applied in order to include signals and hence postures of an 

equivalent time period. All signals were then subjected to a fixed-width sliding window of 60 s to 

reduce the raw data by evaluating features i.e. mean and derivative values. Mean values were 

calculated within each sliding window for both trunk tilt angles and contact area signals, resulting in a 

80 point data set for each signal. The reduced signals from all the subjects were allocated to the 

training data set. A principal component analysis (PCA) was performed and the training signals 

projected onto the PCs dimensional space.  
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Fig. 2: Flow chart depicting the different processes for data acquisition for use with the classifiers. 
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2.6. Classifiers 

Three commonly used classifiers were employed, each of which adopts distinct approaches for event 

classification.  

2.6.1. KNN classifier 

The KNN classification rule, first described by Cover and Hart (1967), depends on the distance metric 

between the new observation point and k nearest data point(s) (Short and Fukunaga, 1981). Given the 

nature of our data, the Euclidean distance was selected as theGiven the nature of our data, the 

Euclidean distance was selected as the distance metric. Moreover, the parameter k determines how 

many neighbors will be chosen and its choice has a significant impact on the diagnostic performance 

of KNN algorithm. Accordingly, a sensitivity analysis was performed and k = 10 was identified to 

provide the highest accuracy and was therefore chosen for the current analysis.  

2.6.2. Naïve-Bayes classifier 

The Naïve-Bayes classifier represents a probabilistic strategy based on Bayes’ theorem, which 

describes the probability of an event based on the prior knowledge that some other events have 

already occurred i.e. conditional probability. A Gaussian distribution was considered the most 

appropriate approach for assessing the conditional probability, which can be written as: 

P(H ¦ E)  =
1

�det(2𝜋𝜋𝜎𝜎𝐸𝐸)
exp (−

1
2

(ℎ − 𝜇𝜇𝐸𝐸)𝑇𝑇𝜎𝜎𝐸𝐸−1(ℎ − 𝜇𝜇𝐸𝐸)) 

where H represents a new event and E is some observed event, µE is the mean and σE is the covariance 

matrix of the observed events. 

2.6.3. Support vector machine (SVM) classifier 

The SVM (Burges, 1998) classifier is based on defining a hyperplane that divides the clusters of data. 

The optimal hyperplane is the one representing the largest distance to the nearest element of each 

cluster (support vectors). SVM projects the data into a higher dimension from the original space 

where the hyperplane can be derived from kernel functions. Gaussian kernel function was considered 

the most appropriate for the present data. 
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2.6.4. Cross-validation  

A leave-one-subject-out cross-validation was performed to test the robustness of the training model in 

detecting the range of static postures (Fig. 2). This consisted in training a model with data from 8 of 

the 9 subjects in the training cohort, who were randomly selected. The data of the excluded subject 

were then tested and the accuracy in postures classification was assessed. This process was repeated 

for each individual who has been used to test the trained model and the accuracy of the classifiers was 

determined. Subsequently, a training model was created with the set of data of all subjects in the 

training cohort. The accuracy of all classifiers was then assessed by applying data from subjects in the 

test cohort. This resulted in a percentage accuracy across all postures adopted in the test data. This 

percentage accuracy was established for each participant within the test group and calculated as the 

number of data points correctly classified for each posture with respect to the corresponding total 

number of points in the signals. 

2.7. Test data sets 

After filtering, signals from test group were interpolated to encompass 9000 data points (2.5 h of 

recording), including both static postures and the transition between postures. Signals corresponding 

to each participant represented a distinct data set to identify changes in posture and test the training 

model. Each of the test data sets was subjected to the 60-s sliding window for data reduction and both 

mean and derivative values were estimated within each window prior to identify the changes in 

posture and classify the corresponding static postures. The derivative signal of both contact area and 

trunk tilt angles in both sagittal and lateral planes were used for the detection of any change between 

two postures. The signals were subjected to a discriminant threshold to identify where the variations 

in the derivative occurred. Different thresholds were examined in order to identify the optimum value 

which accommodated all subjects. Once the changes in posture from the test data set were identified, 

the mean signals from the subsequent sliding windows were projected onto the training PCs 

dimensional space and subjected to posture classification. 
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3. Results 

