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Methods for quantitative assessment of passenger flow influence
on train dwell time in dense traffic areas

S. Cornet ∗, C. Buisson, F. Ramond, P. Bouvarel and J. Rodriguez

Abstract

Railway operations in dense traffic areas are very sensitive even to small disturbances, and
thus require careful planning and real-time management. Dwell times in stations are in particular
subject to a high variability and are hard to predict; this is mostly due to the interactions between
passengers and the railway system during the dwelling process. This paper presents a data-driven
approach for assessing the influence of the numbers of alighting, boarding and on board passengers
on the dwell time. We propose to split the dwell time into a deterministic component depending
on the passenger flow, called the Minimum Dwell Time, and a random component. A method for
estimating the minimum dwell time is provided. Based on the knowledge of this value, observations
can be classified according to the main determinant of dwell time, namely timetable constraints or
passenger exchange. The latter observations are used for estimating the conditional distribution
of dwell time given passenger flows. Numerical experiments are carried out on stations located
inside the dense traffic area of Paris suburban network. The obtained results indicate that the
presented method can be used for a variety of applications, such as capacity assessment or stochastic
simulation.

Highlights
• Passenger flows between train and platform can be described by a single variable

• Minimum dwell time is obtained as a function of this variable

• Actual dwell time is the deterministic minimum dwell time plus random components

• Conditional distribution of dwell time given the passenger flow is computed

1 Introduction
Big cities such as Paris have been experiencing over the last years a steady growth of demand for
passenger transportation, including commuter train services. For example, 70% of railway trips on the
French network are made inside Paris suburban area, which represents more than 8 million trips per
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working day. In order to keep providing a good quality of service to passengers despite the progressive
saturation of the network, operating companies seek to design timetables that perform well even in
saturated conditions. Knowledge of the mechanisms that determine trains dwell times is hence of
paramount importance, as they dimension the capacity of the network [Abril et al., 2008] and are partly
responsible for operations stability. Indeed, over-estimated dwell times lead to a sub-optimal use of the
network capacity, which is to be avoided when the transportation demand is high.

In addition, a structural source of instability lies in the process of alighting and boarding of passengers
[Van Breusegem et al., 1991]: a train that arrives at a station a long time after the previous train will
have to wait for many passengers to board, and is likely to dwell longer than expected. Therefore the
headway with the previous train will grow, leading to an even higher dwell time at the next station, this
phenomenon being amplified at each station unless a corrective action is taken. It is therefore desirable
to design timetables that are less sensitive to this phenomenon.

Finally, accurate estimations of trains dwell times are also needed during the operational phase, to
facilitate traffic controllers decisions and to provide passengers with reliable information about their
waiting and journey times.

Trains dwell times in stations are determined by several factors, namely:

• Technical features of the rolling stock, mainly the time required for door opening and closing.

• Alighting and boarding of passengers. The time required for this process depends on the number
of alighting and boarding passengers, the load of the train and the platform, as well as the train
and station longitudinal configurations [Daamen et al., 2008]. Passengers behavior matters as well:
it is not uncommon for passengers to block doors in order to get on board while doors are closing,
or because of the poor distribution of passengers in vehicles leading to jammed doors. This results
in a longer dwell time.

• Timetable. In most countries trains are not allowed to depart ahead of schedule. Consequently
early trains may have to dwell at stations even if the passengers exchange process is complete, in
order to meet this constraint.

• Signaling. Operations safety is ensured in most countries by a fixed signaling system. In particular,
a signal is located at the end of each platform and indicates whether the track ahead is free of any
vehicle or not. Thus when trains are operated with short headways, it is not unlikely for a train
to dwell a long time in station waiting for the track to be cleared and the signal to open.

• Driver behavior. Some drivers are used to close doors as soon as the boarding and alighting process
is complete and the timetable allows it, whereas others might wait longer for late passengers.

The time required for the alighting and boarding of passengers is hard to estimate accurately. Indeed,
in addition to the factors listed above, it strongly depends on parameters that are not easily accessible.
Some examples are the passenger distribution over the platform (which depends in particular on pas-
sengers’ destinations [Kim et al., 2014], and on the weather for stations without a complete cover), the
number of passengers carrying luggage, a bike or a stroller...

However, we make (and verify) the hypothesis that for a given passenger flow, a minimum dwell
time is required for the passenger exchange process to be able to complete. All other disturbances
(passengers with luggage or blocking doors, departure prevented by schedule, signaling) can only extend
dwell time from this value. Figure 1 presents an example of the possible components that determine
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Figure 1: Example of dwell time components

dwell time, here in the case of a train arriving slightly late at the platform. In that case, the train could
have departed on schedule if passenger alighting and boarding had been complete after the minimum
passenger dwell time. Yet, here a deviation due to random behavior of passengers caused passenger
exchange to extend and the train to depart with delay.

