
HAL Id: hal-02958374
https://hal.science/hal-02958374

Submitted on 19 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Metabarcoding : a powerful yet still underestimated
approach for the comprehensive study of vector-borne

pathogen transmission cycles and their dynamics
Anette Hernández-Andrade, Joel Moo-Millan, Nohemi Cigarroa-Toledo, Angel

Ramos-Ligonio, Claudia Herrera, Bruno Bucheton, Jean-Mathieu Bart,
Vincent Jamonneau, Anne-Laure Bañuls, Christophe Paupy, et al.

To cite this version:
Anette Hernández-Andrade, Joel Moo-Millan, Nohemi Cigarroa-Toledo, Angel Ramos-Ligonio, Clau-
dia Herrera, et al.. Metabarcoding : a powerful yet still underestimated approach for the comprehen-
sive study of vector-borne pathogen transmission cycles and their dynamics. David Claborn; Sujit
Bhattacharya; Syamal Roy. Vector-Borne Diseases - Recent Developments in Epidemiology and Con-
trol, IntechOpen, 2020, 978-1-83880-021-5. �10.5772/intechopen.89839�. �hal-02958374�

https://hal.science/hal-02958374
https://hal.archives-ouvertes.fr


Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

182,000 195M

TOP 1%154

6,700



1

Chapter

Metabarcoding: A Powerful Yet 
Still Underestimated Approach 
for the Comprehensive Study 
of Vector-Borne Pathogen 
Transmission Cycles and Their 
Dynamics
Anette Hernández-Andrade, Joel Moo-Millan, 

Nohemi Cigarroa-Toledo, Angel Ramos-Ligonio, 

Claudia Herrera, Bruno Bucheton, Jean-Mathieu Bart, 

Vincent Jamonneau, Anne-Laure Bañuls, Christophe Paupy, 

David Roiz, Denis Sereno, Carlos N. Ibarra-Cerdeña, 

Carlos Machaín-Williams, Julián García-Rejón, 

Sébastien Gourbière, Christian Barnabé, Jenny Telleria, 

Bruno Oury, Frédérique Brenière, Frédéric Simard, 

Miguel Rosado, Philippe Solano, Eric Dumonteil  

and Etienne Waleckx

Abstract

The implementation of sustainable control strategies aimed at disrupting the 
transmission of vector-borne pathogens requires a comprehensive knowledge of 
the vector ecology in the different eco-epidemiological contexts, as well as the local 
pathogen transmission cycles and their dynamics. However, even when focus-
ing only on one specific vector-borne disease, achieving this knowledge is highly 
challenging, as the pathogen may exhibit a high genetic diversity and multiple 
vector species or subspecies and host species may be involved. In addition, the 
development of the pathogen and the vectorial capacity of the vectors may be 
affected by their midgut and/or salivary gland microbiome. The recent advent of 
Next-Generation Sequencing (NGS) technologies has brought powerful tools that 
can allow for the simultaneous identification of all these essential components, 
although their potential is only just starting to be realized. We present a metabar-
coding approach that can facilitate the description of comprehensive host-pathogen 
networks, integrate important microbiome and coinfection data, identify at-risk 
situations, and disentangle the transmission cycles of vector-borne pathogens.  
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This powerful approach should be generalized to unravel the transmission cycles of 
any pathogen and their dynamics, which in turn will help the design and implemen-
tation of sustainable, effective, and locally adapted control strategies.

Keywords: vector-borne diseases, transmission cycles, vector ecology, behavior, 
metabarcoding, next-generation sequencing (NGS), blood meals, microbiome, 
EcoHealth, One Health