3.1. Leave-one-out cross-validation 

The cross-validation demonstrated an accuracy ranging between 85%-99% for classification 

performed with Naïve-Bayes. The corresponding accuracy using KNN and SVM ranged between 

53%-95% and 59%-100%, respectively. Accordingly, it is demonstrated that the training data set 

could provide a robust means for detecting static postures with the test data set. 

3.2. Detecting changes in posture  

Consistent variations in the derivative magnitude of the trunk tilt angles were identified in association 

with the sagittal changes in posture for all subjects. Smaller variations were also evident in the lateral 

plane when lateral postures were adopted (data not shown). They were subjected to processing which 

involved the signal rectification, in order to use a generic positive threshold. The rectified derivative 

signal for both sagittal and lateral trunk tilt angles were then summarised to obtain a single signal 

which included both sagittal and lateral changes in posture. An example of the rectified derivative 

profile of trunk tilt angles for one subject is illustrated in Fig. 3A. The corresponding derivative of the 

contact area is shown in Fig. 3B. The latter reveals that changes in posture were well distinguished in 

magnitude at high HOB angles, but less distinctive at lower HOB angles (< 20°). Indeed, 

perturbations in magnitude were also observed during static postures, which did not enable the correct 

detection of all changes in posture (Fig. 3B). Accordingly, only the derivative of the trunk tilt angles 

was used and an appropriate discriminant threshold value of 0.10 for all subjects was selected for 

subsequent detection of the transitions between postures (Fig. 3A), resulting in 100% accuracy for all 

subjects. 
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Fig. 3: Rectified derivative profile for subject #1 in the test cohort of A) the sum of the derivative 

signals of trunk tilt angles at both sagittal and lateral planes, B) contact area. Each data point in the 

signals corresponds to a derivative value calculated within the 60-s sliding window. 
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3.3. Accuracy in classifying the range of postures 

As illustrated in Fig. 4, static postures corresponding to signals for all subjects from the training group 

(n = 9) resulted in clusters of points spatially distributed across the first and second PCA dimension, 

which contributed to 87% and 12% of the variance in the signals, respectively. This reflects the 

changes in signal magnitude associated with either increasing or decreasing the HOB angle (Fig 1). In 

particular, when a reduced variation in the step changes was observed e.g. HOB < 20o, there is a 

reduced spatial distribution of adjacent clusters. This is particularly evident in the first principal 

component (PC1) (x-axis - Fig. 4). When the signals corresponding to the static postures of one 

subject from the test group are projected onto the training PCs space (data points in pink) separate 

clusters are observed. These clearly overlapped with the corresponding clusters of points from the 

training data.  

The estimated accuracies for each of the three classifiers are summarised in Table 1. It is evident that 

for increments of 20o in the HOB angles there was a high accuracy for each subject and all classifiers. 

In particular, the accuracy was > 80% in classifying postures using the Naïve-Bayes classifier for all 

subjects. The corresponding accuracy using the KNN classifier resulted ≥ 90% in 8/10 subjects, with 

the remaining two subjects showing an accuracy value of 70% and 74%. SVM resulted in accuracy 

values of > 80% in 8/10 subjects with the remaining two resulting in an accuracy of 71% and 69%, 

respectively. 
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Fig. 4: Signals corresponding to the training data set (9 subjects) projected onto the first two principal 

components, PC1 and PC2, with their corresponding variance in brackets. Each posture is represented 

by a spatially distributed coloured cluster. Signals from one subject from the testing group (data points 

in pink) were projected onto the training PCs dimensional space. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 
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Table 1: Percentage accuracy in classifying the range of postures for all classifiers. 