The aim of this paper is to present a new data-based method for assessing the impact of passenger flow
on dwell times. We show that for a given passenger flow, a minimum dwell time is required and present
a data-based algorithm for computing it. Knowledge of the minimum dwell time can indeed be useful for
the capacity assessment of a network, or for implementing countdown systems in stations. It also allows
to classify each observation depending on whether the dwell time was mainly determined by timetable
constraints or passenger exchange. The algorithm requires a dataset containing, for each station under
consideration and each train that served it, the amount of alighting and boarding passengers, as well
as the train load on departure and the dwell time of the train at the station. We finally discuss on
the probability to deviate from the minimum dwell time: the conditional distribution of dwell time
given the passenger flow is estimated using the previously classified observations. Such distributions can
be used with a long-term passenger demand forecast model (see for example [Ceder, 2007]) for robust
timetabling and stochastic simulation; or with a short-term passenger flow prediction method ([Wei and
Chen, 2012]) for providing traffic controllers with the probability of various scenarios.

The remainder of this paper is organized as follows. In the next section, we review some existing
work about dwell time estimation in commuter train services, light rail transportation systems and bus.
Section 3 presents the data used in this study and the preprocessing operations that were applied to
it. The fourth section is dedicated to the method for estimating the minimum dwell time required
for a given station and passenger flow. In the fifth section, these results are used for classifying the
observations of the dataset, depending on which factor actually determined the dwell time. The sixth
section is devoted to a discussion on the dependency of dwell times on passenger flows; we estimate the
conditional distribution of dwell time given passenger numbers, thus highlighting the impact of extreme
passenger flows. Section 7 concludes the paper. Additional details and results are given in appendix.

2 State of the art
Boarding and alighting movements of passengers are some of the main determinants of dwell time in
every public transport mode [Kraft, 1975]. However, not all existing dwell time models in the literature
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aim to describe this phenomenon explicitly. Therefore, previous studies on dwell time prediction can
be classified in two categories: explicit models, which use as input passenger number and behavior; and
implicit models that use other inputs which do not require passenger counting, such as day, hour, delay
or headway with the previous train. Note that all these features are however usually correlated with
passenger flows.

Most explicit models resort to one of the following modeling approaches: data-based modeling and
regression, or microscopic simulation of passenger movements. Some linear and non linear models are
proposed by [Lin and Wilson, 1992]. They take into account the friction phenomenon that occurs when
the number of standing passengers in vehicles is high. These models were applied to the MBTA metro
green line in Boston for one-car and two-car trains. Several improvements on their work are made in
[Puong, 2000], where a better understanding of the effects of crowding and number of doors is provided.

The development of Automatic Vehicle Location (AVL) and Automatic Passenger Counting (APC)
systems in the 2000s opened new perspectives for dwell time estimation, as they provide larger and more
accurate amounts of data than those obtained by manual counting. The new availability of this type of
data lead to a set of papers on the bus and metro cases.

For example, [Dueker et al., 2004] provide descriptive statistics about dwell times and an estimation
model for the Portland bus network. [Sun et al., 2014] make a deeper analysis of the bus boarding and
alighting process, and exhibit a critical occupancy level beyond which the process is slowed down due to
friction between passengers. The paper also highlights the effects of the rolling stock configuration on the
dwelling process, by performing the same analyses on buses with different characteristics. [Buchmüller
et al., 2008] adopted a different approach: instead of building a deterministic model, they divided the
dwelling process into several subprocesses and computed the probability distributions of those subject
to random variation. This allows to describe the inherent stochasticity of the phenomenon, as not all
passengers behave in the same manner. A similar choice is made in [Longo and Medeossi, 2012] and
[Larsen et al., 2014], where distributions of dwell times are used for stochastic simulation of train traffic.

Recently, [D’Acierno et al., 2017] proposed an analytical model for dwell times on a metro line, and
proved that traffic evolves toward an equilibrium in which dwell times can be computed as solutions of
a fixed-point problem in finite dimension.

All parametric models, once calibrated, provide a closed form expression for dwell time that makes
it easy to compute. On the other hand, microscopic simulation methods require a longer time for
dwell time estimation but allow to get insights into passenger movements and behavior. Thus, [Zhang
et al., 2008] designed a cellular automata-based simulation method able to reproduce congestion and
negotiation between passengers at a microscopic level. This allowed them to estimate dwell times on
Beijing metro network. [Yamamura et al., 2013] developed a multi-agent model for simulating passengers
behavior, and used it for assessing the efficiency of some measures for reducing passenger congestion,
such as using trains with larger doors or without seats. A similar study was conducted by [Schelenz
et al., 2014] in order to determine the optimal bus layout from the passengers point of view. [Seriani and
Fernandez, 2015] used a pedestrian traffic microsimulator for assessing the performance of pedestrian
traffic management strategies in Metro de Santiago, and conducted experiments with volunteers in
laboratory.

