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We discuss the problem of cut elimination in an intuitionistic version of Church’s Type Theory with
constraints, a problem that arises in considering executable fragments suitable for logic program-
ming.

The formal system hoI(C ), based on adding Saraswat constraints [13] to an intuitionistic formulation
of Church’s Theory of Types, was introduced in [9] in order to provide a framework for studying higher-
order logic programming with constraints. To mediate between the constraint system and the logic, the
following rule is introduced (where `C denotes entailment in the constraint system):

Γ `C Fo
1 ≈ Fo

2 Eq.
∆,Γ,F1 ` F2

The aim was to consider various uniform fragments of this logic with restricted proof search along
the lines of λProlog [11] suitable for logic programming execution, as well as defining a semantics and
proving soundness and completeness. Our perspective is shaped by the slogan of [9], “constraints are
generalized terms”.

This can be seen in the way constraints allow a more liberal notion of term. Even without the
introduction of a theory as a constraint system (like the real numbers), we can express more terms with
the help of high-order constraints. For instance, “a generic Church numeral” f , can be described as

λa.( f a λx.x)≈ λa.a.

However the crucial question of cut elimination, without which logic programming becomes imprac-
ticable, remains unsettled. The problem is thorny since we can easily show it fails for arbitrary constraint
systems. A counterexample to (the termination of) reductive cut elimination is easily found assuming
only that the constraint system is able to derive a simple equality of predicates of the form `C B≈ (B⊃A)
(B being an atomic predicate). Using the formalism of [9], the proof is:

(1)
B ` A
` B⊃ A

. . . . . . . . . . . . . . . . . . .
`C (B⊃ A)≈ B

Eq
B⊃ A ` Bcut∗ ` B

. . . . . . . . . . . . . . . . . . .
`C (B⊃ A)≈ B

Eq
B⊃ A ` B

B ` B A ` A
B,B⊃ A ` A

cut∗B ` Acut ` A

where the proof-tree (1) is a copy of the right branch of the initial cut rule, and the two cut∗ rules are
unavoidable and uneliminable equality cuts [6].

Let us now assume that A is derivable without cut. The cut on B in the above proof is still not
eliminable mechanically, because the cut-free proof of A cannot be produced from the above proof. It
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has to be invented. So cut elimination fails, while the cut rule is admissible, and this question is bound
to the provability of A, which is undecidable [2].

This example is realistic and could easily come from defining the constraint system with rewriting, in
a Deduction-modulo-theory fashion [3], where such counterexamples do exist [4, 5]. For such systems,
it is known that cut admissibility is more general than proof normalization, that both properties depend
on the rewrite system, without any complete universal syntactic criterion, as they are undecidable [2].
Through an expression of rewriting as a constraint system, all those difficulties transfer automatically to
hoI(C ).

Thus adding constraints to higher-order logic for logic programming purposes cannot be done in-
discriminately, and the aim of the research presented here is to find sensible conditions on a constraint
system that will allow cut elimination. The uniformity requirement developed in [9] is an effort in this
direction, but it is not clear whether this is sufficient to ensure cut elimination.

Restrictions on the Logic

We start with a drastic restriction of hoI(C ) to first-order quantification, allowing constraints to hold only
at term-level, in effect yielding to a first-order logic with constraints. Following the slogan mentioned
above, namely that constraints are generalized terms, we build models where the domain of interpreta-
tion, instead of being terms, is built out of constraints themselves.

This leads us to the point of view that constraints are in fact generalized (and global) substitutions.
Equipped with this, we build Heyting-like algebras as discussed below and show soundness and com-
pleteness theorems through the Lindenbaum construction, which elements are classes of provably equiv-
alent formulas.

We then focus on a restricted instance of the constraint system with higher order logic, which yields
an instance of hoI(C ) that is essentially equivalent to intuitionistic Church’s Theory of Types. As adver-
tised above, we study the cut admissibility property through semantic means, rather than the termination
of a cut elimination procedure.

As is well known, standard inductive approaches do not work in higher order logic. Both for reductive
cut elimination and for cut admissibility, definitions by induction over the type are required.

For this reason we adopt the Takahashi-Prawitz-Andrews approach [15, 1, 12]. These works solve
the problem of possibly intensional higher-order logic with so-called V-complexes. But they do not
tackle the issue of higher-order intuitionistic logic, which has been solved, independently, by Maehara
[10] for the extensional version of this logic, and by Lipton-DeMarco [8] for the intensional version and
constructively by Lipton-Hermant [6].

Building on these results, we define a V-complex-based model for hoI(C ), which features higher
order logic, intuitionism, and constraints. Unlike the earlier works mentioned above, constraints are
treated as first-class citizens and they take the place of terms, including terms of higher type. We then
show that this model entails cut elimination through a completeness theorem.

A Model Theory for hoI(C )

A Kripke-style model theory for which hoI(C ) is sound and complete was introduced in [9]. The work
initiated here benefits considerably from having a more algebraic (Heyting-algebra style) semantics. A
complete Heyting algebra (cHa) semantics extended to treat constraints as a black box along the lines of
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the aforementioned Kripke semantics can easily be shown sound. The extension takes on the following
form:

C -soundness If Γ `CC then [[Γ ]]
η
≤ [[C ]]

η

C -Eq [[F1 ≈ F2 ]]η ∧ [[F1 ]]η ≤ [[F2 ]]η

C -∃ [[∃xαC ]]
η
=

∨
{ [[C ]]η [x:=d] : d ∈ Dα}

where [[ ]]
η

is a mapping of formulas and constraints into a cHa, η an environment mapping variables x
of type α to domains Dα , C a constraint (a formula of type γ). For the full definition of such so-called
Heyting applicative structures for ICTT see [8] and [6]. The important point about these conditions is
what they say about how to treat the addition of constraints to higher-order type theory: treat truth of
constraint sequents as a “black box” (just insist on soundness, do not say how that is achieved) with the
exception of the treatment of existential quantification of constraints, which requires witnesses to come
from the same domain that is used in the semantics of conventional formulas. Also, to enforce soundness
of the (Eq) rule, we add the C -∃ rule, above.

A cut-free model theory

Proving completeness of these algebraic semantics via the so-called Lindenbaum algebra [16] requires
transitivity of entailment, and so cannot be used with cut-free fragments, or in particular to show cut
elimination by semantic means. A translation of Kripke semantics into Heyting algebras [16, 8] also
produces a completeness result that is too weak to admit cut.

Following a blueprint laid down by Schütte in 1960 [14] and developed by Takahashi and Prawitz
in 1967, one needs to develop a model theory without using cut. This technique was developed in the
context of algebraic models by Maehara, and independently (in a more general context) by the authors
for non-extensional intuitionistic type theory in [7]. The bulk of the authors’ work at this time is to extend
the Maehara technique to hoI(C ) in order to determine what restrictions on the constraint system will
allow the proof to go through, in light of the fact, shown above, that cut-elimination will fail in the most
general case. Interestingly, in order to show the Maehara model is a cHa, we need cut-free ivertibility
of the arrow-right rule, and the existence of a constraint of the precise same form as in the syntactic
counterexample above, namely, B≈ (B⊃ A) must be disallowed.

The present aim is to identify further restrictions on the constraint system that will allow the Maehara
construction to go through. The counterexample above suggests that restrictions along the lines of the
uniformity restriction in [9] which in essence only allows equations between logical formulas that have
similar propositional structure may be required. This restriction is necessary in [9] to allow a semantic
proof of uniformity of λProlog with constraints. It also entails the invertibility of implication-right
necessary for the Maehara construction to work.
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