1. Introduction

Vector-borne diseases affecting human health are caused by pathogens trans-
mitted by “living organisms” between humans or from animals to humans. These 
“living organisms” are known as “vectors,” which generally are bloodsucking 
arthropods, such as mosquitoes, ticks, flies, sandflies, fleas, or triatomine bugs. 
These arthropods ingest disease-producing microorganisms during a blood meal 
from an infected host (human or animal) and later transmit it to a new host dur-
ing their subsequent blood meals [1]. According to the World Health Organization 
(WHO), vector-borne diseases, such as malaria, dengue, human African trypano-
somiasis, leishmaniasis, Chagas disease, yellow fever, Japanese encephalitis, or 
onchocerciasis, account for almost 20% of all infectious diseases worldwide. They 
cause more than 700,000 deaths annually, and more than half of the world’s popu-
lation is estimated to be at risk of these diseases [1]. They are a major obstacle to 
development, and the poorest segments of societies and least-developed countries 
are the most affected. The most deadly vector-borne disease, malaria, causes more 
than 400,000 deaths annually, mainly children under 5 years. However, the world’s 
fastest-growing vector-borne disease is dengue, with a 30-fold increase in disease 
incidence over the last 50 years [1, 2]. Currently, there is an estimation of 96 million 
cases of dengue per year, and more than 3.9 billion people in over 128 countries are 
at risk of contracting this disease [1, 3]. Chagas disease, which is one of the primary 
study models of our research group and classified by the WHO within the group 
of Neglected Tropical Diseases (NTDs), is a major public health problem in Latin 
America where 6–7 million people are currently infected [4, 5].

The control of vector-borne diseases relies mainly on control programs targeted 
against the different vectors. Nevertheless, the efficiency of the different vector 
control strategies is highly linked to the local ecology of the vectors [6], which in 
turn defines local transmission cycles. Consequently, for the implementation of 
sustainable control strategies aimed at disrupting the transmission of vector-borne 
pathogens, comprehensive knowledge of the vector ecology and behavior in the dif-
ferent eco-epidemiological contexts, as well as the local transmission cycles of the 
pathogens and their dynamics, is an essential need. However, even when focusing 
only on one specific vector-borne disease, achieving this knowledge is challeng-
ing. Indeed, the pathogen may exhibit a high genetic diversity, and multiple vector 
species or subspecies and host species may be involved. In addition, the develop-
ment of the pathogen and the vectorial capacity of the vectors may be affected 
by their midgut and/or salivary gland microbiome. Sometimes, many pathogen 
species can also be involved. For example, leishmaniases are caused by more than 20 
Leishmania species [7].

The recent advent of Next-Generation Sequencing (NGS) technologies has 
brought powerful tools, with enormous potential, allowing the simultaneous iden-
tification of all these components for the understanding of the eco-epidemiology of 
vector-borne diseases. Nevertheless, their potential is only just starting to be real-
ized. Here, we present a metabarcoding approach based on NGS that can facilitate 
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the creation of comprehensive host-pathogen networks, integrate important 
microbiome and coinfection data, identify at-risk situations, and disentangle the 
transmission cycles of vector-borne pathogens.

2.  Complexity of vector-borne pathogen transmission cycles and their 
dynamics

The transmission cycles of vector-borne pathogens are shaped by the ecology 
and behavior of hosts and vectors in their specific environments and defined by the 
specific interactions between the vectors, the pathogens, and their hosts (which also 
act as blood-feeding sources of the vectors) [8]. Consequently, the comprehensive 
identification of these interactions is critical to disentangle transmission cycles and 
understand their dynamics. In most cases, an extraordinary diversity of organisms 
is involved, making the identification of those interactions challenging. In the case 
of Chagas disease, for example, the causative agent, a protozoan parasite called 
Trypanosoma cruzi, presents a very high genetic diversity, which has been classi-
fied into seven discrete typing units (DTUs) [9]. These DTUs are transmitted by 
more than 140 triatomine species, which live in a very wide variety of ecotopes and 
bioclimatic conditions [10], to more than 180 mammalian species, including wild 
animals, domestic animals, and human [11, 12]. In parallel, triatomines also take 
blood meals upon animals which are refractory to T. cruzi infection, called incom-
petent hosts, such as birds, reptiles, and amphibians [13, 14] (Figure 1). Finally, 
the establishment and development of the parasite and the vectorial capacity of the 
triatomines could be affected by the composition of their midgut microbiome [15], 
as has been shown for other vectors. For example, the development of Trypanosoma 
brucei, the agent of African trypanosomiasis, in its tsetse fly vector, is directly 
influenced by a microbiome-regulated gut immune barrier [16]. In the same way, 

