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Université Paris-Saclay, Gif-sur-Yvette, France

Email: abood.mourad@centralesupelec.fr , martin.hennebel@centralesupelec.fr
†Institut de Recherche Technologique SystemX, Palaiseau, France

Email: Ahmed.AMRANI@irt-systemx.fr , Amira.BENHAMIDA@irt-systemx.fr

Abstract—The need for deploying fast-charging stations for
electric vehicles (EVs) is becoming essential in recent years.
This need is justified by the increasing recharging demand, and
supported by new recharging technologies making EV chargers
more efficient. For this purpose, we introduce an optimization
model for finding the optimal deployment of EV fast-charging
stations through a network of highways, while taking into
account their recharging demands and the restrictions imposed
by the electric grid. We also consider the availability of local
photovoltaic (PV) power station and integrate its energy to the
proposed recharging network. In addition, we present a case
study on Paris-Saclay area where the actual mobility flows and
electric network specifications are considered. We thus provide
the optimal locations for EV charging stations at the studied
area, and we indicate the number of chargers to be deployed at
each station. Finally, we study the potential benefits of integrating
local PV energy and analyze its different prices and production
costs.

Index Terms—electric vehicles, recharging, optimization, mo-
bility, photovoltaic

I. INTRODUCTION

Electric Vehicles (EVs) represent a promising opportunity
that can lead to fundamental shifts in people transportation.
With their batteries and charging times being considerably
enhanced in recent years, EVs can provide a sustainable
transportation solution [1]. The deployment of fast-charging
stations is thus essential especially on highways where EVs
need to be recharged at very short periods of time. For this pur-
pose, chargers with high powers need to be installed in order
to fulfil the increasing charging demand for EVs. In addition,
the availability of locally-produced green energy (e.g. wind or
solar sources) can also help in providing the energy needed
to supply these chargers. However, green energy sources still
suffer from uncertainty in their production and their relatively
high production costs [2].

In this paper, we introduce an optimization model to find
the optimal locations for deploying EV fast-charging stations
through a network of highways. The model takes into account

EV charging demands as well as the capacity provided by the
electric grid. In addition, we consider the availability of local
photovoltaic (PV) power station and we study the use of its
produced energy for supplying EV chargers. We thus present a
mathematical formulation for the problem where the aim is to
maximize charging demand coverage while respecting budget
limits, parking slot limitations, and the available capacities
of the electric grid and PV production. Then, we present a
case study on Paris-Saclay area where the optimal locations
for EV charging stations at the studied area are provided as
well as the number of fast-chargers at each location. Finally,
we study the potential benefits of integrating locally-produced
PV energy and analyze its different prices and production costs
using different investment indices.

II. RELATED WORK

Research on deploying EV fast-charging stations on high-
speed roads is swiftly increasing in recent years. These fast
chargers, also referred to as level-3 chargers, are characterized
by their high charging capacity (400-500V/50A) and relatively
short charging times (e.g. a Tesla Roadster can be fully
recharged in less than 20 minutes) [3]. For example, in [4],
the problem of selecting locations for fast-charging stations
through a highway network for long-distance trips in the
US was considered. Through a mixed integer programming
model, authors efficiently selected the number and locations
of EV charging stations and highlighted the importance of
this selection in planning such a charging service. Another
fast-charging location model was introduced in [5], where the
selection of charging locations was based on passenger travel
behaviors as well as the specifications of the electric grid.
Through a case study on Dalian-China, the authors concluded
that travel distances and located charging capacities are key
factors in successfully deploying fast-charging services.

Many recent studies are focusing on using green energy
sources for supplying EV charging networks. In [6], a review
of photovoltaic energy systems along with their sizing strate-
gies, optimization techniques, and cost evaluation methodolo-
gies was provided. In addition, the main indices for analyzing978-1-7281-6919-4/20/$31.00 ©2020 IEEE



energy costs and pricing schemes has been presented. A
relevant application of these indices can be found in [7] where
the investment of a photovoltaic energy system was evaluated
through a case study in three different cities in Turkey. In order
to model production uncertainty in photovoltaic energy sys-
tems, a scenario-based approach to evaluate the potential use
of solar energy for charging EVs was introduced in [8]. Results
of testing the proposed approach on two Scandinavian cities
demonstrated that PV energy yield can cover EV demands in
most of the considered scenarios. The necessity of stochastic
approaches to deal with uncertainty in PV production was also
confirmed in [9]. This was done by evaluating a set of case
studies using a linear programming framework that takes into
account PV uncertainty and stochastic EV driving schedules.

