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Abstract: This paper deals with the averaged dynamics for heat equations in the degenerate case where the5

diffusivity coefficient, assumed to be constant, is allowed to take the null value. First we prove that the averaged6

dynamics is analytic. This allows to show that, most often, the averaged dynamics enjoys the property of unique7

continuation and is approximately controllable. We then determine if the averaged dynamics is actually null8

controllable or not depending on how the density of averaging behaves when the diffusivity vanishes. In the9

critical density threshold the dynamics of the average is similar to the 1
2 -fractional Laplacian, which is well-10

known to be critical in the context of the controllability of fractional diffusion processes. Null controllability11

then fails (resp. holds) when the density weights more (resp. less) in the null diffusivity regime than in this12

critical regime.13

14
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1 Introduction1

We analyze the problem of controlling the averaged value of the heat equation with random diffusion. This2

problem is relevant in applications in which the control has to be chosen independently of the random value,3

in a robust way. This problem has been studied in the literature in bounded domains and with diffusivities4

independent of the space and time variables and with a strictly positive minimum common to almost every5

realization. Notably, in [42] and [29] the authors consider diffusivities which follow the uniform and exponential6

probability distributions respectively, whereas a more general study is done in [11]. In those papers it is shown7

that, under those assumptions, the averaged dynamics inherits many properties from the dynamics of the8

heat equation (regularity, controllability, observability, etc.), with the only notable exception of the semi-group9

property. This is done by considering the Fourier representation of the averaged solutions.10

In this paper we pursue the study to diffusivities which are allowed to take any positive value. In this scenario11

the averaged dynamics is still analytic (see Proposition 4.1 below), and we prove that the averaged dynamics12

is approximately controllable provided that we have a hierarchic decay in the time variable of the different13

frequencies. However, the averaged dynamics may acquire a fractional nature, or an even less diffusive one, so14

it may not be null controllable. What determines if we can control it is how fast the density of averaging decays15

when the diffusivity α vanishes. In the critical threshold, which is given by all the random variables whose16

density functions ρ(α) decay like e−Cρα
−1

for some Cρ > 0 when α→ 0, the dynamics of the average is similar17

to the 1
2 -fractional Laplacian, which is well-known to be critical in the context of controllability of fractional18

diffusion processes.19

The mathematical model and main results20

In this paper we treat the random heat equation described by the following system:21 
yt − α∆y = g, in (0, T )×G,
y = h, on (0, T )× ∂G,
y(0, ·) = y0, on G,

(1.1) eq:ranheatfull

for G a domain, g a source term, h the Dirichlet boundary conditions, y0 the initial configuration and α the22

diffusivity coefficient, which is a positive random variable with density function ρ (the regime in which α is23

allowed to take negative values is studied in Section 8). The averaged solution of (1.1) is given by:24

ỹ(t, x; y0, g, h) :=

∫ +∞

0

y(t, x;α, y0, g, h)ρ(α)dα.

Moreover, we can model a control f located in G0 ⊂ G or on Γ ⊂ ∂G by posing g = f1G0
or h = f1Γ25

respectively.26

In order to study (1.1) we rely on being the eigenfunctions of −α∆ independent of α, as this allows us to27

work with the Fourier representation of the averaged solution. Thus, we may not use the same techniques in28

more general heat equations, like:29

yt − div(σ(x, α)∇y) +A(x, α) · ∇y + a(x, α)y = 0. (1.2) eq:ranheatcomplete

Indeed, even if we assume that w 7→ − div(σ(x, α)∇w) + A(x, α) · ∇w + a(x, α)w can be diagonalised, its30

eigenfunctions depend on α and, in particular, the averages of the eigenfunctions with respect to α may not31
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form an orthogonal set. However, by studying the dynamics and controllability of (1.1) we highlight some of1

the most fundamental phenomena involving (1.2). The techniques presented in this paper also work for heat2

equations of the type:3

yt − αLy = 0,

for L any self-adjoint elliptic operator of order 2 with compact resolvent.4

Since studying controllability with internal or boundary controls is almost equivalent, this paper is mainly5

devoted to controllability with an internal control and the few differences are explained in Section 8. In addition,6

to study the controllability properties of (1.1) we follow the classical duality approach (see Section 7.1 for further7

details) and focus on the observability properties of its adjoint system, which is given by:8 
−ϕt − α∆ϕ = 0, in (0, T )×G,
ϕ = 0, on (0, T )× ∂G,
ϕ(T, ·) = φ, on G.

(1.3) eq:ranheatadj

To lighten the notation we work, as usual, in its time-reversed system, which is given by:9 
ut − α∆u = 0, in (0, T )×G,
u = 0, on (0, T )× ∂G,
u(0, ·) = φ, on G.

(1.4) eq:ranheat

We define the average of (1.4) as:

ũ(t, x;φ) :=

∫ +∞

0

u(t, x;α, φ)ρ(α)dα.

The first property of ũ that we prove is its analyticity in the time variable from (0,+∞) to L2(G). Next, using10

this together with a hierarchic decay in the time variable of the different frequencies, we obtain some unique11

continuation results for (1.4). Finally we determine when the averaged dynamics of (1.4) is null observable by12

combining the Fourier representation of the solutions of (1.4) and the monotonicity of the solutions of (1.1)13

with respect to the boundary conditions.14

In order to illustrate the effect of averaging in the dynamics, let us study the dynamics of (1.4) when G = Rd.15

As averaging and the Fourier transform commute, we work on the Fourier transform of the fundamental solution16

of the heat equation, which is given by:17

exp(−α|ξ|2t).
Consequently, the Fourier transform of the average of the fundamental solutions is given by:∫ +∞

0

exp(−α|ξ|2t)ρ(α)dα;

i.e. the Laplace transform of ρ evaluated in |ξ|2t. In particular, for r ∈ (0, 1) if ρ(α) ∼0+ e−Cα
− r

1−r
we have18

that:19 ∫
exp(−α|ξ|2t)ρ(α)dα ∼ exp(−C|ξ|2rtr), (1.5) eq:simrcasegen

when |ξ|2t→ +∞ as shown in (2.8) below. Thus, for those density functions the averaged dynamics in Rd has a20

fractional nature. As we are going to prove, for G bounded this is also true and we have the usual controllability21

and observability results of fractional dynamics (see, for example, [14, 31, 34, 6, 5]); that is, (1.5) implies that22

the averaged unique continuation is preserved, but (1.5) preserves the null averaged observability if and only if23

r > 1/2, being the threshold density functions those which satisfy:24

ρ(α) ∼0+ e−Cα
−1

. (1.6) eq:simthreshold
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2 Quantification of the main results1

In this section we introduce the precise definition of the previously introduced observability notions, quantify2

the main results and give some specific examples.3

To start with, we recall the definitions of the introduced observability notions:4

Definition 2.1. Let G ⊂ Rd be a domain and G0 ⊂ G be a subdomain. System (1.4) is null averaged observable5

or null observable in average in G0 if for all T > 0 there is a constant C > 0 such that for any φ ∈ L2(G):6

‖ũ(T, ·;φ)‖L2(G) ≤ C‖ũ(·;φ)‖L2((0,T )×G0). (2.1) def:avgnullobs

If (1.4) is null averaged observable, we define the cost of the null averaged observability as:7

K(G,G0, ρ, T ) = sup
φ∈L2(G)\{0}

‖ũ(T, ·;φ)‖L2(G)

‖ũ(·;φ)‖L2((0,T )×G0)
. (2.2) def:costobs

Definition 2.2. Let G ⊂ Rd be a domain and G0 ⊂ G be a subdomain. System (1.4) satisfies the averaged8

unique continuation property in G0 if for all T > 0 the equality ũ = 0 in (0, T )×G0 implies that φ = 0.9

To continue with, we state the precise hypotheses on ρ. For that, we focus on the Laplace transform of ρ,10

which also appears naturally when G is a bounded domain (see (3.1) below). We use the asymptotic notation11

f(s) & g(s), which means that there is C > 0 such that f(s) ≥ Cg(s) for s large enough.12