However, explicit models might not be the easiest to handle. Indeed, not all transportation systems
are equipped with APC and passenger data can therefore be hard to obtain. In addition, systems
equipped with APC do not always provide data in real-time, making difficult the use of such models
for operational applications. For those reasons, some implicit models were developed. These require
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input that are easier to collect, albeit correlated with passenger influx. [Hansen et al., 2010] use trains
arrival delay as input and a robust regression method for estimating dwell times of intercity trains in
the Netherlands. [Kecman and Goverde, 2015] applied Least Trimmed Squares and Random Forests
regression methods on a data set containing trains type (local or intercity) and arrival delays, as well as
information such as station size and peak hour. Local models on particular stations, where dwell times
are predicted using a moving average on previous dwelling processes, are also presented and are found
to perform better. [Li et al., 2016] predict the dwell time of a specific train at a given station using the
information of dwell times of the same train at previous stations and dwell times of previous trains at
the same stations. Improvements and a generality test of this approach are presented in [Li et al., 2018].
Similarly, [Xin and Chen, 2016] use k-nearest neighbors method for predicting bus dwell time at a given
stop knowing its dwell times at the previous stops.

The concept of minimum dwell time is introduced by [Pedersen et al., 2018]. It is defined as the
smallest dwell time (including door opening and closing) allowing boarding and alighting of passengers
to complete. The authors assume that this minimum dwell time can be computed by considering only
delayed trains, and study the influence of temporal factors (such as hour in the day, day of the week,
week of the year) on the minimum dwell time. However, the minimum dwell time explicit dependence
on the passenger flow is not studied by the authors.

Some features of the main models in the literature are summed up in Table 1, in chronological order.
As said before, the dependence of the models on passenger flows can be either explicit or implicit,
depending on whether the model includes passenger flows in its variables. This is indicated in the
“Passenger flows” column.

Source Passenger flows Transportation mode Modeling approach
[Lin and Wilson, 1992] Explicit Metro PR
[Puong, 2000] Explicit Metro PR
[Dueker et al., 2004] Explicit Bus PR
[Buchmüller et al., 2008] Explicit Train Di
[Zhang et al., 2008] Explicit Metro Sim
[Hansen et al., 2010] Implicit Train PR
[Yamamura et al., 2013] Explicit Train Sim
[Sun et al., 2014] Explicit Bus PR
[Li et al., 2014] Implicit Train Di
[Seriani and Fernandez, 2015] Explicit Metro Sim
[Kecman and Goverde, 2015] Implicit Train PR and NPR
[Xin and Chen, 2016] Implicit Bus NPR
[Li et al., 2016] Implicit Train PR and NPR
[D’Acierno et al., 2017] Explicit Metro An
[Pedersen et al., 2018] Implicit Train Di
This paper Explicit Train NPR and Di

Di: probability distributions, PR: parametric regression, NPR: non-parametric regression, An: analytical,
Sim: microscopic simulation

Table 1: Some features of existing dwell time estimation models in public transport

Up to our knowledge, the intrinsic stochasticity in the dwelling process has drawn little research so
far, [Buchmüller et al., 2008] and [Li et al., 2014] being some of the few attempts to model it. Our aim is
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to bridge this gap, by designing a method for computing the minimum dwell time required for boarding
and alighting of a given number of passengers, and estimating the probability of deviation from this
minimum dwell time.

3 Data collection and preprocessing

3.1 Experimental setup and available data
For this study, we designed an experimental setup for some stations of Paris suburban network, namely
Bois-Colombes (BC) on line J and Houilles-Carrières (HC) on line L (these stations being selected
because they are subject to both high and low passenger traffics depending on day and time). Results
on other stations of these lines are provided in appendix. A partial map of these lines, featuring the
considered stations, the performed services and their frequencies in peak hours is given on figure 2. Lines
L2, L3 and J4 each run on a dedicated double-track. Services on these lines are operated by simple
or double units of SNCF Class Z50000. Each unit has seven doorways of width 1.95 m, a length of
94.3 m, a seated capacity of 380 passengers (pax) and a total capacity of 760 pax. This rolling stock
is equipped with an APC system using infrared lights; captors are located above each doorway and are
able to detect separately alighting and boarding movements (from which the train load can be deduced).
Note that when the train is extremely crowded, passengers may have to get off the train in order to
letting other passengers alight, before boarding again. Those are counted both as alighting and boarding
passengers. However, the train occupation rates observed in the datasets suggest that this phenomenon
seldom occurs.

