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Abstract—With the increasing interest in using electric vehicles
(EVs) in future transportation systems, the need for deploying
fast charging infrastructures becomes essential. In order to fulfil
this need, it is important to anticipate EV future charging
demands and requirements, and optimize their deployment. In
this paper, we develop an optimization model to solve the problem
of positioning fast-charging stations for EVs. The proposed model
takes into account the different mobility flows and recharging
demands as well as the constraints imposed by the available
electric grid. In addition, the model considers the availability of
alternative energy sources (i.e. photo-voltaic). For this purpose,
we provide a mathematical formulation for the considered prob-
lem aiming at maximizing the covered recharging demand while
respecting investment budget limits and the available capacities
provided by the electric grid. Through a case study on Paris-
Saclay area, we obtain the optimal locations for deploying EV
charging stations as well as the number of chargers that need to
be installed at each charging station. Results also highlight the
benefits of integrating locally-produced photo-voltaic energy on
EV recharging service.

Index Terms—electric vehicles, recharging, optimization, mo-
bility, electric grid

I. INTRODUCTION

Electric vehicles (EVs) have witnessed a considerable de-
velopment in recent years. By improving their battery capac-
ities and recharging technologies, EVs can circulate for long
distances and be recharged in short periods of time (e.g. a
Tesla Roadster can travel up to 340 km while recharging its
battery takes no more than 20 minutes using fast-charging
technology [1]). The need for deploying fast-charging in-
frastructures, especially on highways and high-speed roads,
becomes essential. In order to fulfil this need and determine
its required investments, it is important to anticipate EV future
charging demands and requirements, and optimize their facility
location taking into account the different mobility flows (i.e.
small vehicles, lorry, etc.) and the existing electric grid [2].

In this paper, after reviewing the related literature (section
II), we develop an optimization model to solve the problem of
deploying recharging stations for EVs on a highway network

This research work is carried out as part of the PGMO research project at
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(section III). The proposed model takes into account the
different mobility flows and recharging demands as well as the
constraints imposed by the available electric grid. In addition,
the model considers the availability of a local solar farm and
integrates its produced energy to the system. More precisely,
the deployment of EV charging stations and the number of
fast-chargers is based on the charging demand in the first
place. This deployment also respects the restrictions of the
electric grid as well as the availability of parking places at
charging stations. For this purpose, we provide a mathematical
formulation for the problem aiming at maximizing the covered
recharging demand while respecting investment budget limits
and the available capacities provided by the electric grid
(section IV). The relying optimization problem corresponds to
the well-known facility location problem where our facilities
are the recharging stations [3]. By solving this problem,
we obtain the optimal locations for deploying EV charging
stations as well as the number of chargers to be installed
at each charging station (section V). Finally, in section VI,
the key findings are highlighted and research perspectives are
suggested.

II. BACKGROUND

Research on locating EV charging stations can be classified
into three main categories; transportation, electric, and mul-
tidisciplinary approaches. Transportation approaches focus
only on the transportation perspective (i.e. mobility flows and
passengers demand) when designing EV charging networks
[4]. On the other hand, electric approaches aim to locate EV
charging stations in power systems such that their capacity
and security requirements are satisfied and the investment
costs needed to upgrade them are minimized [5]. As both
transportation and electric perspectives are important, mul-
tidisciplinary approaches consider both types of constraints
are considered [6]. In addition, different types of chargers
have been considered in the literature. These are: level-1
chargers (referred to as slow charging, 110V/15A), level-2
chargers (220V/15-30A), and level-3 chargers (referred to as
fast-charging, 400-500V/50A). These chargers have different



features and requirements, such as; power capacities, charging
times, cabling and outlets, etc. Some studies considered only
one type of chargers while other studies integrated different
types of chargers. For example, in [7], the distribution of level-
2 charging stations among territory segments is considered,
based on the potential use of EVs and the different parking
behaviors. In [6], the focus is on selecting locations for fast
recharging stations (level-3) through a highway network for
long-distance trips in the US. In [2], the deployment of both
level-2 and level-3 chargers is considered to fulfil EV charging
needs while respecting the specifications of the electric grid.