• To have the unique continuation we need for some r > 0 that:13

− d

ds
ln

(∫ +∞

0

e−sαρ(α)dα

)
=

∫ +∞
0

e−sααρ(α)dα∫ +∞
0

e−sαρ(α)dα
& sr−1. (2.3) hip:derminuslnsizemin

• To have the null observability we need (2.3) for some r > 1
2 .14

• To prove the lack of null observability we need for some C > 0 and r ∈
[
0, 1

2

)
that:15 ∫ +∞

0

e−sαρ(α)dα & e−Cs
r

. (2.4) hip:freqminsize

Let us now state the main results of this paper:16

• The first main result of this paper is that in many cases we have the unique continuation property:17

tm:avgdunqpro Theorem 2.3. Let G ⊂ Rd be a Lipschitz domain, G0 ⊂ G be a subdomain, and ρ = 1(0,1) or ρ be a18

density function which satisfies (2.3) for some r > 0. Then, system (1.4) satisfies the averaged unique19

continuation property in G0.20

The proof of Theorem 2.3 is given in Section 4. For the uniform distribution it relies on explicit com-21

putations of the averaged solutions, whereas for the more diffusive case it relies on the analyticity of the22

averaged dynamics from t ∈ (0,+∞) to L2(G) (see Proposition 4.1 below) and on the fact that there is23

some hierarchy in how the frequencies decay, a technique dating back to [7].24

• The second main result of this paper concerns some cases in which we do not have averaged observability:25
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tm:mainres Theorem 2.4. Let G ⊂ Rd be a Lipschitz domain, G0 ⊂ G be a subdomain such that G0 6= G and ρ be1

a density function which satisfies (2.4) for some C > 0 and r ∈
[
0, 1

2

)
. Then, system (1.4) is not null2

observable in average in G0.3

We know from Theorem 2.3 that the lack of observability is not caused by a lack of unique continuation.4

In fact, we prove Theorem 2.4 in Section 5 by giving a sequence φN ∈ L2(G) such that:5

lim
N→∞

‖ũ(T, ·;φN )‖L2(G)(∫ T
0

∫
G0
|ũ(t, x;φN )|2dxdt

)1/2
= +∞. (2.5) eq:notobsaver

This sequence is constructed with functions supported in G \ G0, orthogonal to some low frequencies6

and, at the same time, not too concentrated on high frequencies. Estimate (2.4) ensures us that the mid7

frequencies do not decay too fast. The fact that the proof works for all d ∈ N and r ∈ [0, 1/2) is a step8

forwards with respect to the literature, as in analogous situations with fractional dynamics the lack of9

controllability for d ≥ 2 and r ∈ [0, 1/2) is still unproved.10

rk:whenGG0 Remark 2.5. If G = G0 system (1.4) has the averaged unique continuation property and is null observable11

in average. This is an immediate consequence of the fact that t 7→ ‖ũ(t, ·;φ)‖L2(G) is a decreasing function12

(see Remark 3.8).13

• The last main result of the paper concerns some cases in which we have averaged observability:14

tm:alphasmall0 Theorem 2.6. Let G ⊂ Rd be a Lipschitz locally star-shaped domain, G0 ⊂ G be a subdomain, T > 015

and ρ be a density function which satisfies (2.3) for some r > 1
2 . Then, system (1.4) is null observable in16

average. In addition, there are T0, C > 0 such that for all T ∈ (0, T0] we have that:17

K(G,G0, ρ, T ) ≤ CeCT
(2r−1)−1

. (2.6) eq:costposcases

We recall that the locally star-shaped domains are defined in [2, Section 3] and include all the C2 domains.18

We prove Theorem 2.6 in Section 6 by adapting the ideas of [35]; that is, we use the Fourier representation19

and the decay properties of the averaged dynamics.20

Remark 2.7. The estimate (2.6) is an upper estimate for short-time horizons. Ideally, it would also be21

good to have a lower bound and to precise the constant of the exponential by some geometric terms as in22

the heat equation (see, for instance, [32], [33], [40], [12] and [21]), though this problem goes beyond the23

objective of this work.24

ex:exampThsmall Example 2.8. The density functions which satisfy the hypotheses of Theorems 2.3 and 2.6 are those which decay25

sufficiently fast when the diffusivity vanishes. Similarly, the density functions which satisfy the hypothesis of26

Theorem 2.4 are those which do not decay fast enough (including those which do not decay at all) when the27

diffusivity vanishes. Meaningful examples include:28

it:one 1. Any density function ρ such that ρ(α) = 0 for all α ∈ (0, δρ) for some δρ > 0 satisfies (2.3) for r = 1.29

Hence, all these functions satisfy the hypotheses of Theorems 2.3 and 2.6.30

it:two 2. If k ∈ (0,+∞), and p and q are two polynomials such that p(α) + q(α−1) 6= 0 for some α ∈ (0, 1), the31

density function:32

ρ(α) =

(
p(α) + q(α−1)

)
e−α

−k
1(0,1)(α)∫ 1

0
(p(s) + q(s−1)) e−s−kds

, (2.7) def:exampThsmall

satisfies (2.3) for r = k
k+1 . Thus, (2.7) satisfies the hypotheses of Theorem 2.3 if k > 0 and of Theorem33

2.6 if k > 1.34
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it:three 3. The density functions given by (2.7) satisfy (2.4) for r = k
k+1 . Thus, if k ∈ (0, 1) they satisfy the hypothesis1

of Theorem 2.4.2

it:four 4. The density functions ρ(α) = 1(0,1)(α) (that is, when α is a random variable with uniform distribution in3

(0, 1)) and ρ(α) = e−α1(0,+∞)(α) (that is, when α is a random variable with exponential distribution in4

(0,+∞)) satisfy (2.4) for all r > 0. Indeed, any continuous density function ρ such that ρ(0) > 0 does so.5

Thus, all these functions satisfy the hypotheses of Theorem 2.4.6

The proofs of items 1 and 4 are straightforward. As for items 2 and 3, we can prove them by considering the7

asymptotic result:8 ∫ 1

0

αre−sα−α
−k
dα ∼ s−

2+2r+k
2+2k e−cks

k
k+1

, (2.8) eq:assymporder0

for all r ∈ R for some ck > 0 (independent of r) when s → +∞. These asymptotic similarities can be proved

with the Laplace method. In fact, we have that:∫ 1

0

αre−sα−α
−k
dα ∼

∫ +∞

0

αre−sα−α
−k
dα = s−

1+r
1+k

∫ +∞

0

tre−s
k
k+1 (t+t−k)dt,

where we have used the change of variables α = ts−
1
k+1 . Next, we can show the equivalence by using the classical9

Laplace method. In fact, if φ is any convex function in (0,+∞) with minimum at t, and if f is a continuous10

function in a neighbourhood of t with subexponential growth it is well-known the limit:11

lim
θ→∞

∫∞
0
f(t)e−θφ(t)dt

f
(
t
)
e−θφ(t)

√
θφ′′

(
t
)

2π
= 1,

which is proved by considering that the mass of the integral is concentrated on a neighbourhood of t, by using12

a Taylor expansion of order 2 in the exponent and the continuity of f , then extending again the integral to13

(0,+∞) and finally explicitly computing the Gaussian function. For a more detailed proof of (2.8) one can14

consult, for instance, [4, (6.4.35) and Example 6.4.9].15

The rest of the paper is organized as follows: in Section 3 we present some basic results, in Section 4 we prove16