Comparisons with manual countings showed that the average error in the measure of alighting and
boarding movements is below 5%, whereas the train load is known with less than 15% error. The
accuracy of this system has therefore been judged sufficient to use it instead of manual countings by
the transport organization authority of Paris suburban area. A train event recorder is also embedded,
allowing to measure arrival and departure times at stations with higher accuracy than using data from
track circuits.

The raw data archives of year 2017 were processed to build a dataset for each station under consider-
ation and each direction (from suburbs to Paris - SP - or from Paris to suburbs - PS). Each observation
of these datasets describes the passenger flow and the dwelling process of a given train, by:

• its theoretical timetable,

• actual arrival and departure times (from which dwell time can be inferred),

• number of passengers alighting and boarding the train (these numbers being only known at the
train level, they cannot be detailed for each door),

• passenger load after departure,

• number of doors.

Data was filtered in order to keep only observations corresponding to dwell times lower than 180 seconds;
indeed, 99.9% of observations correspond to lower dwell times. We assume that higher dwell times are
due to incidents that fall out of the scope of this study. Furthermore, passenger data per unit has
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Figure 2: Partial map of lines J and L

more interest for predicting dwell times than their absolute values; we therefore divided the number of
boarding and alighting passengers as well as the passenger load by the number of units (one or two) of
each train. All statistical analyses performed on these datasets required the use of Python’s package
Scikit-learn [Pedregosa et al., 2011].

In the sequel, we shall denote A the number of passengers alighting the train, B the number of
passengers boarding the train, L the train load after departure and DT the dwell time (in seconds).
Some descriptive statistics of these datasets are provided in Table 2. Note that all features A,B,L have
a high standard deviation (std); this is due to the large variation of passenger flow between peak and
off-peak hours.

Bois-Colombes - SP Bois-Colombes - PS
23865 observations 24230 observations

A B L DT A B L DT
Median 6.0 30.5 136.5 46.0 Median 28.0 6.0 107.0 46.0
Mean 7.4 36.0 155.7 55.8 Mean 37.9 7.7 135.5 47.6
Std 6.8 31.6 120.7 29.4 Std 31.9 7.0 99.0 15.8

Houilles-Carrières - SP Houilles-Carrières - PS
7989 observations 7812 observations
A B L DT A B L DT

Median 5.0 18.0 61.0 34.0 Median 18.0 6.5 56.0 32.0
Mean 9.0 29.7 111.6 36.8 Mean 26.2 10.1 84.5 36.9
Std 10.1 32.1 132.1 14.0 Std 24.5 11.0 84.0 16.6

SP : Suburbs to Paris - PS : Paris to suburbs

Table 2: Descriptive statistics of datasets
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3.2 A single latent variable to describe passenger flows
Correlation matrices between parameters A,B,L are provided in Table 3. Unsurprisingly, these variables
describing passenger flows are strongly correlated. Indeed, all three variables are representations of the
same phenomenon (peak and off-peak hours). Namely, in the suburbs to Paris direction, there is a high
number of passengers boarding and a high passenger load during the morning peak hour and lower values
the rest of the time. Similarly, in the Paris to suburbs direction, there is a high number of passengers
alighting and a high passenger load in the evening peak hour and lower values otherwise. A consequence
of this multicollinearity in the data is that no regression method can separate the influence of alighting,
boarding and passenger load on dwell times. Moreover, predictions made using methods presented in
the subsequent parts are only valid for cases within the range of the available data, and assuming the
correlation patterns remain the same [Dormann et al., 2012].

To deal with this collinearity, we introduce a latent variable by performing a principal component
analysis (see e.g. [Jolliffe, 2011]) on explanatory variables A,B,L. This technique consists in building
new variables p1, p2, p3 (called the principal components) as a linear combination of the old ones, in such
a way that the new variables are uncorrelated and have maximum variance for the data. The values of
the three variables A,B,L were previously scaled, as their orders of magnitude differ (usually between
0 and 100 for alighting and boarding passengers, between 100 and 1000 for passenger load). The ratio
of variance explained by the principal components p1, p2, p3 is presented in Table 4.

