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 Abstract 12 

With increasing global warming awareness, layered double hydroxides (LDHs), 13 

hydrotalcites and their related materials are key components to reduce the environmental 14 

impact of human activities. Such materials can be synthesized quickly with high efficiency by 15 

using different synthesis processes. Moreover, their properties tunability is appreciated in 16 

various industrial processes. Regarding their physical and structural properties, such materials 17 

can be applied in environmental applications such as the adsorption of atmospheric and 18 

aqueous pollutants, the hydrogen production, or the formation of 5-Hydroxymethylfurfural (5-19 

HMF). After a first part dedicated to the synthesis processes of hydrotalcites, the present 20 

review reports on specific environmental applications chosen as example in various fields 21 

(green chemistry and depollution) that have gained increasing interest in the last decades, 22 

enlightening the links between structural properties, synthesis route and application using the 23 

lamellar materials. 24 
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 Introduction 25 

Layered double hydroxides, also called LDHs or anionic clays, are particular lamellar 26 

materials made of octahedral sheets composed of metallic cations in the center of the 27 

octahedra. These materials can be found in nature, and present the brucite (Mg(OH)2) 28 

structure with divalent cations M
II
 (Mg

2+
 or Cu

2+
 for example) partly substituted by trivalent 29 

cations M
III

 (such as Al
3+

 or Fe
3+)

. This partial substitution induces a positive charge deficit 30 

that is compensated by anions, such as carbonates, located in the interlayer space along with 31 

water molecules. The easily accessible interlayer is one of the sources of the anion exchange 32 

capacity of the compounds, and of its ability to capture and exchange anions. This 33 

characteristic is almost unique for inorganic materials, indeed clay minerals exhibit cation 34 

exchange capacity. Thanks to these characteristics, they are appreciated for their versatility, 35 

simplicity of tailoring and low cost. The general formula of LDHs can be described as 36 

follows: 37 

[M
II

1-xM
III

x (OH)2]
x+

[A
m-

x/m.nH2O]
x-

 38 

where M
II
 and M

III
 respectively represent the metallic divalent (Mg

2+
, Cu

2+
, Zn

2+
) and 39 

trivalent (Al
3+

, Fe
3+

) cations , A the compensating anion, and x and m depend on the 40 

substitution rate between M
II
 and M

III
 cations.  41 

Hydrotalcites are particular LDHs (characterized by a Mg:Al molar ratio of 3:1) in which 42 

magnesium is partly substituted by aluminum . Specific properties such as porosity and 43 

surface area can be tailored by varying the synthesis method and conditions, leading to a wide 44 

range of materials adapted to targeted applications. The structure can also be modified by 45 

changing the combination of the cations and the interlayer anions, in order to confer specific 46 

properties, (Homsi et al. 2017; El Rouby et al. 2018; Sheng et al. 2019; Wu et al. 2019a). 47 

LDHs can be synthesized by various techniques depending on the final requirements such 48 

as high crystallinity, low time and/or energy consuming reaction, and phase purity. The most 49 

common methods used to synthesize these materials are hydrolysis reaction, co-precipitation, 50 
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hydrothermal synthesis, steam activation, microwave irradiation, and sol-gel. These fast and 51 

environmental-friendly synthesis processes, combined to high sorption capacities, allow the 52 

use of hydrotalcites and derived materials in various applications, such as adsorption of 53 

various molecules (organic and inorganic pollutants or dyes for example) or catalytic 54 

processes (also thanks to the presence of strong basic sites). In particular, these materials have 55 

been intensively studied as catalysts and catalyst supports based on their specific 56 

physicochemical features. 57 

Mixed oxides, obtained from the calcination of the parent material, are most generally used 58 

in catalytic and environmental applications, due to the high temperatures required. The 59 

composition of the obtained oxides depend on the initial combination of M
II
 and M

III
 cations 60 

(El Rouby et al. 2018; Rahmanian et al. 2018; Sheng et al. 2019; Wu et al. 2019a), but also on 61 

the heating temperature and the targeted reaction (dehydration, dehydroxylation, removal of 62 

the interlayer anion, and oxide reformation). Considering the rising interest in using 63 

synthesized LDHs for various applications, this paper reviews the most common synthesis 64 

methods for their preparation and some chosen environmental applications (Fig1). Due to the 65 

wide panel of applications involving layered double hydroxides and LDH-derived materials, 66 

the list of applications here reported is not exhaustive. Moreover, certain applications have 67 

been already extensively reported in the literature and they could represent alone the subject 68 

of dedicated review articles (for example in the case of biodiesel production (Helwani et al. 69 

2009; Atadashi et al. 2013)). 70 
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1. Synthesis techniques for hydrotalcite-like compounds 89 

As previously explained, hydrotalcite (and more generally LDHs) can be of natural origin 90 