Regarding decision models, some studies suggested to use a
Facility Location Model (FLM) [7], while others introduced a
Flow Refueling Location Model (FRLM) as it provides a better
coverage of mobility flows [4]. In addition, different objectives
are assigned to these models, such as: minimizing investment
costs [8], maximizing covered mobility flows or the number
recharged EVs [2], or minimizing CO2 emissions [9]. Once
the decision model is built along with its objectives and con-
straints, most studies suggest solving it using a mathematical
solver (e.g. Cplex, Gurobi, etc.) so that the optimal deployment
of EV charging stations is obtained. However, some studies
developed other methods for solving these models, such as:
Branch-and-Bound (B&B) and Dynamic Programming (DA)
approaches (see [10] and [8] respectively). In this paper, we
consider a multidisciplinary approach for locating EV fast
charging stations. We also consider two types of fast chargers:
for small vehicles and heavy trucks. In addition, we introduce
a facility location model that aims at maximizing the covered
charging demand. We then solve the proposed model using
Cplex mathematical solver and analyze the obtained results
through a case study on Paris-Saclay area.

III. PROBLEM DESCRIPTION

We focus in this problem on finding the optimal deployment
of EV recharging stations and the number of fast chargers to
be installed through a network of highways (mobility axes).
In this problem, we consider two types of fast chargers,
one for charging small electric vehicles, and the other for
charging heavy electric trucks. In addition, We consider a set
of potential charging locations S ( nodes s0, s1, .. , s4 in
Fig. 1). Every charging location s ∈ S is defined by a cost
(cs) indicating required investment to use this location as a
charging station, and has a maximum electric capacity qs and
a max/min number of fast chargers that can be installed for
small vehicles as well as heavy trucks (maxas , min

a
s , max

b
s

and minbs respectively). The investment cost (cs) includes land
cost and cabling expenses. In addition, we consider a set of
coupling nodes N , where these nodes are used to build our
mobility paths (nodes n0, n1, .. , n5 in Fig. 1). As such,
we consider a set of paths P that link sequences of coupling
nodes [11]. Every path p ∈ P is defined by its charging
demands dap, d

b
p, representing the number of EVs (i.e. vehicles

and trucks respectively) to be recharged per day. The numbers
of electric vehicles and trucks that can be recharged using a
fast charger per day are defined as βa and βb respectively.

Fig. 1: Graph example - nodes and paths

Similarly, the amounts of electric power needed to recharge
an electric vehicle or an electric truck using a fast charger
are defined as qa and qb respectively. Moreover, installing a
fast charger for electric vehicles or trucks requires additional
costs (i.e. charger costs), these costs are defined as ca and
cb respectively. Finally, we assume all electric vehicles to be
identical, and thus, their recharging requirements to be the
same (i.e. recharging any vehicle requires the same amount
of time and energy). We consider the same assumption for
electric trucks.

Hence, the choice of locating a recharging station at s and
the number of fast chargers to be installed must be based on
the recharging demand through the path where s is located.
However, we can not install more chargers at a station than
what the grid can accommodate. In addition, The number of
chargers to be installed is also limited by the availability of
places and parking slots at each recharging stations. As such,
the aim is to build a model to optimize this deployment while
the satisfied demand is maximized.

IV. MATHEMATICAL MODEL

In order to model the problem, we introduce on binary
variable:

xs =

{
1 if a charging station is deployed at node s ∈ S
0 otherwise

In addition, we introduce a continuous variable yp ∈ [0, 1]
representing the demand coverage rate on path p, and two
integer variables, zas and zbs, representing the number of fast
chargers to be installed at charging location s ∈ S for electric
vehicles and trucks respectively. The optimization model is
thus formulated as follows:

Max Z =
∑
p∈P

( dap + dbp ) yp (1)

s.t.

∑
s∈S

csxs + cazas + cbzbs ≤ C (2)

∑
p∈P

( dap + dbp ) yp ≥ Q (3)

∑
s∈Sp

βazas ≥ dap ∀ p ∈ P (4)



∑
s∈Sp

βbzbs ≥ dbp ∀ p ∈ P (5)

minas ≤ zas ≤ maxas ∀ s ∈ S (6)

minbs ≤ zbs ≤ maxbs ∀ s ∈ S (7)

qazas + qbzbs ≤ qs ∀ s ∈ S (8)

if yp = 0 =⇒ zas + zbs = 0 ∀ s ∈ Sp, ∀ p ∈ P
(9)

if zas + zbs > 0 =⇒ xs = 1 ∀ s ∈ S (10)

xs, yp ∈ {0, 1} ∀ s ∈ S, ∀ p ∈ P (11)

zas , z
b
s ∈ N ∀ s ∈ S (12)

dap, d
b
p, β

a, βb, qs, q
a, qb ∈ N ∀ s ∈ S, ∀ p ∈ P

(13)

minas , max
a
s , min

b
s, max

b
s ∈ N ∀ s ∈ S (14)

cs, c
a, cb ∈ R ∀ s ∈ S (15)