Bois-Colombes - SP Bois-Colombes - PS
A B L A B L

A 1 0.86 0.87 A 1 0.74 0.93
B 0.86 1 0.96 B 0.74 1 0.78
L 0.87 0.96 1 L 0.93 0.78 1

Houilles-Carrières - SP Houilles-Carrières - PS
A B L A B L

A 1 0.44 0.55 A 1 0.49 0.86
B 0.44 1 0.87 B 0.49 1 0.68
L 0.55 0.87 1 L 0.86 0.68 1

Table 3: Correlation matrices of passenger data

Bois-Colombes - SP Bois-Colombes - PS Houilles-Carrières - SP Houilles-Carrières - PS
p1 0.93 0.88 0.75 0.79
p2 0.06 0.10 0.21 0.17
p3 0.01 0.02 0.04 0.04

Table 4: Ratio of explained variance for each principal component

Note that a large part of the variance is explained by the first principal component p1; the same
occurred on most stations where we performed this operation (a table indicating the ratio of explained
variance of the first component on other datasets is provided in appendix). From now on, we shall call
it the principal component, or the reduced passenger flow, and denote it p. It will be used as the only
representation of passenger numbers in the sequel, the other components p2, p3 are dropped from the
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model. For a better understanding, its value was scaled to the interval [0, 1], thus p = 0 corresponds to
a train running almost empty with no passenger exchange at the platform and p = 1 to a train almost
full with many alighting and/or boarding passengers. The linear regression lines of A,B,L against p for
each dataset are provided on figure 3. For example, at the station of Houilles-Carrières in the Paris to
suburb direction, a value of p = 0.4 corresponds approximately to A = 100 alighting passengers, B = 30
boarding passengers and L = 350 passengers on board after departure.

Figure 3: Correspondence between values of p and values of A,B,L

Finally, note that the data density is inhomogeneous along the p axis; many observations correspond
to cases with small passenger influx (hence p is close to 0), whereas observations corresponding to
extremely high values of p (close to 1) are scarce.

3.3 Towards the Minimum Dwell Time
A scatter plot of observations on the BC-PS and BC-SP datasets is provided on Figure 4, where the
reduced passenger flow p is plotted on the x-axis and the dwell time DT on the y-axis. The intrinsic
stochasticity of the dwelling process duration can be visualized on that figure. Indeed, it does not only
depend on timetable and passenger numbers but also on factors that are most likely unknown: passenger
distribution over the platform and inside the train, presence of cumbersome luggage, driver behavior...
We hence believe that dwell times at short stops in dense traffic areas cannot be predicted accurately
using available data. As a matter of fact, after splitting each dataset into a training set and a test set,
all our attempts to train a regression model on the training set (with explanatory variables A,B,L) and
use it to predict the dwell time values of the test set were unsuccessful.

However, we observe that the lower bound of DT increases with the value of p; this seems to indicate,
for a given value of the passenger flow p, the existence of a minimum value of dwell time for the passenger
exchange process to be able to complete. We shall henceforth focus on this notion of Minimum Dwell
Time (MDT), seen as a function of the reduced passenger flow p. The next section is dedicated to a
definition and an algorithm for computing it.
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Figure 4: Dwell times for different values of p. Observations are coloured according to density.

4 Estimating the minimum dwell time for a given passenger
flow

4.1 Definition
We refer to minimum dwell time (MDT) for a given number of passengers (alighting, boarding and on
board, described by the single variable p) as the shortest amount of time a train is required to dwell
in station for the alighting and boarding process to be able to complete (including door opening and
closing). It depends on the reduced passenger flow p, but also on the rolling stock features (time required
for door opening and closing, number and width of doorways, capacity...) and station configuration
(curvature, height of the step between the platform and the train...).

Up to our knowledge, so far the concept of minimum dwell time has only been studied by [Pedersen
et al., 2018]. Their work is based on the hypothesis that a delayed train will dwell in stations only
the minimum amount of time allowing the exchange of passengers to complete. Therefore they conduct
analyses by considering only delayed trains. In our opinion, this approach has several shortcomings and
can be improved. First, we believe that not all delayed trains close doors and depart from stations as
soon as alighting and boarding is complete; some can be prevented or discouraged from doing so by a red
or yellow signal, extra seconds can be lost by passengers blocking doors or by the driver waiting for late
passengers. In addition, such a definition makes the influence of passenger flows on the MDT difficult
to study, although the variation of passenger numbers is the actual cause of the observed variation of
the MDT according to temporal factors.

To model the phenomenon observed on figure 4, let us introduce the following random variables:

• DT that represents the actual dwell time

• DTT that represents the minimum time the train is required to dwell at the station in order to
satisfy the no-early-departure constraint. It is equal to the scheduled dwell time minus the delay
on arrival (or 0 if this difference is negative).

• DTP that represents the time required for door opening, passenger exchange and door closing.