III. PROBLEM DESCRIPTION

In this problem, we consider two types of fast chargers,
one for charging small electric vehicles, and the other for
charging heavy electric trucks. In addition, We consider a set
of potential charging locations S = I ∪ V , where I includes
locations that are powered by the distribution network, and V
includes those that are powered by a local PV station. Every
charging location s ∈ S is defined by a cost (cs) indicating
required investment to use this location as a charging station,
and has a maximum electric capacity and a max/min number
of fast chargers that can be installed for small vehicles as well
as heavy trucks (maxas , min

a
s , max

b
s and minbs respectively).

The investment cost (cs) includes land cost and cabling
expenses. For charging locations that are powered by the
distribution network, the maximum electric capacity is fixed
and depends on the distribution network itself. We refer to this
fixed capacity as qs (∀ s ∈ I). On the other hand, this capacity
can not be fixed for charging locations that are powered by PV
energy as it highly depends on PV energy production which
is stochastic (i.e. it depends on cloudiness index, season, and
solar irradiation). We thus refer to this varying electric capacity
as λs (∀ s ∈ V). In order to build mobility paths, we consider
a set of coupling nodes N representing different highway
intersections. As such, we consider a set of paths P that link
sequences of coupling nodes. Every path p ∈ P is defined
by its charging demands dap, d

b
p, representing the number of

electric vehicles and trucks, respectively, to be recharged per
day. The set of charging locations that are associated with
each path p is denoted as Sp. The numbers of electric vehicles
and trucks that can be recharged using a fast charger per day
are defined as βa and βb respectively. Similarly, the amounts
of electric power needed to recharge an electric vehicle or
an electric truck using a fast charger are defined as qa and
qb respectively. Moreover, installing a fast charger for electric
vehicles or trucks implies extra costs (i.e. charger costs). These
costs are defined as ca and cb respectively. For the sake of
simplicity, we assume all electric vehicles to be homogeneous,
and thus, their recharging time and energy are the same. We
consider the same assumption for electric trucks.

Hence, the choice of deploying a charging station at location
s ∈ S and the number of fast chargers to be installed is based

on the recharging demand through the path where s is located.
However, the number of chargers to be installed is limited by
the available electric capacity and by the availability of places
and parking slots at location s. As such, we build a model to
optimize this deployment by maximizing the satisfied demand
while respecting the different constraints.

IV. MATHEMATICAL MODELING

In order to model the problem, we introduce a binary
variable xs which is equal to 1 if a charging station is deployed
at location s ∈ S , and 0 otherwise. In addition, we introduce
a continuous variable yp ∈ [0, 1] representing the demand
coverage rate on path p, and two integer variables, zas and
zbs, representing the number of fast chargers to be installed
at charging location s ∈ S for electric vehicles and trucks
respectively. The optimization model is thus formulated as
follows:

Max Z =
∑
p∈P

( dap + dbp ) yp (1)

s.t.

∑
s∈S

csxs + cazas + cbzbs ≤ C (2)

∑
p∈P

( dap + dbp ) yp ≥ Q (3)

∑
s∈Sp

βazas ≥ dap ∀ p ∈ P (4)

∑
s∈Sp

βbzbs ≥ dbp ∀ p ∈ P (5)

minas ≤ zas ≤ maxas ∀ s ∈ S (6)

minbs ≤ zbs ≤ maxbs ∀ s ∈ S (7)

qazas + qbzbs ≤ qs ∀ s ∈ I (8)

qazas + qbzbs ≤ λs ∀ s ∈ V (9)

if yp = 0 =⇒ zas + zbs = 0 ∀ s ∈ Sp, ∀ p ∈ P
(10)

if zas + zbs > 0 =⇒ xs = 1 ∀ s ∈ S (11)

xs ∈ {0, 1}, yp ∈ [0, 1] ∀ s ∈ S, ∀ p ∈ P (12)



zas , z
b
s, qs, λs, ∈ N ∀ s ∈ S (13)

dap, d
b
p, β

a, βb, qa, qb ∈ N ∀ p ∈ P (14)

minas , max
a
s , min

b
s, max

b
s ∈ N ∀ s ∈ S (15)

cs, c
a, cb ∈ R ∀ s ∈ S (16)