Theorem 2.3, in Section 5 we prove Theorem 2.4, in Section 6 we prove Theorem 2.6, in Section 7 we resume17

the controllability problem, in Section 8 we comment some possible extensions, and in Appendix A we prove a18

technical result.19

3 Preliminaries20

sec:prevres

In this section we introduce some basic facts and notation that we use later on. In particular, we study21

the spectral properties of the Dirichlet Laplacian, the size of the solutions of the heat equation and the decay22

implied by (2.3).23

3.1 Some results on the spectral decomposition of the Dirichlet Laplacian24

sec:prevesp

As usual, ei denotes (starting at i = 0) the eigenfunctions of the Dirichlet Laplacian, λi their respective25

eigenvalues and Λλ := {i : λi ≤ λ}. In addition, for any λ > 0, Pλ denotes the orthogonal projection of L2(G)26

into 〈ei〉i∈Λλ and P⊥λ the orthogonal projection of L2(G) into 〈ei〉⊥i∈Λλ
.27
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To begin with, we recall that, as shown in [42], the Fourier representation of the averaged solution is:1

ũ(t, x;φ) :=

∫ +∞

0

u(t, x;α, φ)ρ(α)dα =
∑
i∈N

(∫ +∞

0

e−αλitρ(α)dα

)
〈φ, ei〉L2(G)ei(x). (3.1) eq:avgu0

Next, we recall that the eigenvalues have a growth limited by Weyl’s law:2

lm:weylneumann Lemma 3.1 (Weyl’s law). Let G ⊂ Rd be a Lipschitz domain. We have:3

lim
λ→∞

|Λλ|
λd/2

=
Vol(B(0, 1)) Vol(G)

(2π)d
.

In particular, there is C > 0 such that for all λ ≥ λ0:4

|Λλ| ≤ Cλd/2. (3.2) est:N(gamma)

Weyl’s law is proved for instance in [19].5

Finally, we recall the following elliptic result proved in [2, Theorem 3]:6

lm:obsellG0 Lemma 3.2 ([2]). Let G be a locally star-shaped domain and G0 ⊂ G a subdomain. There exists a constant7

C > 0 such that for all λ > 0 and {ci} ⊂ R:8 (∑
i∈Λλ

|ci|2
)1/2

≤ CeC
√
λ

∥∥∥∥∥∑
i∈Λλ

ciei

∥∥∥∥∥
L2(G0)

. (3.3) est:seqobs

This result is a refinement of [27, Theorem 1.2], which was a refinement of the results proved in [24].9

3.2 Some results on the heat equation10

In this subsection we state some properties of the solutions of the heat equation. We first recall that their11

time derivative can be estimated by using the analyticity and contraction of the semigroup of the heat equation12

(see [37, Sections 2.5 and 5.6]) and Cauchy’s integration formula:13

lm:parsv Lemma 3.3. Let G be a bounded domain. Then, there is C > 0 such that for all k ∈ N, s ∈ R+ and φ ∈ L2(G)14

we have that:15

‖∂ks v(s, ·;φ)‖L2(G) ≤
Ckk!

sk
‖φ‖L2(G), (3.4) est:parsv

for v the solution of:16 
vt −∆v = 0, in (0, T )×G,
v = 0, on (0, T )× ∂G,
v(0, ·) = φ, on G.

(3.5) eq:heatnormalized

It is interesting to consider the solutions of (3.5) because of the identity:17

u(t, x;α, φ) = v(tα, x;φ), (3.6) eq:uv

for u the solution of (1.4).18

7



Another result that we need is that the propagation of the mass, when the initial value in some subdomain1

is null, is exponentially slow:2

lm:heatexpl Lemma 3.4. Let G be a bounded domain and let Ĝ,G0 ⊂ G be Lipschitz domains satisfying Ĝ ⊂⊂ G \ G0.3

Then, there are c, C > 0 such that for all φ satisfying supp(φ) ⊂ Ĝ and all T, α > 0 we have that:4

‖u(·;α, φ)‖C0([0,T ];L2(G0)) ≤ Ce−
c
αT ‖φ‖L2(G), (3.7) eq:finheatexpl

for u the solution of (1.4).5

We recall that A ⊂⊂ B means that A is contained in a compact set contained in B. Lemma 3.4, whose6

originality we do not claim, is a consequence of the comparison principle. Indeed, following for example the7

ideas of [10, Lemma 4], we obtain Lemma 3.4 by comparing the solutions of (1.4) with initial value ±φ to the8

solution of the heat equation in Rd with initial value |φ|1G, a solution which can be estimated by using its9

representation with the kernel of the heat equation.10

3.3 Decay properties implied by (2.3)11

In this subsection we show that if the density function ρ satisfies (2.3), the averaged solutions of (1.4) have12

a decay similar to that of the solutions of the fractional heat equation. In particular, we prove the following13

result:14

lm:decayfrac Lemma 3.5. Let ρ be a density function which satisfies (2.3) for some r ∈ (1/2, 1]. Then, there is c > 0 such15

that for all λ ≥ λ0 and t1, t2 ∈ [0, 1) satisfying t1 < t2 we have that:16 ∫ +∞

0

e−t2λαρ(α)dα ≤ e−cλ
r(t2−t1)

∫ +∞

0

e−t1λαρ(α)dα. (3.8) eq:decay

We recall that λ0 is the first eigenvalue of the Laplacian.17

Proof. In order to prove Lemma 3.5 we first remark that for all s ≥ 0 we have that:18

− d

ds
ln

(∫ +∞

0

e−sαρ(α)dα

)
=

∫ +∞
0

e−sααρ(α)dα∫ +∞
0

e−sαρ(α)dα
≥ cmin{sr−1, 1}. (3.9) eq:hipprecised

Indeed, (3.9) follows from (2.3) and from the continuity of s 7→
∫ +∞
0

e−sααρ(α)dα∫ +∞
0

e−sαρ(α)dα
in [0,+∞). Thus, from (3.9)19

we obtain for all s1, s2 ≥ 0 with s1 < s2 the estimate:20 ∫ +∞

0

e−s2αρ(α)dα ≤ exp

(
−c
∫ s2

s1

min{sr−1, 1}ds
)∫ +∞

0

e−s1αρ(α)dα. (3.10) est:aprioridecay

Next, we fix t1 and t2 satisfying t1, t2 ∈ [0, 1) and t1 < t2, and use different approaches depending on the value21

of λ:22

• If λ ∈ [λ0, t
−1
2 ], from (3.10) taking s1 = λt1 and s2 = λt2, since [s1, s2] ⊂ (0, 1], we obtain that:23 ∫ +∞

0

e−t2λαρ(α)dα ≤ e−cλ(t2−t1)

∫ +∞

0

e−t1λαρ(α)dα. (3.11) est:lambdasmall

In addition, since λ ≥ λ0 we have that:24

− λ ≤ −λ1−r
0 λr. (3.12) est:lambda

Thus, from (3.11) and (3.12) we obtain (3.8) for some c > 0 and all λ ∈ [λ0, t
−1
2 ].25
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• If λ ∈ [t−1
1 ,+∞), from (3.10) taking s1 = λt1 and s2 = λt2, since [s1, s2] ⊂ [1,+∞), we obtain that:1 ∫ +∞

0

e−t2λαρ(α)dα ≤ e−cλ
r(tr2−t

r
1)

∫ +∞

0

e−t1λαρ(α)dα. (3.13) eq:decayprov

Moreover, we consider that:2

− (tr2 − tr1) =
(−tr2 + tr1)(t1−r2 + t1−r1 )

t1−r2 + t1−r1

=
t1 − t2 − tr2t1−r1 + t1−r2 tr1

t1−r2 + t1−r1

≤ t1 − t2
t1−r2 + t1−r1

≤ − t2 − t1
2

. (3.14) eq:dealtime

We have used in the first inequality of (3.14) that t1 < t2 and r ∈ (1/2, 1], and in the second one that3

t1 − t2 < 0 and t1, t2 ∈ (0, 1]. Thus, from (3.13) and (3.14) we obtain (3.8) for some c > 0 and all4

λ ∈ [t−1
1 ,+∞).5

• If λ ∈ (t−1
2 , t−1

1 ), we have that:6

(t1, t2) = (t1, λ
−1] ∪ (λ−1, t2).