10



These three random variables are linked by the relation

DT ≥ max(DTT,DTP ) (1)

We also assume that random variable DTP can be decomposed the following way:

DTP = MDT (p) +Dev (2)

where the minimum dwell time MDT (p) is a deterministic function of the reduced passenger flow p,
and the deviation Dev is a non-negative random variable that accounts for stochastic behaviors such
as inhomogeneous passenger distribution on the platform or passenger carrying luggage. All these
random variables can be visualised on figure 1 in the introduction. Let us recall that the relationship
used for computing p, as well as the function MDT and the random variable Dev, also depend on the
station and direction under consideration. A similar modeling approach was used in [Medeossi, 2008] for
performing stochastic simulation of traffic. In that thesis however, the minimal dwell time is a constant
value determined by the rolling stock features. The dependence on the passenger flow is therefore not
evaluated.

Note that although MDT is chosen as a function of a single variable p, it is however influenced e.g.
by temporal factors through p. Indeed, during peak hours in the week, passenger flows will be important
and so will be the value of p, whereas during the week off-peak hours and the week-end, the values of p
will be lower.

4.2 Computing the minimum dwell time
4.2.1 Algorithm

Our datasets are compound of observations of the random variable DT . On figure 4, we can observe that
the minimum dwell time is an increasing and sometimes approximately linear function of the reduced
passenger flow p. We propose to estimate it using a two-step process, whose principle can be presented
the following way. We first seek to select observations that correspond to situations where DT = DTP
and DTP 'MDT (p), meaning Dev ' 0 (step 1). Those observations are then used for estimating the
function MDT (p) (step 2).

1. Selection of the data
We select points in each dataset according to the following procedure:

1. Choose a window width ∆p.

2. Select all observations that satisfy p ∈ [0,∆p)

3. Select the one with the lowest value of DT among all those satisfying DTT < DT . Discard all
the other observations in [0,∆p).

4. Repeat steps 2 and 3 on intervals [∆p, 2∆p), · · · , [n∆p, 1] (until the whole dataset has been browsed
through).
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Width ∆p should be chosen in such a way that every window is likely to contain several points, but not
too large so that every region is represented. The result of this step is a set of observations covering the
whole range of values of p, and for which the observed dwell time is close to the MDT.

2. Regression
We then estimated the function MDT (p) by applying a k-nearest neighbor regression method ([Alt-

man, 1992]) to the selected data. This method consists, to obtain the value of MDT (p) for a given value
of p, to select the k nearest observations along the p axis and take the average of the corresponding
values of MDT . We subsequently applied a slight modification to the obtained function. Indeed, the
function MDT (p) can reasonably be assumed non-decreasing; we therefore enforced the same constraint
on the estimation, by replacing any decreasing section by a piecewise constant one.

4.2.2 Results on real-world data

Figure 5: Selected data of each dataset and kNN regression

We first applied the method to fictitious datasets where the function MDT was known, for purposes
of calibration and validation. This lead to the choice of parameters k = 5 and ∆p = 0.005. Details
about this step are provided in appendix. The same method was subsequently applied to the BC-SP,
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BC-PS, HC-SP and HC-PS datasets. The selected data and obtained regression curve are given on
Figure 5. In all cases, we observe that the function MDT (p) is approximately linear for small values of
p, then increases with greater slope; this illustrates the phenomena of congestion that appear when the
number of passengers is high.

We also note that the function seems to be station and direction-dependent. However, this assertion
cannot be verified by simply comparing curves, as the way p is computed is itself station-dependent.
Instead, we built two samples of realistic passenger flows by randomly selecting 200 observations in the
PS direction and 200 in the SP direction. We subsequently computed the associated values of p for each
model, used the previous regression method to predict MDT for these passenger flows and compared the
obtained results. Figure 6 represents the distribution along the principal component p of the difference
between, respectively, the values of MDT predicted by BC-PS and HC-PS on the PS observations, and
the values predicted by BC-SP and HC-SP on the SP observations.

This figure shows a small difference of predicted values for small passenger flows, however it gets
higher when the number of passenger exchanged increases. It seems therefore that the minimum dwell
time indeed depends on the station under consideration. In addition, we observe that the difference is
always negative; this suggests that for the same values of A,B,L, the minimum dwell time is always
smaller at the station of Houilles-Carrières than at Bois-Colombes. This could be the result of different
station layout (height of the platform, number and position of platform access for example).

Figure 6: Difference between predictions of MDT for HC and BC datasets

5 Identifying determinants of dwell time
Let us recall that dwell time of trains in stations is not only determined by the passenger exchange process
but also by their schedule (as trains are not allowed to depart ahead of schedule) and exterior events
such as signaling. The knowledge of the minimum dwell time required for the process of alighting and
boarding of passengers can help classifying available observations, depending on which of the previous
factors actually determined the dwell time. For each observation, we define the minimum dwell time
imposed by the timetable, denoted DTT , by DTT = max(D̃T −Delay, 0) where D̃T is the scheduled
dwell time as defined by the timetable and Delay is the delay of the train upon arrival at the station. We
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also compute the minimum dwell time for the exchange of passengers MDT with the method described
in the previous section.