The objective function (1) aims at maximizing the to-
tal covered demand for charging both vehicles and trucks.
Regarding model constraints, constraint (2) ensures that the
sum of location costs and chargers installation costs does
not exceed total budget limit. Constraint (3) states that a
minimum coverage of the overall charging demand must be
ensured. Constraints (4 and 5) ensure that charging demands,
for vehicles and trucks respectively, are covered at each
mobility path. Constraints (6) and (7) state that the number
of fast chargers to be installed must respect the specified
limits at each charging location. Constraints (8) ensure that the
electric power required to operate the installed chargers at a
specific charging location does not exceed the available electric
capacity provided by the distribution network at that location.
Similarly, constraints (9) ensure that the electric power needed
at charging locations, where a PV station is located nearby,
must not exceed the actual PV energy production provided
by that station. Constraints (10) and (11) are used to link the
different variables of the model. Finally, constraints (12) to
(16) define domains for model variables and parameters.

V. RESULTS AND DISCUSSION

In this section, we introduce our case study for Paris-
Saclay area and describe how its different parameters and PV
production scenarios are generated (section V-A). We then
test the proposed model using Cplex solver and present the
obtained results (section V-B). Finally, we study the different
energy prices and production costs and analyze their impact
on the profitability of the project (section V-C).

A. Paris-Saclay case study

Paris-Saclay is an agglomeration community located at the
south of Paris. As it is geographically close to the capital
and to main economical activities, Paris-Saclay is traversed
by many major mobility axes (e.g. A6, A10, N20 in Fig. 1).
These axes are used by personal vehicles and heavy trucks for
short-distance trips (e.g. commuting) as well as international
transit flows. In addition, a large photo-voltaic (PV) farm is
to be installed at Marcoussis district (next to the intersection
of ”A10” and ”N104” highways, Fig. 1) with 76500 solar
panels and up to 24 GWh annual power production. This farm
has the potential of increasing charging power at nearby EV
charging stations while reducing their reliance on the existing
distribution network.

Fig. 1: Paris-Saclay - Major axes and recharging points

Fig. 2: Paris-Saclay - Mobility paths

In this study, we consider the intersections of major axes
to be the set of coupling nodes. Mobility paths are then
constructed using sequences of these nodes. For example, path
”N20” is defined by the sequence of nodes (1, 16, 18, 15)
(Fig. 2). As such, we define 9 different paths based on the
actual mobility flows at Paris-Saclay area (Fig. 2). Each path
is associated with vehicle and truck flows and their charging
demands. The actual charging demand (i.e. the number of EVs
to be recharged) is then calculated by considering 5% of the
overall daily flow on each one of the defined paths1 (i.e. an
average of 2980 vehicle/h on each path). This percentage is
fixed based on EV sales share of the French automobile market
in 2020 [10]. In addition, we consider the actual charging
stations (currently operational or projected) and the actual
service stations as the set of potential charging locations at
Paris-Saclay area. Costs, electric grid specifications, and the
maximum number of fast chargers that can be installed at
each location are fixed based on their real data2. Charging
locations are then associated to paths so that the model can
decide which locations to use and how many chargers to install
at each location. Regarding chargers power, we assume that a
fast charger requires 50 kW (≈20 minutes) for recharging an
electric vehicle, and 250 kW (≈30 minutes) for recharging an
electric truck. The costs of installing a fast charger for vehicles

1Mobility flows at Paris-Saclay area are provided by DiRIF (Road Direction
in Ile-de-France region) indicating number of vehicles per hour on each path.

2Data of charging stations and electric network specifications are provided
by Paris-Saclay Agglomeration Community (CPS)

http://www.dir.ile-de-france.developpement-durable.gouv.fr/donnees-routieres-r467.html
https://opendata.paris-saclay.com/explore/dataset/bornes-de-recharge-electrique/table/


and trucks are estimated at 12kC and 15kC, respectively. Test
parameters are summarized in Table I.