For the time interval (λ−1, t2) we may use the result of the second case for t1 replaced by λ and obtain7

that:8 ∫ +∞

0

e−t2λαρ(α)dα ≤ e−cλ
r(t2−λ−1)

∫ +∞

0

e−αρ(α)dα. (3.15) eq:mixcase1

In addition, for the time interval (t1, λ
−1] we may use the result of the second case for t2 replaced by λ9

and obtain that:10 ∫ +∞

0

e−αρ(α)dα ≤ e−cλ
r(λ−1−t1)

∫ +∞

0

e−t1λαρ(α)dα. (3.16) eq:mixcase2

Thus, from (3.15) and (3.16), by taking smaller constants c if necessary, we get (3.8) for all λ ∈ (t−1
2 , t−1

1 ).11

12

Remark 3.6. The first and third cases in the proof of Lemma 3.5 might be empty depending on the values of13

λ0, t1 and t2. However, since we use this result for t1 and t2 arbitrarily small, we need to prove those cases.14

In a similar way, we can also prove the following result:15

lm:decayfracbis Lemma 3.7. Let ρ be a density function which satisfies (2.3) for some r > 0. Then, there is c > 0 such that16

for all λ, λ̃ such that λ̃ > λ ≥ λ0 and t ∈ [1,+∞] we have that:17 ∫ +∞

0

e−tλ̃αρ(α)dα ≤ e−ct
r((λ̃)r−λr)

∫ +∞

0

e−tλαρ(α)dα. (3.17) eq:decaybis

Indeed, integrating both sides of (2.3) in (tλ, tλ̃) we find (3.17).18

Finally, we underline the following result:19

rk:decreasenorm Remark 3.8. A consequence of (3.1) is that t 7→ ‖ũ(t, ·;φ)‖L2(G) is a decreasing function. Indeed, we have that:20

‖ũ(t, ·;φ)‖2L2(G) =
∑
i∈N

(∫ +∞

0

e−αλitρ(α)dα

)2

|〈φ, ei〉|2,

which is a series of decreasing functions.21
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4 Unique continuation property for averaged solutions1

sec:uniquecont

In this section we prove the unique continuation property for averaged solutions (Theorem 2.3). We first2

study the uniform distribution and then the density functions which satisfy (2.3).3

4.1 Proof of Theorem 2.3 for the uniform distribution4

sec:unifdistunqcon

Let us compute the averaged solutions of (1.4) when α has the uniform distribution in (0, 1). For that, as in

[42, Section 3] and [29, Section 3], we present ũ as the difference of two terms of known nature:

ũ(t, x;φ) =
∑
i∈N

∫ 1

0

e−λiαt〈φ, ei〉ei(x)dα =
1

t

(∑
i∈N

1

λi
〈φ, ei〉ei(x)−

∑
i∈N

e−λit

λi
〈φ, ei〉ei(x)

)

=
1

t

(
−∆−1φ+

∑
i∈N

e−λit〈∆−1φ, ei〉ei(x)

)
. (4.1) eq:tildey

Consequently, from
∫ T

0

∫
G0
|ũ(t, x)|2 = 0 and (4.1) we find that:

−∆−1φ+
∑
i∈N

e−λit〈∆−1φ, ei〉ei(x) = 0 in (0, T )×G0,

which differentiating in time implies that:5 ∑
i∈N

e−λit〈φ, ei〉ei(x) = 0 in (0, T )×G0. (4.2) eq:auxsol0inG0

Hence, using the analyticity of the solutions of the heat equation we have that (4.2) implies that φ = 0, and6

thus we have the averaged unique continuation property.7

4.2 Proof of Theorem 2.3 for density functions which satisfy (2.3)8

The proof consists on several steps. First, we show that assuming (2.3) the averaged dynamic are real-analytic9

and then use this to prove the unique continuation. To begin with, we prove the analyticity:10

prop:analyphi Proposition 4.1. Let G be a Lipschitz domain, α any random variable and φ ∈ L2(G). Then, the function:11

U : t ∈ (0,∞)→ ũ(t, ·;φ) ∈ L2(G),

is analytic.12

Proof. In order to prove Proposition 4.1, we prove that U ∈ C∞ and that:13

∀a1, a2 ∈ (0,∞) ∃C > 0 : sup
t∈[a1,a2]

‖U (i)(t)‖L2(G) ≤ Cii! ∀i ∈ N, (4.3) eq:chacanl

which is a characterization of analyticity in R+ (see, for instance, [20, Proposition 1.2.12]). Since:14

U(t) =

∫ +∞

0

v(αt, ·;φ)ρ(α)dα,

for v the solution of (3.5), we can easily see that:15

U (i)(t) =

∫ +∞

0

αi
(
∂itv
)

(αt, ·;φ)ρ(α)dα, (4.4) eq:valueUk

and thus U ∈ C∞. Moreover, (4.3) follows from (4.4), the triangular inequality and (3.4).16
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Now we are ready to prove Theorem 2.3:1

End of the proof of Theorem 2.3. Let φ ∈ L2(G) such that ũ(t, x;φ) = 0 in (0, T )×G0. By Proposition 4.1 we

have that ũ(t, x;φ) = 0 in (0,+∞) ×G0. Let us show that the first frequency of φ is null by contradiction. If

the first frequency is not null, we obtain from (3.1) and (3.17) that:

ũ(t, ·;φ) =

∫ +∞

0

e−αλ0tρ(α)dα〈φ, e0〉L2(G)e0 +
∑
i∈N∗

(∫ +∞

0

e−αλitρ(α)dα

)
〈φ, ei〉L2(G)ei

=

(∫ +∞

0

e−αλ0tρ(α)dα

)[
〈φ, e0〉L2(G)e0 +O

(
e−(λr1−λ

r
0)tr‖φ‖L2(G)

)]
. (4.5) est:whanalphfrac

Thus, by considering (4.5) for large values of t we obtain that 〈φ, e0〉L2(G)e0 = 0 in G0, which by Lemma 3.22

implies that 〈φ, e0〉L2(G)e0 = 0, arriving at a contradiction.3

To continue with, we can prove in an similar way that if φ is null up to the N -th frequency, then ũ(t, x;φ) = 04

in (0, T ) × G0 implies that the (N + 1)-th frequency is also null. Consequently, we obtain by induction that5

ũ(t, x;φ) = 0 in (0, T )×G0 implies φ = 0.6

5 Lack of null averaged observability7

sec:proofmainress

In this section we prove Theorem 2.4. As for the notation used in this section, C (resp. c) denotes a sufficiently8

large (resp. small) strictly positive constant that may be different each time it appears and which just depends9

on G, G0, T and ρ. In particular, it does not depend on the index N that we are going to introduce.10

In order to prove Theorem 2.4 we construct a sequence φN satisfying (2.5). For that purpose, we first state11

and justify the properties which allow to have (2.5):12

• The first property is that:13 ⋃
N∈N

supp(φN ) ⊂⊂ G \G0. (5.1) eq:suppu0N

This requirement is very natural as G\G0 is the part of the domain that cannot be observed when α = 0.14

We use it in addition to Lemma 3.4 to obtain that u(t, x;α, φN ) decays exponentially in {(x, t, α) : x ∈15

G0, αt < N−1/2}.16

• The second property is that:17

φN ∈ 〈ei〉⊥i∈ΛN . (5.2) eq:u0Nperp

The benefit of (5.2) is that u(t, x;α, φN ) decays exponentially in {(x, t, α) : x ∈ G, αt ≥ N−1/2}, which18

follows from (3.1).19

• The third property is that for C > 0 large enough we have that:20

‖PCNφN‖L2(G) ≥
√

3‖φN‖L2(G)/2. (5.3) est:prou0N

This estimate is needed to make sure that ‖ũN (T, ·;φN )‖L2(G)/‖φN‖L2(G) does not decay too fast.21
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Figure 1: The averaged solutions of the heat equation when G = (0, π), G0 = (0, π/2), ρ = 1(0,1) with initial

values of the sequence given in the proof of Proposition (see (A.1)) and with ς given by (5.5).fig:graphsu03