Figure 1. 
Complexity of T. cruzi transmission cycles. The parasite is divided into seven genetic subgroups (DTUs), which 
are transmitted by more than 140 triatomine species to more than 180 mammalian species, including wild 
animals, domestic animals, and human. In parallel, triatomines also take blood meals upon animals which are 
refractory to T. cruzi infection (incompetent hosts). Figure adapted from [25].
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the sand fly midgut microbiome is a critical factor for Leishmania growth and dif-
ferentiation to its infective state prior to disease transmission [17]. Gut microbiome 
similarly modulates dengue virus infection in Aedes aegypti mosquitoes [18, 19], 
and microbiome manipulation may be used to control virus transmission [20, 21]. 
Similar observations exist for other vector/pathogen systems, such as ticks and 
the causative agent of Lyme disease [22], or malaria vectors [23], in which salivary 
gland microbiome may also play a role [24].

3.  Metabarcoding: a highly sensitive and integrative approach to 
disentangle vector-borne pathogen transmission cycles

NGS technologies can generate millions of sequencing reads in parallel. This 
massive throughput sequencing capacity can produce sequence reads from frag-
mented libraries of a specific genome (i.e., genome sequencing) or from a pool of 
PCR products. Metabarcoding approaches rely on this technology where a large 
number of different amplicons of taxonomic informative genes (barcodes) can be 
sequenced. While metagenomics refers to the identification of all genomes within 
a particular ecosystem or sample, metabarcoding aims to identify only a subset of 
them (those that are of interest for a particular question) by sequencing of millions 
of different amplicons of these barcodes, without a necessity for cloning  
(i.e., sequences are obtained directly from a mix of different amplicons of different 
barcodes of interest) [26].

Consequently, in the case of vector-borne pathogens, starting only from the 
vectors as biological samples, it is possible to target and amplify well-chosen 
molecular markers (barcodes) of interest with universal primer sets to identify 
the different actors of transmission cycles (e.g., vertebrate blood sources, midgut 
microbiome, pathogen diversity, and vector diversity [27]). Other ecological 
interactions which are not directly involved in the transmission cycles but relevant 
for the understanding of the vector ecology and the dynamics of the transmission 
cycles (e.g., plant-feeding sources, sometimes required as a source of energy for 
routine activities such as flight, mating, and walking or a source of protein for 
maturation of eggs [28]) can also be identified. A schematic representation of the 
metabarcoding approach for the identification of ecological interactions of disease 
vectors is given in Figure 2. After purification of the total DNA (and RNA if work-
ing with RNA pathogens) contained in each vector midgut (and salivary glands, 
depending on the kind of vector) (1), molecular markers (barcodes) of interest 
are PCR amplified (after RT-PCR if working with RNA pathogens) (2). Then, to 
identify samples, a tag/index is added to each PCR product (amplicon). The same 
tag is used for all the amplicons obtained from a single sample (3). After high-
throughput sequencing (4), the millions of reads (5) are sorted per sample thanks 
to the tags added to each amplicon (6).

Currently, the most common systems provide up to 384 different tags and 
25 million reads per sequencing run. The depth (i.e., the number of reads or the 
number of sequences) obtained per molecular marker and sample depends on the 
number of labeled samples and the number of markers amplified per sample.  
For instance, if we amplify 10 molecular markers for 100 vector specimens and 
run at a depth of 25 million sequences, about 250,000 reads per vector specimen 
and 25,000 reads per marker and specimen will be theoretically obtained. This 
kind of multiplexing allows to considerably lower sequencing costs per sample. 
Downstream analyses with bioinformatics tools, such as those provided on the open 
access Galaxy platform [29], allows to obtain and identify the sequences corre-
sponding to each targeted marker for each vector specimen. This approach is thus 
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extremely powerful to further reconstitute the pathogen transmission cycles and 
understand its dynamics, since it can reveal, after adequate analyses, all the exist-
ing ecological interactions thanks to the simultaneous identification and for each 
specimen of its species or subspecies, its blood-feeding source(s), the pathogen(s) 
of interest, the species or lineage(s) of the pathogen(s) of interest, the composi-
tion of its midgut microbiome, of its salivary gland microbiome, its plant-feeding 
source(s), mutations associated with insecticide resistance, etc.