The objective function (1) maximizes the total covered
charging demand based on the covered paths. Regarding model
constraints, constraint (2) ensures that the sum of location
costs and chargers installation costs does not exceed total
budget limit. Constraint (3) states that a minimum of the
overall charging demand must be satisfied. Constraints (4 and
5) ensure the satisfaction of charging demands for vehicles
and trucks at each path. Constraints (6) and (7) state that
the number of fast chargers (for vehicles and trucks) to be
installed must be within the specified limits at each charging
location. Constraints (8) ensure that the electric power required
to operate the installed chargers does not exceed the available
electric capacity at the charging locations. Constraints (9) and
(10) are used to link the variables introduced earlier in the
model. Finally, constraints (11) to (15) define domains for the
different elements of the model.

V. COMPUTATIONAL RESULTS

We present some results obtained by testing the proposed
model using Cplex solver on a case study for Paris-Saclay
area (section V-A). We also consider the availability of a
photo-voltaic farm and highlight the benefits of integrating its
generated power on EV recharging rates (section V-B).

A. Paris-Saclay case study

The interest in Paris-Saclay area is that it contains residen-
tial and business zones besides many transit axes that pass
through it (e.g. A10, A6, N20 in Fig. 2). Many of these axes
are not just used by personal and small vehicles, but also by
heavy trucks carrying goods to nearby areas. Thus, these flows
include local trips within the area (short-distance) as well as
inter-city and international transit flows (long-distance).

Fig. 2: Paris-Saclay - Major axes and recharging points

Fig. 3: Paris-Saclay - Mobility paths

As introduced earlier, we need to define a set of coupling
nodes, a set of potential charging locations, and a set of
mobility paths. Coupling nodes are defined by taking the
intersections of major mobility axes in the area. Paths are then
defined by sequences of these nodes. For example, in Fig. 3,
the path ”N118” is defined by the sequence of nodes (2, 3, 13,
4, 10). We thus define 9 different paths representing EV flows
and their recharging demands (Fig. 3). The actual number of
electric vehicles and trucks to be recharged is then defined
by taking 5% of the overall number of vehicles circulating
through each path per day1. This percentage represents EV
sales share of the overall vehicle market in France in 2020
[12]. Regarding charging locations, we consider the actual
and projected charging stations, along with the actual service
stations at Paris-Saclay area. Costs, electric capacities, and the
maximum number of chargers that can be installed at each
potential location are fixed based on their real data2. Charging

1Traffic data at Paris-Saclay area are provided by DiRIF (Road Direction
in Ile-de-France region)

2Data of recharging stations and electric network specifications are provided
by Paris-Saclay Agglomeration Community (CAPS)

http://www.dir.ile-de-france.developpement-durable.gouv.fr/donnees-routieres-r467.html
https://opendata.paris-saclay.com/explore/dataset/bornes-de-recharge-electrique/table/


points are then associated to paths so that the model can decide
which points to use and how many chargers to install based
on their recharging demands (e.g. charging points: s13, s28
and s62 are associated to path ”N118”). We also assume that
a fast charger requires 50 kW (20 minutes) to recharge an
electric vehicle. In addition, fast chargers require 250 kW
(30 minutes) to recharge an electric truck. We thus assume
electric vehicles to be homogeneous in terms of battery and
recharging time (same assumption for electric trucks). Finally,
the costs of installing a fast charger for vehicles and trucks are
estimated at 12k and 15k euros, respectively. Test parameters
are summarized in Table I.

TABLE I: Test parameters

Parameter Value Parameter Value
ca 12k euros cb 15k euros
βa 36 vehicles βb 24 trucks
qa 50kW qb 250kW

Results of testing the proposed model on Paris-Saclay data
are presented in Fig. 4. The number of fast chargers to be
installed at each selected charging point is given in parenthesis
(vehicle chargers, truck chargers). For example, the model
suggests installing 6 vehicle chargers and 2 truck chargers
at charging point s13. We observe that the number of vehicle
chargers is higher than that for trucks at all selected charging
points. This is because the number of vehicles to be recharged
is relatively higher at all defined paths, and thus requires more
chargers. Results also indicate that the proposed solution can
cover up to 33.1% of the overall charging demand. In the
details, some paths are fully-covered (e.g. ”A126” with 100%
demand coverage), some are partially-covered (e.g. ”A10”
with 38% demand coverage), and others are poorly-covered
(e.g. ”A6” and ”N104” with only 3.8% and 8.3% respectively).
Low coverage rates can be explained by the small number of
charging points that are associated to these paths and by the
limited electric capacity at these points.