 Accuracy [%] 

Subjects Naïve-Bayes KNN SVM 

1 90 94 97 

2 95 97 91 

3 98 90 86 

4 89 92 90 

5 97 93 97 

6 83 97 82 

7 93 90 97 

8 98 74 71 

9 100 98 100 

10 82 70 69 

 

4. Discussion 

This study has detailed the application of intelligent data processing of biomechanical signals 

depicting changes in lying posture from angles of body segments (actimetry) and pressures measured 

at the interface between the body and support surface i.e. contact area of pressures > 20mmHg. The 

derivative of signals was assessed to identify changes in posture in both sagittal and lateral planes. A 

series of machine learning algorithms in the form of Naïve-Bayes, KNN and SVM classifiers were 

applied to a set of data involving signals derived from an actimetry system and interface pressure 

distribution estimated from a high resolution sensing array. A cross-validation technique was applied 

using each machine learning algorithm, revealing that the training data could provide a robust means 

of classifying the data. Subsequently, an adapted protocol was used to provide test data, which was 

observed to correspond with the clusters derived from the training phase (Fig. 4). The resulting 

classification accuracy of the test data ranged between 82% 100%, 70%-98% and 69%-100% for the 

three classifiers, respectively (Table 1), with Naïve-Bayes classifier showing the highest accuracy in 
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classifying the range of static postures. A value > 80% could represent a benchmark by which the 

majority of the postures can be monitored. 

Findings revealed that the derivative of the signal representing the trunk tilt angles correctly identified 

the changes in posture for all subjects, as characterised by a transient increase in the magnitude of the 

derivative at each corresponding change in posture (Fig. 3A). By contrast, the derivative of the 

contact area signal generally revealed less distinct changes in magnitude when evaluating changes in 

posture involving HOB angles < 20o and thus it proved problematic in identifying their occurrence 

(Fig. 3B). Accordingly, the trunk tilt angles derivative, resulting from the sum of sagittal and lateral 

signal derivatives, was considered to represent a more robust means to automate the detection of the 

changes in posture in the test data. Indeed this approach, based on the derivative of biomechanical 

parameters, has been applied in several other areas of the biomedical field, for example, for the 

detection of the different gait phases (Taborri et al., 2016). 

Previous research have utilised intelligent data processing from machine learning algorithms to 

classify a range of lying and sitting postures and their transitions from the distribution of pressure at 

the subject-support interface (Foubert et al., 2012; Kim et al., 2018; Matar et al., 2020; Rus et al., 

2017; Wai et al., 2010; Yousefi et al., 2011; Zemp et al., 2016). These approaches adopted and the 

results reported are summarised in Table 2.  
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Table 2: Summary of relevant studies classifying lying and sitting postures. 

Study Data used for classification Classifier(s) Accuracy Changes in posture  

Wai et al. (2010) - 

Lying postures 

i) Raw pressure values 

SVM 

> 70% 

✗ 

ii) Eigen vectors > 50% 

iii) Mean, variance, standard 

deviation, root mean square 

estimated in 9 ROIs 

> 60% 

Yousefi et al. (2011) - 

Lying postures 
Binary pressure images projected 

in PCA space 
KNN > 97% ✗ 

Kim et al. (2018) - 

Sitting postures 
Heat map of pressure distribution 

Naïve - Bayes 

SVM 

> 85% 
✗ 

> 90% 

Duvall et al. (2019) - 

Lying postures 

Weight measured by four cells 

placed under the legs of the bed 
KNN > 95% ✓ 

Zemp et al. (2016) - 

Sitting postures 

Median of the force data divided 

by the subject’s body weight and 

backrest angles 

SVM > 70% ✗ 

Foubert et al. (2012) - 

Lying to sitting 

i) WNAS 
SVM and KNN 

> 90%  
✓ 

ii) COP displacements > 75%  

Matar et al. (2020) - 

Lying postures 

Oriented gradient and local binary 

patterns estimated from pressure 

distribution 

Artificial neural 

network 
> 97% ✗ 

Present study 

Eigen vectors estimated from 

biomechanical parameters derived 

from actimetry systems and 

pressure distribution  

Naïve-Bayes > 80% 

✓ KNN ≥ 70% 

SVM ≥ 69%  

 