Observations are then classified in two sets: those where MDT > DTT correspond to events were
passengers numbers justified a longer dwell time in station than planned in the timetable. Conversely,
those where MDT ≤ DTT are events where the dwell time was likely determined by the no-early-
departure rule. Classified observations on BC-SP dataset are plotted on Figure 7. There are 16306
observations in the MDT ≤ DTT case, and 7558 observations in the MDT > DTT (similar proportions
are observed on the other datasets).

Figure 7: Classification according to the main determinant of dwell time.

It is worth noting that most observations with high values of DT correspond to trains that arrived in
station ahead of schedule; these long dwell times were due to the timetable constraint and not to a long
passenger exchange process. We consequently discarded these observations from future examinations.

6 Estimating the conditional distribution of dwell time
The previous steps allowed us to build datasets (corresponding in the case of Bois-Colombes SP to the
right part of Figure 7) where we can assume passenger exchange to be the main determinant of dwell
time. We seek to use them for estimating the conditional distribution of dwell time given the (reduced)
passenger flow. From now on, we assume passenger flow P and dwell time DT to be random variables
with densities fP , fDT and the couple (P,DT ) to have density fP,DT . Then, for a given passenger flow
p, the conditional distribution of DT given P = p can be obtained by

P(DT ≤ t|P = p) =
∫ t

0

fP,DT (p, τ)
fP (p) dτ (3)

We resorted to Kernel Density Estimation (KDE) [Silvermann, 1986] with Gaussian kernel for estimating
the joint distribution fP,DT . Consider the dataset as the realization of n independent and identically
distributed random variables (X1, · · · , Xn) with density fP,DT , and x = (p, t) a given point. The chosen
kernel density estimator is defined by

f̂(x) = 1
nh2

n∑
i=1

K
(
x−Xi

h

)
(4)
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where K(u) = 1
2π exp

(
−1

2u
Tu
)

is the Gaussian kernel, and h > 0 is a smoothing parameter. The

estimator f̂ depends on X1, · · · , Xn and can therefore be considered as a random variable. The quality
of the estimation is measured by the Mean Integrated Squared Error (MISE)

MISE(f̂) = E
(∫

(f̂(x)− fP,DT (x))2dx
)

(5)

[Silvermann, 1986] proves that h = 0.96 1
n1/6 is an optimal choice if the density to estimate is the normal

distribution, we chose this value of h even if the normal distribution hypothesis is not satisfied a priori.
Density fP,DT was then estimated on the BC-SP dataset after scaling the data. Marginal density fP

can subsequently be computed, as

fP (p) =
∫ +∞

0
fP,DT (p, t)dt (6)

The integral being approximated with e.g. the trapezoidal rule (see [Stoer and Bulirsch, 1993]). The
conditional cumulative distribution function (cdf) of equation (3) can then be computed for given values
of p. This function is plotted for several values of p on Figure 8; similar curves were obtained on other
datasets and are provided for illustrative purposes in appendix, on Figure 14. As the passenger flow
increases, the slope of the cdf plot gets lower, implying a higher probability to deviate from the minimum
dwell time. The plots corresponding to high passenger flows (p > 0.5) are often quite remote from each
other: this highlights the phenomena of congestion at the doorway level that are more likely to happen
in these situations. This is particularly true in the SP datasets. This is due to the fact that in this
direction, there are more passengers boarding than alighting. The boarding movement being slower
than the alighting movement (due to the fact that a step has to be climbed), it is also more prone to
congestion.

Figure 8: Conditional cdf of DT for different values of p

In order to verify the accuracy of these distribution estimations, we then randomly split each data
set into a training set and a test set (with equal sizes). The observations from the training set were
used for estimating the conditional distribution of DT given p as described previously. For different
values of p ∈ [0, 1], we selected the observations in the test set satisfying p ∈ [p − 0.01, p + 0.01]. We
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then computed the deciles of observations contained in the test set as well as the deciles of distributions
estimated using the training set. The distributions were then compared by plotting those deciles on a
Quantile-Quantile plot [Chambers et al., 2018], see Figure 9.

Figure 9: Q-Q plot of observed and estimated conditional distributions of dwell times

The accuracy of the estimation is measured by the distance between the points and the straight
line where the points should be if the observed and estimated distributions were perfectly equal. We
observe that the conditional distributions of DT given the passenger flow are estimated with reasonable
accuracy for the lower values of p. The estimates, in particular the higher quantiles, are less accurate
for extreme passenger flows. This is mainly due, as already mentioned in previous parts of the paper,
to the relatively small number of observations corresponding to this situation.