Fig. 4: Number of chargers per stations

Furthermore, we test the proposed model with different
charging powers. We thus increase the charging power of
chargers with up to 1.5, 2, and 4 times and we analyze its
impact on covered charging demand. We observe that as charg-
ers become more powerful, the demand coverage percentage

increases (up to 40.9%, 52.5%, and 71.1% respectively, Fig.
5). This highlights the importance of increasing the capacity
of these chargers and thus integrating new sources of energy
(e.g. photo-voltaic power) to accommodate this increase.

Fig. 5: Demand coverage with different charging powers

B. Photo-voltaic power production

Integrating green-energy sources can potentially increase
electric network capacity while reducing its reliance on other
polluting sources. For this purpose, a large photo-voltaic (PV)
farm is to be installed at Paris-Saclay area (at point s97, next
to the intersection of ”A10” and ”N104” highways, Fig. 2)
with 76500 solar panels and up to 24 GWh annual power pro-
duction. This farm can allow installing more EV chargers and
increasing their recharging capacities. The generated power of
a photo-voltaic farm at instant t can be calculated as follows:

P (t) = ( 1− µ(t) )× I(t)× δ × η (16)

Where µ(t) is the cloudiness index at instant t (%), I(t) is
the irradiation at instant t (W/m2), δ is the surface of solar
panels (m2), and η is the efficiency that corresponds to the
electric quantity produced as a percentage of the received solar
power. This generated power highly depends on irradiation and
cloudiness index as they differ during seasons and day hours
(e.g. PV production is maximal in a sunny day during Summer
at noon). The actual values of irradiation at different seasons
and day hours are fixed, and thus, known in advance3.

Unlike the irradiation, the cloudiness index (µ(t)) can not
be fixed in advance as it highly depends on weather conditions
(i.e. µ(t) is stochastic). We thus need to model this uncertainty
using a set of scenarios and calculate their probability distri-
bution. To overcome this difficulty, we consider 4 different
day profiles: (1) Fully-Sunny, where µ(t) is between 0%
& 25%, (2) Partially-Cloudy, where µ(t) is between 25%
& 50%, (3) Mostly-Cloudy, where µ(t) is between 50% &
75%, and (4) Fully-Cloudy, where µ(t) is between 75% &
100%. In addition, we divide the day into 8 time periods
(i.e. (12AM,3AM), (3AM,6AM), .. , (9PM,12AM)). These
day periods help in capturing different mobility patterns (e.g.

3We use data provided by the Photo-voltaic Geographical Information
System (PVGIS) to build the irradiation matrix for Paris-Saclay area

https://ec.europa.eu/jrc/en/pvgis?fbclid=IwAR2cUNLKgc7jUqz_dEvxPUK0uW9c_3JktWnM-U3tdBuRp8MeTY7Sa4OeIpk


period (6AM-9AM) is a peak period when people commute,
etc.). We also consider the four seasons (e.g. the probability
of having a fully-sunny day is higher in Summer than in
winter, Table II). As a result, we build our set of scenarios,
where every scenario is defined by a day-profile, a day-period,
and a season. In order to calculate their probabilities, we use
weather measurements of the last 10 years and we cluster them
according to day profiles, periods, and seasons using K-Means
approach 4. The resulting probability distribution represents an
input to our model.

TABLE II: Cloudiness index - Paris Orly (2010-2020)

Winter Spring Summer Autumn
Fully-Sunny 16.9 % 27.2 % 35.6 % 22.9 %

Partially-Cloudy 6.7 % 9.1 % 15.6 % 9.1 %
Mostly-Cloudy 11.4 % 17.6 % 21.5 % 11.6 %
Fully-Cloudy 65.1 % 46.1 % 27.3 % 56.2 %

In order to integrate PV production, an additional set of
constraints need to be added to the mathematical model:

qazav + qbzbv ≤ Pv ∀ v ∈ V (17)

Constraints (17) state that the energy required to operate
the additional EV chargers must not exceed the amount of PV
energy produced at PV farm v.