TABLE I: Test parameters

Parameter Value Parameter Value
ca 12kC cb 15kC
βa 36 vehicles βb 24 trucks
qa 50 kW qb 250 kW

Regarding PV production, the generated power of a PV farm
at instant t can be calculated as follows:

P (t) = ( 1− µ(t) )× I(t)× δ × η (17)

Where µ(t) is the cloudiness index at instant t (%), I(t)
is the irradiation at instant t (W/m2), δ is the surface of
solar panels (m2), and η is the efficiency that corresponds to
the electric quantity produced as a percentage of the received
solar power. We assume that this power is used for charging
EVs. This generated power highly depends on irradiation
and cloudiness index as they differ during seasons and day
hours. For example, PV production is maximal in a sunny day
during Summer at noon. The actual values of irradiation at
different seasons and day hours are fixed, and thus, known
in advance3. Based on real irradiation values, we estimate the
amount of PV energy that can be produced by the considered
PV farm during a sunny day at each month of the year (see
Fig. 4 in appendix). We observe that up to 90 MWh/day can
be generated during summer months when irradiation is at
its highest, while this production drops to approximately 30
MWh/day during winter. However, these values can be seen
as the maximal daily production (i.e. calculated in fully-sunny
days), and thus, will be reduced due to cloudiness effects.
In addition, PV farms rely on their annual energy production
more than power peaks and profiles throughout a day or a
season. A high power consumption (charging) combined with
a high PV energy production can thus create flow fluctuations
to the grid unless they are well synchronized.

TABLE II: Cloudiness index - Paris Orly (2010-2020)

Winter Spring Summer Autumn
Fully-Sunny 16.9 % 27.2 % 35.6 % 22.9 %

Partially-Cloudy 6.7 % 9.1 % 15.6 % 9.1 %
Mostly-Cloudy 11.4 % 17.6 % 21.5 % 11.6 %
Fully-Cloudy 65.1 % 46.1 % 27.3 % 56.2 %

Unlike the irradiation, the cloudiness index (µ(t)) can not be
fixed in advance as it depends on weather conditions (i.e. µ(t)
is stochastic). We thus need to model this uncertainty using
a set of scenarios and calculate their probability distribution.
We consider 4 different day profiles: (1) Fully-Sunny, where
µ(t) is between 0% & 25%, (2) Partially-Cloudy, where
µ(t) is between 25% & 50%, (3) Mostly-Cloudy, where µ(t)
is between 50% & 75%, and (4) Fully-Cloudy, where µ(t)

3We use data provided by the Photo-voltaic Geographical Information
System (PVGIS) to build the irradiation matrix for Paris-Saclay area

is between 75% & 100%. In addition, we divide the day
into 8 time periods (i.e. (12AM,3AM), (3AM,6AM), .. ,
(9PM,12AM)). These day periods help in capturing different
mobility patterns (e.g. period (6AM-9AM) is a peak period
when people commute, etc.). We also consider the four seasons
(e.g. the probability of having a fully-sunny day is higher
in Summer than in winter, Table II). As a result, we build
our set of scenarios, where every scenario is defined by a
day-profile, a day-period, and a season. In order to calculate
their probabilities, we use weather measurements of the last
10 years and we cluster them according to day profiles,
periods, and seasons using K-Means approach 4. The resulting
probability distribution represents an input to our model.

B. Deploying EV fast-chargers

We test the proposed model using Paris-Saclay data in order
to obtain the optimal deployment of EV charging stations
in the area. Results indicate the number of chargers to be
installed at each selected location ((zas , zbs) in Fig. 3). It can
be observed that the number of vehicle chargers is relatively
higher than that for trucks at all selected locations. This can be
explained by the higher number of vehicles to be recharged
at different paths. Another important observation is that the
proposed deployment can cover up to 33.1% of the overall
EV charging demand. More precisely, some paths are fully-
covered (e.g. ”A126” with 100%), some are partially-covered
(e.g. ”A10” and ”N118” with 38% and 64% respectively), and
some others are poorly-covered (e.g. ”A6” and ”N104” with
only 3.8% and 8.3% respectively). Low coverage rates at some
paths are due to the small number of charging locations and
the limited electric capacity at these locations.

Fig. 3: Number of chargers per station

TABLE III: Demand coverage with PV production per season

No PV PV-Wint. PV-Spr. PV-Sum. PV-Aut.
Overall 33.1% 37.3% 40.9% 44.4% 39.1%

A10 3.8% 19.9% 33.5% 47.1% 27.1%
N104 8.3% 29.9% 53.3% 74.2% 39.8%

4Weather data for Paris-Orly airport, including cloudiness index, are pro-
vided by Météo France

https://ec.europa.eu/jrc/en/pvgis?fbclid=IwAR2cUNLKgc7jUqz_dEvxPUK0uW9c_3JktWnM-U3tdBuRp8MeTY7Sa4OeIpk
https://donneespubliques.meteofrance.fr/?fond=produit&id_produit=90&id_rubrique=32