4.  Unraveling T. cruzi transmission cycles in the Yucatan peninsula 
(Mexico): an example of the metabarcoding approach use

As a proof of concept, we recently performed a pilot study of the metabarcoding 
approach presented above using Chagas disease in the Yucatan peninsula (Mexico) 
[27]. In this region, T. dimidiata is the main vector, and different genetic subgroups 
of this species [30–32] live in sympatry [33]. The different molecular markers we 
selected for our metabarcoding approach are described below: (i) to classify T. 
dimidiata in its different genetics subgroups, we used primers targeting the Internal 
Transcribed Spacer ITS-2 as previously described [34]; (ii) for blood-feeding source 
identification, we used vertebrate universal primers targeting the 12S rRNA gene 
[35]; (iii) for T. cruzi, we used primers targeting the mini-exon gene, allowing 
further classification of the parasite in its different DTUs [36]; and (iv) finally, we 
used universal primers targeting the bacterial 16S rRNA gene to identify bacte-
rial microbiome composition [37]. This way, we aimed to determine if there were 
detectable interaction patterns between the genetic subgroups of T. dimidiata, their 
blood-feeding hosts, the infection with T. cruzi, the parasite DTUs, and the micro-
biome composition, allowing elucidating at finer scales the T. cruzi transmission 
cycles in the study area.

This study, which was based on 14 T. dimidiata bugs collected in wild as well as 
in domestic ecotopes, evidences the feasibility and high sensibility of the proposed 
approach [27]. For example, we identified an average number of blood-feeding 
species per bug of 4.9 ± 0.7 and up to 7 blood-feeding species and 11 blood-feeding 
individuals in a single bug. Contrastingly, current techniques based on direct 
sequencing of PCR products can only identify the dominant sequence/host in each 
sample [38], while the addition of a cloning step prior to sequencing generally 

Figure 2. 
Schematic representation of the metabarcoding approach for the identification of ecological interactions of 
disease vectors. Figure adapted from [25].
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allows detecting up to three to five host species in some bugs [14, 39–41]. In the 
same way, we easily identified different DTUs infecting single bugs, while to date, 
most studies have relied on conventional Sanger sequencing approaches that are 
only capable of detecting the dominant genotype in biological samples, which 
almost precludes the possibility of detecting multiclonality. Based on this observa-
tion, NGS approaches capable of inventorying multiclonal infections are now being 
progressively adopted [42–46]. Regarding midgut microbiome, we were able to 
detect 23 bacterial orders and observed that its composition differed according to 
blood-feeding sources (Figure 3). Finally, all the 14 bugs belonged all to the same 
genetic subgroup.

To further assess potential transmission cycles of T. cruzi parasites by T. dimidi-
ata among the identified blood source species, a feeding and parasite transmission 
network was constructed (Figure 4). Nodes of the network represent the spe-
cies identified as blood meal sources, while the size of the corresponding node 
indicates feeding frequency on each species. Edges link species which are found 
together in multiple blood meals within individual bugs. Since birds cannot carry 
T. cruzi parasites, they only play a role as blood sources for triatomines, which 
is indicated by dotted edge connections between hosts. The solid lines between 
mammals indicate potential parasite transmission pathways. This network nicely 
highlights the mammals which would play the main role in T. cruzi transmis-
sion to human in the study area. Humans (Homo sapiens in Figure 4) may thus 
become infected by T. cruzi parasites originating from dogs (Canis lupus), cows 
(Bos taurus), and mice (Mus musculus), as well as from sylvatic hosts such as 
porcupines (Coendou spp.), squirrels (Sciurus spp.), and fruit bats (Artibeus spp.). 
Particularly, dogs appear as key actors which may favor parasite transmission to 
humans. This kind of networks is very informative, as it allows evidencing the ani-
mals that would play the main roles in the transmission of any pathogen to human 
(complementary studies focused directly on these animals may nevertheless be 
necessary) and that should be targeted as part of integrated control strategies 
aimed at disrupting parasite transmission. For example, management of the dogs 
and other peridomestic animals can be part of EcoHealth/One Health approaches 
[47]. The network presented is the result of a pilot study based on a limited sample 
and is only used here to illustrate the potential of the proposed metabarcoding 
approach. Increasing the sample size in a wide variety of ecotopes and integrating 
vector, microbiome and coinfection data will undoubtedly allow identifying at-
risk situations and disentangling transmission cycles. It may also help to identify 
bacteria which are part of the normal microbiota of triatomine bugs, bacteria 