Let us construct the sequence φN . For that, we inspire in [16, Section 6] and consider more or less a linear1

combination of Dirac masses; that is,2

φN ≈
C
√
N∑

i1,...,iN=1

ci1,...,iN ,Nδ
0
xi1,...,iN ,N

. (5.4) def:appoxu0N

In fact, the Dirac masses are replaced by CN
d

N ς(CN (x − xi1,...,iN ,N )), for ς a regularizing function and CN to3

be defined. The property (5.1) is trivial. As for (5.2), we can obtain it by taking the right linear combination.4

Indeed, we just have to solve an homogeneous linear system which, for C > 0 large enough, by Weyl’s law5

(see Lemma 3.1) has more unknowns than equations. Finally, we can obtain (5.3) by choosing the right6

approximation with functions whose support has a diameter proportional to N−1/2. In particular, we can prove7

that:8

pro:spacenonempty Proposition 5.1. Let G ⊂ Rd be a Lipschitz domain and G0 ⊂ G. Then, there is a sequence (φN )N≥N0
9

satisfying (5.1), (5.2) and (5.3).10

The rigorous proof of Proposition 5.1 is a bit technical, so it is postponed to Appendix A.11

Remark 5.2. Since (5.1), (5.2) and (5.3) just depend on G and G0, so does the sequence φN .12

Example 5.3. In Figure 1 we illustrate the solutions of the heat equation given by the proof of Proposition13

5.1 to get an insight on how they look like. For doing these graphs we have taken G = (0, π), G0 = (0, π/2),14

ρ = 1(0,1) and:15

ς(x) = exp

(
−1

10(x− 1)2(x+ 1)2

)
1(−1,1)(x). (5.5) eq:exvarsigma

We recall that in (0, π) we have that ei(x) = sin(ix) and λi = i2.16

Let us now prove rigorously Theorem 2.4:17
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Proof of Theorem 2.4. We consider φN given by Proposition 5.1 (for N large enough). We easily find that:

∫ T

0

∫
G0

∣∣∣∣∫ +∞

0

u(t, x;α, φN )ρ(α)dα

∣∣∣∣2 dxdt ≤ ∫ T

0

∫
G0

∫ +∞

0

|u(t, x;α, φN )|2 ρ(α)dαdxdt

=

∫ T

0

∫
G0

∫ +∞

0

|u(t, x;α, φN )|2 1αt≤N−1/2(t, α)ρ(α)dαdxdt

+

∫ T

0

∫
G0

∫ +∞

0

|u(t, x;α, φN )|2 1αt>N−1/2(t, α)ρ(α)dαdxdt ≤ C
(
e−c
√
N + e−

√
N
)
‖φN‖2L2(G). (5.6) est:obsgenG0

Indeed, for the first inequality of (5.6) we have used that the L1 norm in a probabilistic space can be estimated1

by the L2 norm. As for the second inequality of (5.6), we have used (5.1) and (3.7) for bounding the first2

integral, whereas we have used (5.2), (3.6) and the Fourier decomposition of the solutions of the heat equation3

for bounding the second one.4

To continue with, using (3.1), (2.4) and (5.3) we obtain that:

‖ũ(T, ·;φN )‖2L2(G) =
∑
i∈N

(∫ ∞
0

e−λiαT ρ(α)dα

)2

|〈φN , ei〉|2 ≥ c
∑
i∈N

e−C(λiT )r |〈φN , ei〉|2

≥ ce−CN
r ∑
i∈ΛCN

|〈φN , ei〉|2 = ce−CN
r

‖PCNφN‖2L2(G) ≥ ce
−CNr‖φN‖2L2(G). (5.7) est:remainobsgen

Hence, recalling that r ∈ [0, 1/2) we easily obtain (2.5) from (5.6) and (5.7).5

6 Proof of null averaged observability6

sec:proofnullobs

In this section we prove Theorem 2.6. As for the notation, C (resp. c) denotes a sufficiently large (resp.7

small) strictly positive constant that may be different each time it appears and which just depends on G, G08

and ρ, but which is independent of T ∈ (0, T0), for T0(G,G0, ρ) small enough.9

In order to prove Theorem 2.6 we use the approach introduced in [35, Section 2]. It is not a direct consequence10

of the results presented in that section because the dynamics of the averaged solution only satisfies a decay11

property and not a semigroup property.12

First, we reformulate [35, Lemma 2.1]:13

lm:approxcon Lemma 6.1. Let G ⊂ Rd be a domain, G0 be a subdomain, T0 > 0, q ∈ (0, 1) and f be a positive function such14

that f(t)→ 0 as t→ 0+. Suppose that we have for all φ ∈ L2(G) and all t1, t2 ∈ (0, T0] satisfying t1 < t2 that:15

f(t2 − t1)‖ũ(t2, ·;φ)‖2L2(G) − f(q(t2 − t1))‖ũ(t1, ·;φ)‖2L2(G) ≤
∫ t2

t1

∫
G0

|ũ(τ, x;φ)|2dxdτ. (6.1) eq:auxest

Then, we have for all φ ∈ L2(G) and T ∈ (0, T0] that:16

‖ũ(T, ·;φ)‖L2(G) ≤
√
f((1− q)T )‖ũ(·;φ)‖L2((0,T )×G0).

The proof of Lemma 6.1 is very similar to that of [35, Lemma 2.1]: a telescopic sum considering t2,i = Tqi and17

t1,i = Tqi+1 for i ∈ N.18
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As in [35], we do not prove (6.1) directly, but we prove a similar version, which is the analogue of [35, Lemma1

2.3]:2

lm:ineqprac Lemma 6.2. Let G ⊂ Rd be a domain, G0 be a subdomain, T0, β, γ1, γ2, f0, g0 > 0 satisfying γ1 < γ2. Suppose3

that we have for all φ ∈ L2(G) and all t1, t2 ∈ (0, T0] satisfying t1 < t2 the inequality:4

f(t2 − t1)‖ũ(t2, ·;φ)‖2L2(G) − g(t2 − t1)‖ũ(t1, ·;φ)‖2L2(G) ≤
∫ t2

t1

∫
G0

|ũ(τ, x;φ)|2dxdτ, (6.2) eq:recriwthfg

for f(s) ≥ f0 exp(−2/(γ2s)
β) and g(s) ≤ g0 exp(−2/(γ1s)

β). Then, for any γ ∈ (0, γ2− γ1) there is T ′ ∈ (0, T0]5

such that for all T ∈ (0, T ′] and φ ∈ L2(G):6

‖ũ(T, ·;φ)‖L2(G) ≤
√
f−1

0 exp(1/(γT )β)‖ũ(·;φ)‖L2((0,T )×G0).

Moreover, if g0 < f0, we can take γ = γ2 − γ1 and T ′ = T0.7

The proof of Lemma 6.2 is the same as [35, Lemma 2.3]: bounding superiorly g(s)
f(qs) and using Lemma 6.1.8

Now we are ready to prove Theorem 2.6. We do it by following the strategy of [35, Section 2]:9

Proof of Theorem 2.6. Let t1, t2 ∈ [0, 1) such that t1 < t2 and φ ∈ L2(G). We now define:10

λ(t2, t1) = C(t2 − t1)−(r−1/2)−1

, (6.3) def:lambdat1t2

for C a large positive constant to be fixed later. We are going to prove:11

ce−C((t2−t1)−1/4+
√
λ)‖ũ(t2, ·;φ)‖2L2(G) − Ce

−cλr(t2−t1)‖ũ(t1, ·;φ)‖2L2(G) ≤
∫ t2

t1

∫
G0

|ũ(τ, x;φ)|2dxdτ, (6.4) eq:interpineq

and then use Lemma 6.2. First, considering Remark 3.8 and that Pλφ ⊥ P⊥λ φ we have that:12