(alteration minerals) or synthetic. The advantages in synthesizing LDHs are the ability to 91 

finely tune the mineral properties in the view of a specific application, by finding the 92 

appropriate combination of reactants and the adapted M
II
/M

III
 molar ratio. The most important 93 

factors to be considered are the nature of the metallic cations, the pH, the temperature, the 94 

ageing time, and the preparation method. Several synthesis methods have been developed 95 

during the last decades, but this review summarizes only those most commonly used and 96 

described in the literature. 97 

 98 

1.1.  Co-precipitation method 99 

Co-precipitation is the most common method to synthesize LDHs. It consists in dissolving 100 

the inorganic salts in alkaline media, at constant or increasing pH. This reaction allows to 101 

control the morphology and particle size, depending on the supersaturation of the solution. 102 

Feitknecht reported for the first time in 1942 on the LDH synthesis by co-precipitation. [Mg-103 

Al-CO3] LDH was synthesized starting from diluted solutions of the reactants. The co-104 

precipitation synthesis process has been then studied years later by Gastuche et al. (1967) and 105 
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Miyata (1975, 1980) by modifying parameters such as the concentrations of the reactants and 106 

the washing conditions. They also introduced the control of the pH as a key parameter for the 107 

formation of LDHs. Several studies have been performed later, focusing on the substitution of 108 

the type of metallic cations in the structure of the LDHs, as shown by Sato et al. (1988), in 109 

order to obtain several LDH with different structural formulas (M
II
 = Mg

2+
, Ni

2+
 or Co

2+
 and 110 

M
III

 = Al
3+

 or Fe
3+

). Co-precipitation allows to finely tune the structure of the synthesized 111 

materials by controlling the M
II
/M

III
 molar ratios, the type of interlayer anion, the synthesis 112 

duration, the temperature, and the pH of the solution (Thevenot et al. 1989; Ulibarri 2001; 113 

Zhao et al. 2003; Kloprogge et al. 2004; Sharma et al. 2007; Klemkaite et al. 2011). 114 

Co-precipitation can be performed at low or high supersaturation conditions depending on 115 

the desired crystallization state, as long as the initial concentration of the reactants is above 116 

the saturation state of the solution (supersaturation conditions). In any case, the pH of the 117 

solution must be controlled: a pH value too low does not allow the complete precipitation of 118 

all metallic ions, while a too high value leads to the leaching of one or more metallic ions. 119 

Basic media are preferred in most cases, but the optimal pH depends mainly on the metal 120 

cations used. Fig2. presents the steps involved in the co-precipitation synthesis process. The 121 

co-precipitation method performed at low supersaturation conditions has been firstly 122 

documented in the ‘90s by Kannan et al. (1995). This technique is performed by the slow 123 

addition of solutions containing the divalent and trivalent cations in the appropriate molar 124 

ratio, before adding an aqueous solution of the chosen interlayer anion (Kannan et al. 2004; 125 

Climent 2004; Kloprogge et al. 2004; Kovanda et al. 2005a; Perez-Lopez et al. 2006; Sharma 126 

et al. 2007; Wang et al. 2011; Klemkaite et al. 2011; Balsamo et al. 2012). An alkaline 127 

solution is then added in order to fix the pH during the reaction and to promote the co-128 

precipitation of the two metal salts. This synthesis process has been well described by a 129 

schematic flow chart edited by El Rouby et al. (2018). The advantage of this method is the 130 



6 
 

possibility to control the charge density by keeping the pH constant under low supersaturation 131 

conditions by the addition of a mixture of NaOH and NaHCO3 or Na2CO3 (Sharma et al. 132 

2007; Wang et al. 2011; Klemkaite et al. 2011; Balsamo et al. 2012; Sheng et al. 2019; Li et 133 

al. 2019a). Materials obtained by co-precipitation at low supersaturation present a higher 134 

crystallinity than those obtained at high supersaturation conditions thanks to the continuous 135 

regulation of the pH of the synthesis solution. In the high supersaturation condition, the 136 

concentration of the solutions is continuously increased or the solution containing the 137 

dissolved salts is added to a solution containing a small excess of alkali bicarbonates. This 138 

process leads to the formation of less crystalline materials than low supersaturation method, 139 

but gives rise to a high number of small aggregates due to the interlayer confinement effect of 140 

the carbonate ions (Zhang et al. 2008; Abelló et al. 2010; Solovov et al. 2018). 141 

Co-precipitation synthesis can be considered as an efficient method to obtain crystalline 142 

materials, particularly thanks to the long synthesis duration time (several days), the controlled 143 

synthesis pH, and the addition of post treatments such as hydrothermal treatment for example 144 

(Kannan et al. 1995; Kloprogge et al. 2004). However, due to the large dimension of the 145 

obtained particles the specific surface area values (between 50-100 m².g
-1

) are lower than 146 

those obtained by sol-gel synthesis (150-200 m².g
-1

), and discussed later in this review 147 

(Aramendía 2002; Park et al. 2018). The substitution with other metallic cations, such as Fe, 148 