Figure 3. 
Gut microbiome composition of Triatoma dimidiata. The average composition of the microbiome from 14 
individuals is shown to the level of bacterial order (A). There are significant differences between male and 
female microbiomes, with females presenting a greater diversity of orders. (B) Microbiome composition is also 
significantly different depending on the dominant blood meal present in triatomine gut, which was identified 
by the analysis of 12 S rRNA vertebrate sequences. Figure taken from [27].
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associated with the presence/absence of infection of the bugs with T. cruzi, or 
bacteria of vital importance to the bugs. This knowledge can have important 
applications for the development of innovative control strategies [48–50].  
The information provided by the approach can also be used to feed models includ-
ing the hosts involved in the transmission to help assessing the effects of different 
host community managements on T. cruzi transmission to human and understand 
transmission dynamics over time [51, 52]. Transmission models are becoming 
increasingly important in vector-borne disease control programs. They allow 
evaluating different control strategies or combinations of them and assessing their 
cost-effectiveness and likelihood of success [53].

Consequently, the approach presented here provides very high-value informa-
tion that can be used in multiple ways for further design and implementation of 
sustainable, effective, and locally adapted control strategies and deserves to be 
extended to other eco-epidemiological contexts and to any vector-borne pathogen. 
To date, metabarcoding approaches for the study of human vector-borne diseases 
using natural populations of vectors are being progressively adopted, but they are 
still timidly used [54, 55]. Moreover, they are still generally focused only on one 
of the components of transmission cycles, such as blood-feeding hosts [56–59], 
plant-feeding hosts [28], microbiome composition [60, 61], or vector diversity [62] 
(Table 1), thus providing limited information, while the approach can be easily 
more integrative, as we illustrated here, to simultaneously identify the different 
actors involved in transmission.

Figure 4. 
Feeding and possible parasite transmission network of Triatoma dimidiata. Blood source nodes correspond to 
domestic (green symbols) and sylvatic (orange symbols) host species, as well as humans (blue), with the size 
proportional to the feeding frequency on each host. Diamond-shaped nodes represent birds, which do not carry 
Trypanosoma cruzi parasites, and circles represent mammals, which can be infected by T. cruzi. Edges link 
species which are found together in multiple blood meals within individual bugs, and the width of the lines is 
proportional to the frequency of the association between species. Solid dark gray lines link mammalian species, 
among which T. cruzi may circulate, while dotted light gray lines involve bird species, which only serve as blood 
sources for the bugs. Humans may thus become infected by T. cruzi parasites originating from dogs, cows, and 
mice, as well as from sylvatic hosts such as porcupines, squirrels, and fruit bats. Dogs can play a key role as 
domestic host/reservoir favoring parasite transmission to humans. On the other hand, cats, rats, and pigs play a 
secondary role in parasite transmission. Figure taken from [27].
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Vector Geographic 

origin

Target DNA Main findings Reference

Mosquitoes 

(Anopheles 

punctulatus)

Different 

villages in Papua 

New Guinea

Mammalian 

blood-

feeding hosts

Unbiased characterization of 

mammalian blood-feeding 

hosts, including unsuspected 

hosts and mixed blood meals. 

Human, dog, and pig were the 

most common host-feeding 

sources. The approach can 

also be adapted to evaluate 

interindividual variations 

among human blood meals

[56]

Mosquitoes 

(Culex and 

Anopheles 

spp.)

Different sites in 

the coast of the 

Caspian Sea in 

northern Iran

Vertebrate 

blood-

feeding hosts

The four most common 

mosquito species had similar 

host-feeding patterns. The 

most commonly detected hosts 

in these species were humans, 

cattle, and ducks

[57]

Mosquitoes 

and sand flies

Forest sites in 

French Guiana

Mammal 

blood-

feeding hosts

Accuracy of the short 12S marker 

proposed for the identification 

of Amazonian mammals. 