‖ũ(t2, ·;φ)‖2L2(G) ≤
2

t2 − t1

∫ t2

(t1+t2)/2

∫
G

(|ũ(τ, x;Pλφ)|2 + |ũ(τ, x;P⊥λ φ)|2)dxdτ. (6.5) eq:decayut2

From Lemma 3.2 and that Pλφ = φ− P⊥λ φ we obtain that:

2

t2 − t1

∫ t2

(t1+t2)/2

∫
G

|ũ(τ, x;Pλφ)|2dxdτ ≤ C eC
√
λ

t2 − t1

∫ t2

(t1+t2)/2

∫
G0

|ũ(τ, x;Pλφ)|2dxdτ

≤ CeC
√
λ

t2 − t1

∫ t2

(t1+t2)/2

∫
G0

|ũ(τ, x;φ)|2dxdτ +
CeC

√
λ

t2 − t1

∫ t2

(t1+t2)/2

∫
G

|ũ(τ, x;P⊥λ φ)|2. (6.6) eq:localfull

Moreover, from the decay property of Remark 3.8 and (3.8) we have that:

CeC
√
λ

t2 − t1

∫ t2

(t1+t2)/2

∫
G

|ũ(τ, x;P⊥λ φ)|2dxdτ ≤ CeC
√
λ
∥∥ũ ((t2 + t1)/2, ·;P⊥λ φ

)∥∥2

L2(G)

≤ CeC
√
λ−cλr(t2−t1)‖ũ(t1, ·;P⊥λ φ)‖2L2(G). (6.7) eq:t2andt1

Thus, from (6.5)-(6.7), and using that (t2 − t1)−1 ≤ CeC(t2−t1)−1/4

we obtain:13

ce−C((t2−t1)−1/4+
√
λ)‖ũ(t2, ·;φ)‖2L2(G) ≤

∫ t2

t1

∫
G0

|ũ(τ, x;φ)|2dxdτ + Ce−cλ
r(t2−t1)‖ũ(t1, ·;P⊥λ φ)‖2L2(G), (6.8) eq:obsalmost

which implies (6.4).14
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To continue with, if we replace in (6.4) the value of λ by the one given in (6.3), we obtain (6.2) for the

functions:

f(s) = c exp
(
−C

(
s−1/4 + C1/2s−(2r−1)−1

))
, g(s) = C exp

(
−cCrs−(2r−1)−1

)
.

Indeed, since r > 1
2 , we have for all s ∈ (0, 1) that:1

f(s) ≥ c exp
(
−CC1/2s−(2r−1)−1

)
.

Since r > 1
2 the functions f and g satisfy the hypothesis of Lemma 6.2 for β = (2r − 1)−1, γ1 = (cCr)−1/β and2

γ2 = (CC1/2)−1/β by taking C large enough, so we end the proof by using Lemma 6.2.3

7 The controllability problem4

sec:furthcom

In this section we first resume the theoretical study of the controllability problem and then perform some5

simulations.6

7.1 A theoretical study7

sec:control

As stated in the introduction, the observability results that we have obtained in this paper have some impli-8

cations on the controllability of (1.1). Let us consider the controllability problem given by:9 
yt − α∆y = f1G0 , in (0, T )×G,
y = 0, on (0, T )× ∂G,
y(0, ·) = y0, on G.

(7.1) eq:ranheatcon

In particular, we focus on the following notions of controllability, which are introduced in [41]:10

Definition 7.1. System (7.1) is null averaged controllable or null controllable in average if for all T > 0 there is11

C > 0 such that for any initial value y0 ∈ L2(G) there is f ∈ L2((0, T )×G0) satisfying:12

‖f‖L2((0,T )×G0) ≤ C‖y0‖L2(G),

and ỹ(T, ·; y0, f) = 0. If (7.1) is null averaged controllable, the cost of the null averaged controllability is defined13

by:14

K̃(G,G0, ρ, T ) = sup
y0∈L2(G)\{0}

inf
f :ỹ(T,·;y0,f)=0

‖f‖L2((0,T )×G0)

‖y0‖L2(G)
. (7.2) def:coscont

Definition 7.2. System (7.1) is approximately averaged controllable or approximately controllable in average if15

for all T > 0, ε > 0 and y0, y1 ∈ L2(G), there exists a control fε such that:16 ∥∥ỹ(T, ·; y0, fε)− y1
∥∥
L2(G)

< ε.

We now recall the duality result between observability and controllability:17

tm:dual Theorem 7.3 ([29]). Let G ⊂ Rd be a domain and G0 ⊂ G be a subdomain. System (7.1) is null controllable18

in average if and only if system (1.4) is null observable in average in G0. In that case, K = K̃ (see (2.2) and19

(7.2)). Similarly, system (7.1) is approximately averaged controllable if and only if system (1.4) satisfies the20

unique continuation property in G0.21
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The proof of Theorem 7.3 can be found in [29, Appendix A]. As an immediate consequence we obtain that1

Theorems 2.4, 2.3 and 2.6 and Remark 2.5 imply the following controllability results for system (7.1):2

cl:control Corollary 7.4. Let G ⊂ Rd be a domain, G0 ⊂ G be a subdomain and T > 0. Then:3

• Under the hypotheses of Theorem 2.3, system (7.1) is approximately controllable in average.4

• Under the hypotheses of Theorem 2.4, system (7.1) is not null controllable in average.5

• If G0 = G, system (7.1) is null and approximately controllable in average for any probability distribution6

ρ.7

• Under the hypotheses of Theorem 2.6, system (7.1) is null controllable in average and there are C, T0 > 08

such that for all T ∈ (0, T0] we have the bound:9

K̃(G,G0, ρ, T ) ≤ CeCT
(2r−1)−1

.

As shown in [29, Section A.2], the controls can be obtained (when the system is controlable) by minimizing10

a quadratic functional, so they can be obtained by running simulations.11

7.2 Simulations12

sec:num

In this section we illustrate experimentally the controllability results obtained in Corollary 7.4. Our objective

is not to develop rigorous numerical methods for obtaining the controls, which goes beyond the objective

of this work, but to get an insight on the differences between density functions inside and outside the null-

controllability regime. For that, we recall that the optimal control for null controllability in average (when (7.1)

is null controllable) is given by ϕ(t, x;φ)1G0 , for ϕ the solution of (1.3) and φ the minimizer of:

J(φ) =
1

2

∫ T

0

∫
G0

∣∣∣∣∫ +∞

0

ϕ(t, x;α, φ)ρ(α)dα

∣∣∣∣2 dxdt+

〈
y0,

∫ +∞

0

ϕ(0;α, φ)ρ(α)dα

〉
.

As the numerical simulations are cumbersome in higher dimensions, to get better illustrations we work in d = 1,13

and in particular in G = (0, π). We also consider G0 = (1, 2), T = 1 and y0 = 1
2 . Moreover, to illustrate these14

differences, we consider ρ = 1(1,2), which is inside, and ρ = 1(0,1), which is outside.15

In order to numerically implement this problem, we approximate it by minimizing J in VM := 〈ei〉Mi=1 for16

M = 20, M = 50 and M = 100. This is motivated by the results presented in [1] for the random wave equation.17

Since VM is a finite dimensional space, computing the minimum of J is equivalent to solving numerically a linear18

system, which can be easily done by using any numerical computing environment (in our case MATLAB). We19

have the following illustrations:20

• We illustrate in Figure 2 (resp. in Figure 3) the functions induced by the minimum of J restricted to the21

spaces VM for ρ = 1(1,2) (resp. for ρ = 1(0,1)). For ρ = 1(1,2) we obtain a sequence of functions which seems22

to converge with respect to M to some function, which is something that can be seen in an even more23

clear way when t ∈ [0, 1/2]. Of course, the closer the time is to 1, the more slowly the punctual values of24

the control converge pointwise with M (and in t = 1 it diverges), but this is a well-known behavior when25

controlling a parabolic dynamics (see, for instance, [18, 36, 15]). However, for ρ = 1(0,1) the sequence of26

functions does not seem to converge at all, which is something that we can appreciate in a more detailed27

way when t ∈ [0, 1/2]. What explains the difference is the controllability properties of each density.28