As introduced earlier, the considered PV farm is located
at the intersection of ”A10” and ”N104” which are poorly-
covered paths. Thus, integrating its produced energy has the
potential of enhancing the coverage rates at these paths as
more chargers can be installed. To analyze this potential
benefit, we quantify the amount of energy that can be produced
at different scenarios and we calculate the demand coverage
rate at each case. We then compare the obtained rates to the
case where no PV production is considered (Table III). By
averaging 10 different runs of the model, we observe that
coverage rates can increase from 3.8% and 8.3% to 47.1%
and 74.2% respectively during Summer where PV production
is maximal. This positive impact can also be witnessed on the
overall coverage rate with approximately 7% to 11% increase
in Spring and Summer scenarios. As a result, locally-produced
PV energy can help in enhancing the quality of EV charging
service especially along paths where the demand is high and
electric grid is limited.

C. Analyzing energy prices and production costs

We study three different investment indices to evaluate the
profitability of integrating PV energy. First, Levelized Cost
of Energy (LCOE) which represents the average net cost of
electricity generation for the planned PV farm over its lifetime
[6]. It can be calculated as the ratio between lifetime costs and
energy production, as follows:

LCOE =

∑n
t=1

It +Mt + Ft

(1 + r)t∑n
t=1

Et

(1 + r)t

(18)

Where It, Mt, and Ft are the investment, maintenance, and
fuel costs in year t, Et is the electricity generation in year t,
and r is the discount rate. Second, Return on Investment (ROI)
which is used to evaluate the efficiency of an investment by
measuring its amount of return [7]. It is calculated by dividing
project net income to its total cost, as follows:

ROI =
Project return (income− cost)

Project cost
× 100

(19)

Third, Payback Period (PP) which represents the amount
of time needed to recover the cost of an investment. It can be
calculated by dividing overall project investment to its annual
profit, as follows:

PP =
Investment amount

Annual profit
(20)

The project of installing solar panels at Paris-Saclay area
requires an investment of 20MC. The investment costs (It)
appear only in the first year as they represent the cost of
installing solar panels and EV fast-chargers (estimated at
870KC based on the number of chargers proposed by the
model). Maintenance costs (Mt) of a PV farm appear every
3 years and are estimated to 10% of the annual profit 5. Fuel

5National Center of Photovoltaic Resources (CRPV)

costs (Ft) are ignored in this case and the annual electricity
generation (Et) is estimated at 24 GWh (i.e. we assume that all
generated PV energy is used for charging EVs). Discount rate
(r) is fixed at 5%. In addition, project income is the difference
between PV production cost (i.e. the calculated LCOE) and
the price of selling this energy for charging EVs. In France,
the price of charging an EV using a Tesla super-charger is
0.2 C/kWh. Thus, the cost of generating a kilowatt at the PV
station must be less than 0.2C in order to have a positive
income.

TABLE IV: PV energy - Cost analysis

10 years 15 years 20 years
Levelized Cost of Energy (LCOE) 0.11 0.08 0.07

Return on Investment (ROI) 148% 224% 260%
Payback Period (PP) 9.66 7.39 6.65

PV farms are often evaluated over 20 years lifetime [7].
However, we calculate the introduced indices on 10, 15, and
20 years lifetime (Table IV). Results show that net cost of the
generated PV energy (LCOE) is estimated at 0.11, 0.08, and
0.07 C/kWh over different lifetime intervals. These values can
be seen as the minimum cost required for selling electricity
at break-even prices so that project expenses can be recovered
during its lifetime. Relatively, the planned investment brings a
positive return of 260% over a 20 years lifetime. This means
that every 100C of investment in the considered PV farm
will be returned as 260C at the end of its lifetime. These
positive ROI values justify the benefits of using the locally-
produced PV energy for supplying EV chargers. Regarding the
refund time of investment (PP), results indicate the considered
investment will be able to pay itself back in approximately 7
years, which is less than half of the project lifetime.

VI. CONCLUSION

In this paper, an optimization model for the deployment of
EV fast-charging stations through a network of highways has
been introduced. The model has been tested using a Cplex
solver and a case study on Paris-Saclay area has been per-
formed. After selecting optimal locations for charging stations,
the results highlighted the benefits of integrating PV energy
production on improving demand coverage rates. In addition,
the economical benefits of this integration has been quantified
(ROI = 260% over 20 years lifetime). We believe that this
study helps in a better understanding of the potential use of
green energy sources for satisfying the increasing charging
demand for electric vehicles.
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APPENDIX

Fig. 4: Maximal daily PV production per month


