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In this paper, the Certain Generalized Stresses Method (CGSM) is developed for probabilistic analysis of laminated composite structures modeled by finite elements. The material and physical properties are considered as random parameters and are represented by random variables or fields. These random fields are discretized by Karhunen-Loève expansions and the local average method. The CGSM is based on the assumption that the generalized stresses are stable even with the presence of uncertain parameters. Thanks to this assumption, it is possible to calculate the strain energy of the structure, for any combination of the uncertain parameters. Then, an explicit expression of the displacement at a point is obtained by using the Castigliano's theorem. The mean value, the standard deviation and the distribution of the displacement can be evaluated by a Monte Carlo Simulation (MCS) using this expression. For calculating the variability of a displacement, only one nominal finite element analysis with two load cases are required, then a post-processing stage is performed. In addition to the displacements, the variability of strains, stresses and failure criteria can also be evaluated. Two examples are studied: the first example is an eight-layer asymmetric bending plate under a uniformly distributed load; the second example is an eight-layer symmetric bending shell under nine concentrated loads. The results are compared with those obtained by the direct MC simulation, considered as a reference, and those presented in the literature. The comparison shows that the CGSM + MCS approach provides quite accurate results and highlights the high computational efficiency of the method proposed.

INTRODUCTION

Today composite laminated structures are widely used in various industrial sectors like energy, aerospace and transport, because of their excellent mechanical properties. At the same time, a high variability of material and physical properties is also induced by their manufacturing process. Therefore the study of uncertainty of composite structures is a very interesting and important challenge.

So far, many studies have been investigated to take into account the uncertainties of composite structures in numerical models. The variability of stresses of a perforated plate is investigated by Van Vinckenroy and de Wilde [START_REF] Van Vinckenroy | The use of Monte Carlo techniques in statistical finite element methods for the determination of the structural behavior of composite materials structural components[END_REF] using the Monte Carlo Simulation (MCS). Kamiński and Leśniak [START_REF] Kamiński | Homogenization of metallic fiber-reinforced composites under st ochastic ageing[END_REF] study the homogenization of metallic fiber-reinforced composites using a perturbation method. Chen and Soares [START_REF] Chen | Spectral stochastic finite element analysis for laminated composite plates[END_REF] employ a spectral method by to evaluate the variability of displacements of a plate under a concentrated load. Noh [START_REF] Noh | Stochastic finite element analysis of composites plates considering spatial randomnes s of material properties and their correlations[END_REF] investigate the influence of the variability of elastic and shear moduli using a weighted integral method. A perturbation method is used by António and Hoffbauer [START_REF] António | From local to global importance measures of uncertainty pro pagation in composite structures[END_REF] for the probabilistic analysis of the displacements and the failure criteria of a composite shell. For the probabilistic failure analysis of laminated composite plates, the perturbation method is respectively employed by Salim et al. [START_REF] Salim | Buckling of laminated plates with random material cha racteristics[END_REF], Onkar et al. [START_REF] Onkar | Generalized buckling analysis of laminated plates with random material properties using stochastic finite elements[END_REF][START_REF] Onkar | Probabilistic failure of laminated composite plates using the stochastic finite element method[END_REF], and Lal et al. [START_REF] Lal | Stochastic nonlinear failure analysis of laminated composite pl ates under compressive transverse loading[END_REF].

However, these existing methods are not satisfactory. They may not be able to afford accurate results when the input variability is high, and the computation time may be very high, like the MCS. So an economical and reliable method, taking into account the variability of composite laminated structures in finite element calculations, is needed. In this article, a non-intrusive method, the Certain Generalized Stresses Method (CGSM), is developed. This method is firstly proposed by Lardeur et al. [START_REF] Lardeur | La méthode MEGC pour le calcul de dispersion du comportement s tatique des treillis[END_REF][START_REF] Lardeur | Une méthode rapide pour la prise en compte des incertit udes dans les structures minces ; application aux treillis[END_REF][START_REF] Lardeur | Application de la méthode MEGC aux treillis de barres hyperstatiques[END_REF][START_REF] Lardeur | The Certain Generalized Stresses Meth od for the static finite element analysis of bar and beam trusses with variability[END_REF] for the probabilistic analysis of isotropic bars and beams. Mahjudin et al. [START_REF] Mahjudin | La méthode CGSM pour l'analyse statique d es plaques avec variabilité[END_REF] develop this method for homogenous and isotropic plates.