16



Figure 2: Graphs of the functions for ρ = 1(1,2) and y0 = 1
2 induced by the minimum of the functional J in V20,

V50 and V100. In the left column we illustrate the whole graphs, in the middle column we illustrate the graphs

with the time variable zoomed in [0, 1/2], and in the left column zoomed in [0.9, 1].fig:rho12x12

17



Figure 3: Graphs of the functions for ρ = 1(0,1) and y0 = 1
2 induced by the minimum of the functional J in V20,

V50 and V100. In the left column we illustrate the whole graphs, whereas in the right column we illustrate the

graphs with the time variable zoomed in [0, 1/2], and in the left column zoomed in [0.9, 1].fig:rho01x12
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Figure 4: The state at time t = 1 of the averaged solutions of the heat equation after applying the function

induced by the minimum of J in V20, V50 and V100 with y0 = 1
2 . In the left figure we have considered ρ = 1(1,2)

and we observe that those functions are controls that take the solutions almost to equilibrium. The computations

are obtained by approximating the density functions with Dirac masses, which explains why the solution does

not converge exactly to 0. In the right one, ρ = 1(0,1) and we see that the minimum of J do not take the

solutions to equilibrium, so the functions that we have obtained cannot be considered controls.fig:solt1

• We illustrate in Figure 4 the state at t = 1 of the respective solutions of the averaged heat equation with1

the previously obtained functions. For ρ = 1(1,2) we see that the state is taken slowly to 0, whereas for2

ρ = 1(0,1) the picture shows some oscillations. This matches the theoretical results obtained in Corollary3

7.4 as for ρ = 1(1,2) the system is known to be averaged null controllable, whereas for ρ = 1(0,1) the system4

is known to be not null averaged controllable. The computations are obtained by approximating the5

density functions with Dirac masses, which explains why the solution in the left figure does not converge6

exactly to 0.7

8 Further comments and open problems8

sec:addcomm

In this section we underline some extensions of our results to analogous situations and comment some inter-9

esting open problems:10

• A naive and incorrect way of computing a control that takes the average to rest is to compute the average

of the controls that take each of the instances to rest. However, we do not get the same trajectory if

we consider some source terms fα and then average on the solutions or if we compute the solutions with

source term
∫∞

0
fαρ(α)dα and then average. In fact, the solutions of the equation:

u̇+ αu = fα,

are given by:

u(t) = u(0)e−αt +

∫ t

0

fα(s)e−α(t−s)ds;

thus, most often we do not get the same trajectory, as:11 ∫ t

0

∫ +∞

0

fα(s)e−α(t−s)ρ(α)dαds 6=
∫ t

0

(∫ +∞

0

fα(s)ρ(α)dα

)(∫ +∞

0

e−α(t−s)ρ(α)dα

)
ds.

19



A specific counter-example can be given with scalar ODEs. Let us consider a dynamic that behaves half

of the times like:

u̇+ u = f,

and half of the times like:

v̇ − v = g;

that is, P[α = 1] = P[α = −1] = 1/2. If the initial value is 1 we can take the solutions to rest at time1

T = 1 with the controls f(t) = −t and g(t) = t − 2 (this is done by considering that 1 − t is a valid2

trajectory). The average of the controls is −1. However, for f(t) = g(t) = −t+t−2
2 = −1, we obtain the3

trajectories u(t) = −1 + 2e−t and v(t) = 1, whose average is e−t, which is not null at T = 1.4

• As in some previous works involving exact controllability results (see [41], [29], [11] and [28]) we fix the5

initial value. This is used in the proof of Theorem 7.3 because the duality method needs a fixed initial value.6

In fact, in recent papers where random initial values are considered this difficulty is bypassed by using7

exact averaged controllability (see, for instance, [22]), which is satisfied by finite dimensional or hyperbolic8

systems but not by parabolic ones, or by assuming that there is no randomness in the dynamics, just on9

the initial value (see, for instance, [39]). We highlight that understanding the controllability properties of10

(7.1), when y0 is a random initial value, is an open problem whose resolution would help to have a more11

complete picture.12

• We may prove analogous controllability results to Theorems 2.3, 2.4 and 2.6 when the control acts on13

the boundary. This can be done either by repeating the proofs almost step by step or by extending the14

domain, using a control on the extended domain, and then considering the restriction to the boundary of15

the average solution like, for instance, in [3, Section 3.3].16

• We have analogous results of Theorems 2.3 and 2.6 for the controllability of the averaged solutions of the17

heat equation with random diffusion and Neumann boundary conditions. Indeed, we can repeat the proof18

step by step of those theorems since (3.3) is also true for Neumann boundary conditions (see [27, Theorem19

2]). However, whether the analogous of Theorem 2.4 is true remains an open question since we do not20

have an analogous result of Lemma 3.4 for Neumann boundary conditions.21

• Even if all the results in this paper have been stated for random variables with a density function, they22

are true for any random variable whose law satisfies the analogous inequalities of (2.3) and (2.4). Indeed,23

the proofs can be replicated step by step.24

• Developing rigorously the numerics for the random heat equation with density functions that do not decay25

at α = 0 is an interesting open problem.26

• Even if we have obtained all the results in this paper for the final state in L2(G) and we have made the27

observation in L2((0, T )×G0), analogous results are valid for final states in Hs1(G) and the observation28

in Hs2((0, T )×G0) (for any s1, s2 ∈ R+) for a domain G sufficiently regular. Indeed, the proofs are very29

similar with the only difference of some polynomial factors of N or λ. We recall that Lemma 3.2 can be30

adapted to observe a higher norm with the L2-norm. In fact, for any function φ =
∑
i∈Λλ

aiei we have:31

‖φ‖H1
0 (G) =

(∑
i∈Λλ

a2
iλi

)1/2

≤
√
λCeC

√
λ

∥∥∥∥∥∑
i∈Λλ

aiei

∥∥∥∥∥
L2(G0)

≤ Ce(C+1)
√
λ ‖φ‖L2(G0) .

• If (α,G) satisfies the hypotheses of Theorem 2.6, we can easily prove as in [13, Theorem 1] that the free32

averaged solutions of the heat equation preserve the analyticity with respect to the spatial variable in the33

interior of the domain.34

20



• Regarding the cases where the diffusion takes strictly negative values we do not have null averaged con-1

trollability. Indeed, under that hypothesis we can easily prove that:2

lim
n→∞

‖ũ(T, ·; en)‖L2(G)

‖ũ(·; en)‖L2((0,T )×G)
= +∞.

• There are some density functions which satisfy neither (2.3) for some r > 1/2 nor (2.4) for some r < 1/2.3

For those density functions their (non-)observability properties are still unproved, for instance, those4

satisfying (1.6). It is an infinite dimensional class since it contains all functions provided by (2.7) for5

k = 1.6

• It would be interesting to have a proof of the unique continuation property for the averaged dynamics7

of any random variable α, even when it takes negative values. Indeed, there are some random variables8

whose density functions do not satisfy (2.3) for any r > 0 (for instance, ρ(α) = 2α1(0,1)(α)), so their9

unique continuation is still unproved. In particular, we wonder if the unique continuation is preserved10

when ρ is too irregular, as a counter-example would probably be of such type.11

• The observability properties proved in Theorem 2.6 can be extended to sets of the type E ×G0, for E a12

measurable set. Indeed, we can use the approach of [38, 2, 29, 11], which complement the ideas of [35]13

with some results from Measure Theory.14

• An interesting problem that remains open is the study of the averaged observability properties of the

random heat equation when the lower terms are also random terms, as:

yt − div(σ(x, α)∇y) +A(x, α) · ∇y + a(x, α)y = 0.