The accuracy of taxonomic 

assignations highly depends on 

the comprehensiveness of the 

reference library

[58]

Triatomine 

bugs 

(Rhodnius 

pallescens)

Two sampling 

sites in in 

Panama

Vertebrate 

blood-

feeding hosts

Reliability of the metabarcoding 

approach proposed for the 

identification of vertebrate 

blood-feeding host

[59]

Phlebotomine 

sandflies 

(Phlebotomus 

and Lutzomya 

spp.)

Different 

sampling sites 

in Brazil, Israel, 

and Ethiopia

Plant-

feeding hosts

Sand flies preferentially feed on 

Cannabis sativa plants. Potential 

utility for sand fly control

[28]

Mosquitoes 

(Aedes and 

Culex spp.)

Different 

habitats across 

central Thailand

Bacterial and 

eukaryotic 

microbiome

Patterns of microbial 

composition and diversity that 

affect pathogen prevalence 

appeared to differ by both vector 

species and habitat for a given 

species. Microbial composition 

was less diverse in urban areas

[60]

Tse-tse flies 

(Glossina 

palpalis 

palpalis)

Two 

trypanosomiasis 

foci in 

Cameroon

Bacterial 

microbiome

Endosymbiont Wigglesworthia 

was highly prominent. Potential 

role for Salmonella and 

Serratia in fly refractoriness 

to trypanosome infection. V4 

region of the small subunit of 

the 16S ribosomal RNA gene 

was more efficient than the 

V3V4 region at describing the 

totality of the bacterial diversity

[61]

Phlebotomine 

sand flies 

(Lutzomya 

and 

Brumptomyia 

spp.)

Various 

locations in 

French Guiana

Sand flies Efficiency of metabarcoding 

based on the mitochondrial 16S 

rRNA for identification of sand 

fly diversity in bulk samples

[62]
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5. Conclusions

In this chapter, we presented a metabarcoding approach to study vector-borne 
pathogen transmission cycles and their dynamics and illustrated the feasibility 
and high sensitivity of the proposed approach with a recent study performed using 
Chagas disease in the Yucatan peninsula (Mexico), as a study model. Currently, 
NGS technologies are quickly becoming more affordable and cost-effective. 
Moreover, many bioinformatics tools have allowed to greatly simplify analyses in 
the last years. Consequently, this powerful approach deserves to be generalized to 
other eco-epidemiological contexts to unravel the transmission cycles of any vector-
borne pathogen and their dynamics, which in turn will help the implementation of 
sustainable, effective, and locally adapted control strategies of their transmission.
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Vector Geographic 

origin

Target DNA Main findings Reference

Mosquitoes 

and sand 

flies (various 

species)

3 sites along 

a gradient of 

anthropogenic 

pressure 

in French 

Guayana, area 

of Saint-

Georges de 

l’Oyapock 

Vectors and 

vertebrate 

blood-

feeding hosts

Contrasting ecological features 

and feeding behavior among 

dipteran species, which allowed 

unveiling arboreal and terrestrial 

mammals, as well as birds, 

lizards, and amphibians. Lower 

vertebrate diversity was found in 

sites undergoing higher levels of 

human-induced perturbation

[54]

Triatomine 

bugs 

(Triatoma 

dimidiata)

Different 

habitats in 

rural Yucatan 

(Mexico)

Vertebrate 

blood-

feeding 

hosts, 

Trypanosoma 

cruzi 

parasite, 

midgut 

bacterial 

microbiome, 

triatomine 

bug

Ecological associations of 

triatomines which shape T. 

cruzi transmission cycles. 

Different DTUs infecting 

single bugs. Identification of 

14 blood-feeding species. Up 

to 7 blood-feeding species and 

11 blood-feeding individuals 

identified in a single bug. 

Human, dog, cow, and mice were 

the most common host-feeding 

sources. Dog was highlighted 

as the main host involved in the 

pathway of T. cruzi transmission 

to human. Dynamic midgut 

microbiome, including 23 

bacterial orders, which differed 

according to blood sources

[27]

Table 1. 
Metabarcoding approaches for the study of human vector-borne diseases using natural populations of vectors as 
biological samples.
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