Based on a mechanical assumption, the CGSM can efficiently provide accurate results, even if the level of variability and the number of variables are large. Moreover, it is able to take into account the variability of not only material properties (elastic moduli...) but also physical properties (plate thickness...). In order to calculate the statistical quantities (mean value, standard variation, distribution…) of a displacement with the CGSM, a MCS is performed on an explicit expression of displacement. This method can also be employed to evaluate the variability of strains, stresses and failure criteria.

In the next section, the random variables and fields are presented. Section 3 gives the process of the CGSM, as well as the CGSM formulations for composite plates and shells. In Section 4, two numerical examples are studied with various uncertain parameters. For verifying the numerical accuracy and the computational efficiency of the CGSM, the results are compared with those obtained by the direct MCS and presented in the literature. Conclusions are given in the last section.

RANDOM VARIABLES AND FIELDS

For a parametric approach, the uncertain parameters are represented by random variables or random fields. Random variables mean that uncertain parameters are uniform for each finite elements. Random fields mean that uncertain parameters are different for each finite elements, and the variation depends on the distance of elements.

A random variable of an uncertain parameter E(x) can be obtained by:

( ) ( )(1 C.V. ) Ex μ x ξ  (1) 
where C.V. and μ(x) are respectively the coefficient of variation and the mean value of the uncertain parameter, ξ is a random variable which is defined by a truncated Gaussian distribution law.

According to Ghanem and Spanos [START_REF] Ghanem | Stochastic finite elements: a spectral approach[END_REF], the random field can be discretized by the Karhunen-Loève expansion. A random field ( , )

Ex  can be represented by:
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where m is the number of terms retained, λi and fi(x) are respectively the eigenvalues and eigenvectors of the covariance matrix [Cov], () ξθ  is a vector of random variables which is defined by a truncated Gaussian distribution law. The Eq. ( 2) can be written as:
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In order to get [L], two methods can be used to decompose the covariance matrix [Cov]: the Cholesky decomposition or the singular value decomposition. These two methods generally lead to close results. Here the local average method is employed to get [Cov]. This method is proposed by Vanmarcke and Grigoriu [START_REF] Vanmarcke | Stochastic finite element analysis of simple beams[END_REF] and developed by Zhu et al. [START_REF] Zhu | Stochastic FEM based on local averages of random vector fi elds[END_REF]. In this method, the random fields are obtained by an integration over the elements. The covariance matrix between two elements is thus described:
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where i A and j A are respectively the area of the elements i and j, Δ ij x and Δ ij y are respectively the distances between two arbitrary points of the elements i and j in the x and y direction.

CERTAIN GENERALIZED STRESSES METHOD

The CGSM has been employed by Lardeur et al. [START_REF] Lardeur | La méthode MEGC pour le calcul de dispersion du comportement s tatique des treillis[END_REF][START_REF] Lardeur | Une méthode rapide pour la prise en compte des incertit udes dans les structures minces ; application aux treillis[END_REF][START_REF] Lardeur | Application de la méthode MEGC aux treillis de barres hyperstatiques[END_REF][START_REF] Lardeur | The Certain Generalized Stresses Meth od for the static finite element analysis of bar and beam trusses with variability[END_REF][START_REF] Mahjudin | La méthode CGSM pour l'analyse statique d es plaques avec variabilité[END_REF] for the probabilistic analysis of isotropic and homogeneous structures. In this section, it is developed for bending multilayered composite plates and shells with variability of material and physical properties. The assumption and the process of the CGSM are recalled. Then the CGSM formulations are presented.

Presentation of the CGSM

The CGSM is based on a mechanical assumption that the generalized stresses are constant even in presence of uncertain parameters. The global organization chart of the CGSM is given in Figure 2. In order to calculate the variability of a displacement, firstly, a finite element analysis with two load cases is performed with a standard software for calculating the generalized stresses. Thanks to the CGSM assumption, the internal strain energy can be expressed for any combination of uncertain parameters. A simplified expression of the displacement is obtained by using Castigliano's theorem. Then a MCS using this expression is performed. In this process, the variability of material properties and/or physical properties is taken into account. This process allowed evaluating the mean value, the standard deviation and the distribution of a displacement. In addition to the displacements, the variability of strains, stresses and failure criteria can also be evaluated by the CGSM. 