It is evident that the present findings are comparable with previous studies, with high accuracy values 

in postures classification reported for the detection of range of static postures. However, only two 

studies have detected the transition phases between static postures. Foubert et al. (2012) have used 
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lateral and longitudinal displacements of the centre of pressure estimated from pressure distribution, 

reporting an accuracy of > 90%. By contrast, a separate study utilised the total weight on the bed 

measured by using a system involving four load cells (Duvall et al., 2019). Their results reported that 

a change of 7lb (3.2kg) in the measured weight within a temporal window of 7secs was able to detect 

the changes in posture with an accuracy of 98%. Furthermore, limitations of many previous studies 

included the short-term estimation of the pressure distribution (up to tens of seconds) and the limited 

range of supine postures (i.e. supine, prone, left and right turn). There are, however, some studies 

which have evaluated a range of postures involving the elevation of the HOB angle (Yousefi et al., 

2011) and data derived from a longer period i.e. 5 min of pressure monitoring (Kim et al., 2018). In 

addition, Zemp et al. (2016) utilised a composite data set involving force values acquired at the 

support surface normalised to individual body weight and the corresponding backrest tilt angle 

estimated with actimetry positioned on the backrest, for the detection of sitting postures. However, 

both parameters were acquired at a single time point.  

The present study has applied an automated method to identify the occurrence and magnitude of 

movements based on signal derivative and machine learning algorithms. This could be achieved using 

either actimetry or pressure parameters. To date, these temporal data are unknown in many care 

settings.  

It is inevitable that the use of able- bodied cohorts in a lab-based study precludes generalising the 

present findings to individuals, from specific sub-populations, deemed to be at risk of developing 

pressure ulcers i.e. the elderly, spinal cord injured and those managed in intensive care units. The 

study protocol was also limited in selecting a pre-determined order of relatively small postural 

changes (20o HOB increments) maintained for a relative short period of 10-20 min. Thus, future 

studies should examine random postures involving different HOB increments and the side-lying 

lateral posture typically adopted in clinical settings. The current method would require an 

improvement in accuracy and validation to account for random postures on specialised mattresses 

used by patients in both acute and community clinical settings where the recommended frequency and 
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magnitude of movements are not strictly followed (Defloor et al., 2005; Woodhouse et al., 2019). This 

would support clinicians when informing clinical decision-making. 

Technology to monitor individuals could provide critical means to detect posture and mobility. 

However, it is clear that the emergence of digital health strategies will necessitate the use of robust 

monitoring tools. Accordingly, continuous pressure monitoring represents an important tool which 

when integrated with support and feedback technologies could promote PU prevention through self-

management and targeted care interventions (Tung et al., 2015). This would result in more efficient 

practice and a personalised approach. It could also be integrated with risk assessment to create a more 

objective means of PU risk. In addition, machine learning applied to large data sets derived from these 

technologies could provide a robust means for translation into indicators of posture and mobility 

associated with both frequency and magnitude of postures. 

5. Conclusion 

The present study has defined a methodology for classifying static lying postures and identifying 

transitions in between different postures. The combination of biomechanical parameters acquired 

using pressure monitoring and actimetry technologies were combined using data reduction and 

machine learning approaches. The combination of monitoring technologies and advanced algorithms 

offers the potential to track posture and mobility in individuals at risk of pressure ulcers, informing 

personalised care strategies. Further research is needed to establish the accuracy of the posture 

prediction involving clinical data sets in sub-groups of patients at risk of pressure ulcers e.g. spinal 

cord injured.  
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