7 Conclusion and perspectives
This paper proposes a novel approach for assessing the dependency of dwell time on passenger flows
in public transport. First, it is shown that in most cases, passenger flows can be described by a single
(latent) variable. This considerably facilitates data processing as well as visualization. The concept of
minimum dwell time is then investigated. A definition and a method for computing it from available
data are proposed. Knowledge of the minimum dwell time for a given passenger flow has several practical
uses: it allows a more accurate estimation of network capacity, as well as opportunity studies of imple-
menting countdown systems for dwell time in stations and dimensioning of such systems. In addition,
it helps classifying data according to the main determinant of dwell time, thus making the estimation
of the conditional distribution of dwell time given passenger flows possible. These distributions can be
used coupled with a passenger flow prediction model. This would then allow to perform quantitative
assessments of timetable robustness, forecast delay propagation in real time and provide reliable infor-
mation to travelers, as well as to give insights to traffic controllers into the potential consequences of
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their decisions.
The implementation of this dwell time model into a simulation tool should yield simulation results

with higher accuracy, and will be part of our future work. The obtained results also seem to indicate that
different patterns can be observed depending on the station under consideration, leading to contemplate
a classification of stations with regards to this phenomenon. Finally, our method could also be improved
by integrating data about phenomena that were neglected; using meteorological or signaling data could
lead to more accurate predictions of dwell time.
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Appendix

Calibration and validation on fictitious test datasets
We verified the ability of our algorithm to accurately estimate the function MDT (p) by applying it to
fictitious datasets where the function is known. We built two datasets Test1 and Test2 where MDT
was assumed to be given respectively by

MDT1(p) = 20 + 60p (3.1) and MDT2(p) = 20 + 60p2 (3.2)

We built these datasets by selecting the values of p in the BC-SP dataset, and randomly generated
the values of DT based on equations (1) and (2). We assumed Dev to follow an exponential distribution
of parameter 20 and added a random noise following a normal distribution N (0, 1). Some outliers
(representing 0.1% of the total number of observations) were added following a uniform distribution in
the space (p,DT ). The corresponding points are plotted on Figure 10.

Figure 10: Fictitious test datasets. Left: eq (3.1), right: eq. (3.2)

We then applied the previous method to estimate the function MDT (p), taking window width
∆p = 0.005 and number of neighbors k = 5 (the choice of these parameters is discussed below). The
selected points and obtained estimated function are plotted on Figure 11. We define the estimation
error by the difference between the predicted value and the actual value (given by functions MDT1 and
MDT2). The error evolution with p is plotted on Figure 12.

We note that in both cases, the value of MDT is estimated with good accuracy when the observations
are dense enough, which is the case when the passenger flow p is not too high (p < 0.8). Beyond this
level, the lack of points makes the prediction inaccurate. Indeed, 99.9% of points fall within the range
p ∈ [0, 0.8].

The following method was used for tuning parameters k and ∆p. 100 observations p1, · · · , pn were
generated in the range p ∈ [0, 0.8] (the range p ∈ [0.8, 1] not being considered because, as previously
mentioned, it contains too few points for the results to be meaningful). The model was then trained on
the Test2 dataset and the predictions M̂DT made on these 100 observations compared with the actual
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Figure 11: Selected data and estimated MDT function on test datasets. Left: eq (2.1), right: eq. (2.2)

Figure 12: Error on estimated MDT function on test datasets. Left: eq (2.1), right: eq. (2.2).
Note that for p > 0.8, the lack of points make the prediction inaccurate.

value of MDT2. The Mean Absolute Error (MAE) was used as criterion:

MAE = 1
n

n∑
i=1
|MDT2(pi)− M̂DT (pi)| (7)

The values of MAE for different sets of parameters (∆p, k) are provided on the colormap of Figure 13.
Note that a variety of parameter sets provide satisfying results. In the sequel we used ∆p = 0.005 in
order to select a sufficient number of observations, and k = 5 as a compromise between a small value
(that would yield a curve with possibly many steep variations) and a large one (that would result in a
probably too smooth curve). However, some other choices of parameters would have suited as well.
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Figure 13: Colormap of MAE for various values of k and ∆p

Results on other real-world datasets
Station NO - PS EV - PS NO - SP EV - SP

Bécon-les-Bruyères 19111 0.68 19319 0.74
Colombes 24233 0.83 24199 0.91

Nanterre-Université 7592 0.66 7933 0.76
Sartrouville 7535 0.77 7723 0.83

NO: Number of observations, EV: ratio of explained variance

Table 5: Explained variance of the first principal component on other datasets
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Figure 14: Conditional cdf of dwell time given passenger flow
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