CGSM formulations for thin composite plates and shells

For studying the variability of the displacement at point P with the CGSM, a semi-analytical expression of the displacement is firstly obtained by using Castigliano's theorem:
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)
where F is the load applied in the direction of displacement and πint is the internal strain energy. For a thin composite plate and shell, the transverse shear can be ignored and πint can be expressed as:
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with V the volume of the structure, [Q] the stiffness matrix and {ε} the plane strain vector. {ε} can also be written as:
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with {e} membrane strains and {κ} curvatures. Then Eq. ( 7) can be transformed into:
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Then the multilayered plate and shell theory is used (see for example [START_REF] Reddy | Mechanics of laminated composite plates and shells: theory and analysis[END_REF]). The axial forces {N} and the moments {M} can be obtained as follows:
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with the membrane stiffness matrix
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   [START_REF] Lardeur | Application de la méthode MEGC aux treillis de barres hyperstatiques[END_REF] the membrane-bending coupling stiffness matrix
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where t denotes the total thickness, k denotes the layer number, According to the relationship between the strains and the generalized stresses, {N} and {M} can be introduced into Eq. ( 9):
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with [S1] the membrane flexibility matrix, [S2] and [S3] the membrane-bending coupling flexibility matrix, [S4] the bending flexibility matrix. The structure is modeled by finite elements, therefore Eq. ( 15) can be written as
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where ne is the number of finite elements, {N}i and {M}i are respectively the axial forces and the moments in element i, Ai is the area of element i.

In order to use Castigliano's theorem, the load F should be introduced in the expression of πint. {N}i and {M}i are therefore decomposed into two contributions:
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where F is the force applied at point P in the direction of interest; {N′} and {M′} are respectively the axial forces and the moments in element i, due to the forces applied on the whole structure except at point P in the direction of interest; {N′′} and {M′′} are respectively the axial forces and the moments in element i, due to a unitary force applied at point P in the direction of interest. These generalized stresses are considered as constants throughout an element and independent of uncertain parameters. They can be calculated by a nominal finite element analysis with two load cases.

Thanks to Eqs. ( 17) and ( 18), F is introduced into Eq. ( 16). Then Castigliano's theorem is employed and a simplified expression of displacement for thin composite plates and shells can be obtained:
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Eq. ( 19) is assumed to be valid for any random value of the material and physical parameters. In thin composite plate and shell, this expression is used for each trial of MCS.

NUMERICAL EXAMPLES

In this section, the CGSM is applied to the static probabilistic analysis of multilayered composite plates and shells. Two examples found in the literature are studied: the first example is an eight-layer asymmetric bending plate under a uniformly distributed load; the second example is an eight-layer symmetric bending shell under nine concentrated loads. The variability of displacements and failure criteria is evaluated. The results obtained by the CGSM and the direct MCS, as well as those presented in the literature, are compared in order to demonstrate the numerical accuracy and the computational efficiency of the CGSM.

Eight-layer bending composite plate

The first example, described in Figure 2, is a square composite laminate plate (20m×20m) under a uniformly distributed load q=1Pa. This example is firstly studied by Noh [START_REF] Noh | Stochastic finite element analysis of composites plates considering spatial randomnes s of material properties and their correlations[END_REF] with the weighted integral method. The plate is simply supported and asymmetrically stacked with a stacking sequence [0/90]4. The thickness of this plate is h=0.1m. The material is Graphite/Epoxy (T300/934) with material properties: longitudinal elastic modulus E1=131GPa, transversal elastic modulus E2=10.34GPa, Poisson's ratio υ12=0.22, shear modulus G12=6.895GPa, tensile strength in fiber direction XT=1778MPa and in transverse direction YT=55.2MPa, compressive strength in fiber direction XC=1731MPa and in transverse direction YC=294MPa, shear strength SXY=101.2MPa. The uncertain parameters are E1, E2, G12, XT, YT, XC, YC and SXY. All these uncertain parameters are dependent and represented by Gaussian random fields with the local average method. The input coefficient of variation is 10% and the correlation length (λx=λy=λ) varies from 0.001L to 100L. The variability (coefficient of variation C.V.) of displacement and Tsai-Wu failure index at center is studied. The direct MCS, as well as the MCS using the CGSM formulation (Eq. ( 19)), are performed with 7000 samples. Because of the geometrical symmetry, a quarter of the example plate is modeled by four-node shell elements. Using the convergence study, an optimal mesh with 36 elements (6×6) is used.