Fig. 6: PV production impact on demand coverage per season

To analyze the benefits of integrating PV energy, we quan-
tify the amount of energy produced at different seasons and
calculate the percentage of charging demand covered at each
case. We then compare these rates to the original one where
no PV production was considered. We consider two different
demand flows: at 9AM (when vehicle and truck flows are max-
imal), and at 12AM (when solar irradiation and PV production
are maximal) (Fig. 6). For both flows, and by averaging 10
different runs of the model, results indicate a positive effect
of PV production on the overall demand coverage. This effect
is most remarkable in Spring and Summer with approximately
7% to 10% increase on demand coverage. As the considered
PV farm is located at the intersection of ”A10” and ”N104”
highways, the demand coverage increases from 3.8% and 8.3%

4Weather data for Paris-Orly airport, including cloudiness index, are pro-
vided by Météo France

to 28.9% and 42.6% at the morning peak (9AM) when PV
production is included. Locally-produced PV energy can thus
help in enhancing the quality of EV charging service while
respecting the environmental aspects.

VI. CONCLUSIONS

In this paper, an optimization model for deploying EV
recharging stations through a network of highways has been
introduced. The model has been tested using a Cplex solver
and a case study on Paris-Saclay area has been performed.
The obtained results has indicated the selected locations for
EV recharging stations and highlighted the importance of
improving chargers capacities and integrating PV production.
One interesting perspective of this research is to consider the
different energy production costs as they can change energy
flows in the smart grid. We thus believe that this study helps
in a better understanding of the potential deployment of EV
recharging stations in real-life applications, and promoting
more research towards studying this rising trend.
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collaboration with the Institute of Research and Technology
SystemX and the Agglomeration Community of Paris-Saclay.

REFERENCES

[1] H. Shareef, MD. Mainul Islam, and A. Mohamed, A review of the stage-
of-the-art charging technologies, placement methodologies, and impacts
of electric vehicles, Renewable and Sustainable Energy Reviews, vol.
64, pp. 403–420, 2016.

[2] Z. Sun, W. Gao, B. Li, and L. Wang, Locating charging stations for
electric vehicles, Transport Policy, pp. 1–7, 2018.

[3] S. Deb, K. Tammi, K. Kalita, and P. Mahanta, Review of recent
trends in charging infrastructure planning for electric vehicles, Wiley
Interdisciplinary Reviews: Energy and Environment, vol. 7, pp. e306,
2018.

[4] I. Capar, M. Kuby, V. Jorge Leon, and Y. Tsai, An arc cover–path-cover
formulation and strategic analysis of alternative-fuel station locations,
European Journal of Operational Research, vol. 277, pp. 142–151, 2013.

[5] Z. Guo, J. Deride, and Y. Fan, Infrastructure planning for fast charg-
ing stations in a competitive market, Transportation Research Part C:
Emerging Technologies, vol. 68, pp. 215–227, 2016.

[6] Y. He, K. M. Kockelman, and K. A. Perrine, A Optimal locations of
U.S. fast charging stations for long-distance trip completion by battery
electric vehicles, Journal of Cleaner Production, vol. 214, pp. 252–461,
2019.

[7] C. Csiszár, B. Csonka, D. Foldes, E. Wirth, and T. Lovas, Urban public
charging station locating method for electric vehicles based on land use
approach, Journal of Transport Geography, vol. 74, pp. 173–180, 2019.

[8] Z. Yi, and M. Shirk, Data-driven optimal charging decision making for
connected and automated electric vehicles: A personal usage scenario,
Transportation Research Part C: Emerging Technologies, vol. 86, pp.
37–58, 2018.

[9] Q. Liu, J. Liu, W. Le, Z. Guo, and Z. He, Data-driven intelligent location
of public charging stations for electric vehicles, Journal of Cleaner
Production, vol. 232, pp. 531–541, 2019.

[10] H. Zhang, S. Moura, Z. Hu, and Y. Song, PEV Fast-Charging Station
Siting and Sizing on Coupled Transportation and Power Networks, IEEE
Transactions on Smart Grid, vol. 9, pp. 2595–2605, 2018.

[11] L. Yu, D. Kong, X. Shao, and X. Yan, A Path Planning and Navigation
Control System Design for Driverless Electric Bus, IEEE Access, vol.
6, pp. 53960–53975, 2018.

[12] S. A. Funke, F. Sprei, T. Gnann, and P. Plotz, How much charging
infrastructure do electric vehicles need? A review of the evidence and
international comparison, Transportation Research Part D: Transport and
Environment, vol. 77, pp. 224–242, 2019.

https://donneespubliques.meteofrance.fr/?fond=produit&id_produit=90&id_rubrique=32
https://www.fondation-hadamard.fr/fr/pgmo

	Introduction
	Background
	Problem Description
	Mathematical Model
	Computational Results
	Paris-Saclay case study
	Photo-voltaic power production

	Conclusions
	References