In particular, this is interesting when the averaged convection operator and the averaged diffusion operator15

do not commute. Unfortunately, the techniques presented in this paper do not help in that direction since16

they rely on being the eigenfunctions associated to the elliptic operator independent of α to ensure that17

the averages of the respective eigenfunctions remain orthogonal. Consequently, they can only be applied18

to equations of the type yt − αLy, for L an elliptic self-adjoint operator of compact resolvent. Thus, a19

theoretical or an in-depth numerical study would be of high interest for those operators.20

• It is an interesting question to develop rigorously the numerics for (7.1), in particular when the density21

function is strictly positive in a neighbourhood of 0.22

• There are many other interesting questions involving random PDEs such as Schrödinger, wave, beam or23

Stokes equations:24

– The Schrödinger equations with random diffusions satisfying the uniform, exponential, Laplace, nor-25

mal, Chi-squared and Cauchy distributions were studied in [29]. There, the authors show that the26

averaged dynamics may be conservative or diffusive depending on the probability density, which leads27

to averaged controllability properties of very different kind. They consider the uniform distribution28

in any segment of R and the exponential distribution in [1,+∞), though their proof is valid in any29

segment of the type [K,+∞) for any K ∈ R. However, the problem of determining the dynamics30

and controllability properties of the averaged Schrödinger equations with arbitrary distributions is31

still open.32

– The wave equation with random discrete diffusion was studied in [23] and more abstractly in [26],33

whereas understanding the general case is still an open challenge.34

– Another interesting equation for which we can consider randomness in the higher order term is the35

Beam equation. In fact, in [30] an optimization problem involving the cost of the control and the36

avarage of the square of the mass at a final time T is studied, but it is an open question to determine37

its exact (or null) controllability.38
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– The Stokes equation with random diffusion has not been studied in the literature. However, we can1

get analogous versions of Theorems 2.3 and 2.6 for the Stokes equation with random diffusion as2

of the heat equation by considering [9, Theorem 3.1]. Nonetheless, determining if the analogous of3

Theorem 2.4 is true remains an open problem because a lack of a comparison theorem prevent from4

using analogous arguments.5

A Proof of Proposition 5.16

sec:proofu0n

As in Section 5, C denotes a sufficiently large positive constant that may be different each time it appears7

and which just depends on G, G0 and ρ. In particular, it does not depend on the index N . Similarly, C̃ is a8

constant sufficiently large that just depends on G, G0 and ρ and C is a sufficiently large constant depending on9

those parameters and C̃. Finally, b·c denotes the floor function of a real number.10

Let us fix q = (q1, . . . , qd) and ` > 0 such that:

K := [q1, q1 + `]× · · · × [qd, qd + `] ⊂⊂ G \G0.

We also fix a positive non-trivial function ς ∈ D(BRd(0, 1)). We define for (γ1, . . . , γd) ∈ [0, 1]d:11

p(γ1, . . . , γd) := q + `(γ1, . . . , γd),

which is a parametrization of K. With this in mind, we define the functions:12

φN (x) :=

bC̃√Nc∑
i1,...,id=0

ci,N ςi,N (x), for ςi,N (x) := ς

3C̃
√
N

x− p
(

i

bC̃√Nc

)
`

 , (A.1) def:phiN

for i := (i1, . . . , id) and ci,N and C̃ a large constant to be defined later on (see Figure 5 for an illustration of13

how K and the support of φ1 may look like). Let us check that for some C̃ and ci,N the sequence φN given by14

(A.1) satisfies (5.1)-(5.3):15

• We have that:16

supp(φN ) ⊂
{
x : d(x,K) <

`

3C̃
√
N

}
. (A.2) eq:suppincl

Since the right-hand side of (A.2) is a decreasing sequence of sets and since K ⊂⊂ G \G0 we can easily17

prove (5.1) for C̃ large enough.18

it:nonnullseq • In order to have (5.2) we just need to find a non-trivial solution of the system:19

{〈φN , ei〉L2(G) = 0, ∀i ∈ ΛN . (A.3) sys:orthphiN

We remark that the system (A.3) is a linear homogeneous system with
⌊
C̃
√
N
⌋d

unknowns (the constants20

(ci,N )i) and |ΛN | equations, so from Weyl’s law (see Lemma 3.1) and by taking C̃ large enough we obtain21

that there are more unknowns than equations, which implies that (A.3) has a non-trivial solution. In22

particular, we can fix (ci,N )i a non-null tuple such that φN is a solution of (A.3).23

• In order to prove (5.3) it suffices to prove that for C > 0 large enough and all N ∈ N we have that:24

‖∆φN‖L2(G) ≤
CN

2
‖φN‖L2(G). (A.4) est:u0NL2

22



Figure 5: An illustration of the support of φ1 in a domain belonging to R2.fig:suppphi1

Indeed, from (A.4) we obtain that:1

‖φN‖L2(G) ≥
2‖∆φN‖L2(G)

CN
≥

2‖P⊥
CN

∆φN‖L2(G)

CN
≥ 2‖P⊥

CN
φN‖L2(G),

so we find that:2

‖PCNφN‖
2
L2(G) = ‖φN‖2L2(G) − ‖P

⊥
CN

φN‖2L2(G) ≥
3

4
‖φN‖2L2(G),

which is (5.3) squared. So, let us prove (A.4). We clearly have for all i, ĩ ∈
{

0, . . . ,
⌊
C̃
√
N
⌋}d

satisfying

23



i 6= ĩ that supp(ςi,N ) ∩ supp(ς̃i,N ) = ∅. Thus, we have that:

‖∆φN‖2L2(G) =

bC̃√Nc∑
i1,...,id=0

c2i,N

(
3C̃
√
N

`

)4 ∫
G

|∆ς|2

3C̃
√
N

x− p
(

i

bC̃√Nc

)
`

 dx

=

 bC̃
√
Nc∑

i1,...,id=0

c2i,N

(3C̃
√
N

`

)3

‖∆ς‖2L2(B(0,1)) ≤ C

 bC̃
√
Nc∑

i1,...,id=0

c2i,N

(3C̃
√
N

`

)3

‖ς‖2L2(B(0,1))

= C

bC̃√Nc∑
i1,...,id=0

c2i,N

(
3C̃
√
N

`

)4 ∫
G

|ς|2

3C̃
√
N

x− p
(

i

bC̃√Nc

)
`

 dx

≤ CC̃4N2

bC̃√Nc∑
i1,...,id=0

c2i,N

∫
G

|ς|2

3C̃
√
N

x− p
(

i

bC̃√Nc

)
`

 dx = CN2‖φN‖2L2(G). (A.5) est:DeltaphiN

Consequently, the sequence φN satisfies (A.4) for C large enough depending on C̃, and hence it also1

satisfies (5.3).2
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[7] E. Borel. Sur les zéros des fonctions entières. Acta Math., 20:357–396, 1897.16

[8] N. Burq and I. Moyano. Propagation of smallness and control for heat equations. arXiv preprint17

arXiv:1912.07402, 2019.18

[9] F. W. Chaves-Silva and G. Lebeau. Spectral inequality and optimal cost of controllability for the Stokes19

system. ESAIM:COCV, 22(4):1137–1162, 2016.20

[10] J.-M. Coron and S. Guerrero. Singular optimal control: a linear 1-D parabolic–hyperbolic example. Asymp-21

totic Anal., 44(3, 4):237–257, 2005.22

24



[11] J. Coulson, B. Gharesifard, and A.-R. Mansouri. On average controllability of random heat equations with1

arbitrarily distributed diffusivity. Automatica, 103:46–52, 2019.2

[12] S. Ervedoza and E. Zuazua. Sharp observability estimates for heat equations. Arch. Ration. Mech. An.,3

202(3):975–1017, 2011.4

[13] L. Escauriaza, S. Montaner, and C. Zhang. Analyticity of solutions to parabolic evolutions and applications.5

SIAM J. Math. Anal., 49(5):4064–4092, 2017.6

[14] H. O. Fattorini and D. L. Russell. Exact controllability theorems for linear parabolic equations in one space7

dimension. Arch. Ration. Mech. An., 43(4):272–292, 1971.8

[15] E. Fernández-Cara and A. Münch. Strong convergent approximations of null controls for the 1D heat9
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