The results obtained by the CGSM and the direct MCS, as well as those presented by Noh with the weighted integral method, are given in Figure 3. It can be observed that the results obtained by the three methods are always very close. The curves of the CGSM and the direct MCS are almost coincident. The coefficient of variation of displacement and Tsai-Wu failure index at center increases with the correlation length. When the correlation length is very small (0.001L), the coefficient of variation of response tends to 0. When the correlation length is large (100L), the output coefficient of variation tends to the input coefficient of variation value 10%. Considering that all the uncertain parameters are dependent, this result is expected. 

Eight-layer bending composite shell

The second example, studied by António and Hoffbauer [START_REF] António | From local to global importance measures of uncertainty pro pagation in composite structures[END_REF] with a perturbation method, is a clamped cylindrical composite shell under nine vertical loads Pk=7000N (Figure 4). The stacking sequence of this eight-layer structure is [+α/+α /-α /-α]s with the total thickness h=0.02m. The ply angle α, which is the angle between the fiber direction and the x-axis, varies from 0° to 90°. The material is E-glass/Epoxy with material properties: E1=38.6GPa, transversal elastic modulus E2=8.27GPa, Poisson's ratio υ12=0.26, shear modulus G12=4.14GPa, tensile strength in fiber direction XT=1062MPa and in transverse direction YT=31MPa, compressive strength in fiber direction XC=610MPa and in transverse direction YC=118MPa, shear strength SXY=72MPa. The structure is modeled by 32 four-node shell elements (4×8). In this example, the variability of maximum displacement and strength ratio (reciprocal of Tsai-Wu failure index) is evaluated for various α. There are two cases of uncertain parameters: in case 1, the material properties E1, E2, YT and SXY are uncertain; in case 2, the thickness h is uncertain. The parameters are independent and represented by random variables with a Gaussian distribution. As shown in Figure 4, the shell is divided in four macro-elements and for each macro-elements there is one laminate. The uncertain parameters are uniform for each laminate and independent between different laminate. Therefore there are 16 random variables in case 1 and 4 random variables in case 2 for each trial MCS. The input coefficient of variation is 6%. The direct MCS, as well as the MCS using the CGSM formulation (Eq. ( 19)), are performed with 10000 samples.

Figure 5 shows results in case 1, where the material properties are uncertain. The results obtained by the CGSM and the direct MCS, as well as those presented by António and Hoffbauer with a perturbation method, are quite close. The coefficient of variation of displacement decrease at first and then increase along the ply angle domain, and it is always lower than the input variability (6%). The minimum value is obtained with α=40°, which is about 2%. For strength ratio, it is observed that the variability is divided into two intervals [0°, 60°] and [70°, 90°]. In each interval, the coefficient of variation is almost the same. The maximum value is about 7.1%, which is a little lager than the input variability. Results in case 2, obtained by three methods, are given in Figure 6. In this case the thickness of structure is uncertain. It can be observed that curves obtained are very close. There is a little difference between the curves of CGSM and direct MCS, but the error is very small (less than 3%). The uncertainty of thickness has a more important influence on the variability of response than material properties. The maximum coefficient of variability is about 16% for displacement and 10% for strength ratio. Moreover, the variation of variability is small, along the ply angle domain. 

CONCLUSIONS

In this paper the CGSM is developed for the static probabilistic analysis of multilayered composite plate and shell taking into account random material and physical properties. Based on the CGSM assumption, an explicit expression of displacement is obtained by using the Castigliano's theorem. Two academic examples, an eight-layer asymmetric bending plate under a uniformly distributed load and an eight-layer symmetric bending shell under nine concentrated load, are studied. The variability of displacement and Tsai-Wu failure criterion is evaluated by the CGSM, taking into account the variability of material and physical properties.

The results calculated by the CGSM are compared with those obtained by the direct MCS, considered as a reference, and those presented in the literature. The CGSM provides quite accurate results for the studied examples. In addition, this method has obvious advantage in computational cost. Only one finite element analysis with two load cases is required for evaluating the variability of a displacement.
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 2 Figure 2: Eight-layer bending composite laminate plate under a distributed load.
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 3 Figure 3: Variability of displacement and Tsai-Wu failure index at center.
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