Zn, Cu, and Ni, as demonstrated by Gevers et al. (2019), add the possibility to modify the 149 

crystallite dimensions and influence the thermal stability of LDHs. Thermal treatments, such 150 

as hydrothermal treatment or microwave irradiation, can be performed to improve 151 

crystallinity and/or to reduce the synthesis time. Similar structures are then obtain even with 152 

shorter synthesis time (Climent 2004). This progress was reported by Tichit et al. (2002) by 153 

comparing microwave and hydrothermal treatments in co-precipitated hydrotalcites. The 154 

authors did not find any significant differences in the structural properties of the final 155 
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material, despite the shorter synthesis time that represent a clear advantage. The thermal 156 

treatment presents a significant impact on the structural properties of the materials: Othman et 157 

al. (2006) compared the effect of the hydrothermal treatment on hydrotalcites prepared by co-158 

precipitation and sol-gel methods. They showed that the specific surface area and pore sizes 159 

significantly increased in both cases, with a stronger impact on the samples synthesized by 160 

sol-gel. 161 

 162 

1.2.  Urea hydrolysis 163 

Urea is a weak Brönsted base highly soluble in water. It can be used as a precipitating agent 164 

instead of sodium hydroxide to increase the pH through its thermal decomposition. The slow 165 

decomposition, starting around 90°C, leads to an increase of the pH up to 10 (Costantino et al. 166 

1998; Yang et al. 2004). Since urea decomposes slowly, it leads to a lower degree of 167 

supersaturation. Moreover, prolonged hydrolysis results in the formation of CO3
2-

 anions in 168 

basic medium that act as interlayer anions. Therefore, urea enables an efficient pH control and 169 

the formation of mono-dispersed LDH materials with high crystallinity through a low-cost 170 

method (Adachi-Pagano et al. 2003; Yang et al. 2004; Zeng et al. 2009a; Xu et al. 2016; Park 171 

et al. 2018). The purity and crystallinity of hydrotalcite phases can also be optimized by 172 

tuning the M
II
:M

III
 molar ratio, the urea concentration, and the ageing time (Costantino et al. 173 

1998; Zeng et al. 2009a; Berber et al. 2013; Montañez et al. 2014; Zhang et al. 2014; Bian et 174 

al. 2016; Xu et al. 2016; Park et al. 2018). As an exemple, Berber et al. (2013) identified the 175 

optimal synthesis conditions to obtain uniform and highly crystalline hydrotalcite particles by 176 

using a urea/metallic cation molar ratio of 2, and 12h of ageing time at 120°C. Secondary 177 

phases have been observed with molar ratios lower or greater than 2, leading to lower 178 

crystallinity and specific surface areas of the materials. The main steps involved in 179 

hydrotalcite synthesis via urea hydrolysis are summarized in Fig3. 180 
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Most of the time, this technique is combined to others (in which urea is used only as a 181 

precipitating agent), such as co-precipitation or hydrothermal synthesis. The combination of 182 

urea hydrolysis and hydrothermal treatment has been well-documented by Berber et al. (2013) 183 

and Benito et al. (2006) in order to obtain uniform particles, but also by Rao et al. (2005) to 184 

find optimal Mg:Al molar ratios of 1:1 and 2:1 with uniform and small particles’ size. In the 185 

first article, microwave irradiation was used as heating source in the synthesis process, 186 

strongly shortening the synthesis time and the formation of pure and well-crystallized 187 

hydrotalcite phases presenting high specific surface areas. Further studies were performed by 188 

Montañez et al. (2014) by comparing the properties of mixed oxides obtained by calcination 189 

of a series of Ni-Al-Mg hydrotalcites synthesized, either by co-precipitation or by urea 190 

hydrolysis. Enhanced redox properties, larger pore sizes and smaller particles (interesting 191 

features in catalytic applications) were obtained on calcined samples prepared with urea 192 

hydrolysis. In general, the use of microwave irradiation allows to reduce the preparation time 193 

without to impact on the structural and physical properties. This methodology is of a great 194 

interest for the industrial scaling-up (Yang et al. 2007; Benito et al. 2008). Hibino and Ohya. 195 

(2009) combined urea hydrolysis with hydrothermal treatment in order to remove certain by-196 

products (i.e. hydrated magnesium carbonate hydroxide phases). Further studies have been 197 

performed by Kloprogge et al. (2006) to show the evolution of the intercalated species 198 

depending on the hydrothermal treatment: (NH2)COO
-
 tends to directly form after 199 

precipitation, but slowly transforms into carbonated species during the hydrothermal 200 

treatment. 201 

As a partial conclusion, urea hydrolysis is a slow reaction that leads to a low degree of 202 

supersaturation during the precipitation. It presents the advantage to provide large and thin 203 

platelets with a narrow particle size distribution in a shorter ageing time than  co-precipitation 204 

(Naseem et al. 2019). However, the decomposition of urea leads to the formation of CO2 that 205 
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reacts with water to form carbonates and acting as compensating anions (Thomas 2012). In 206 

this case, a further anion exchange may be required depending on the targeted application 207 

(Bish 1980; Iyi et al. 2004; Inayat et al. 2011). 208 

 209 

1.3.  Sol-gel method 210 

The sol-gel method is appreciated for its low cost, low energy and limited time consuming, 211 

for the possibility to obtain high purity materials, and for the possibility to tune their 212 

composition (Lopez et al. 1996; Paredes et al. 2006; Sharma et al. 2007; Ramos-Ramírez et al. 213 

2009; Lee et al. 2016). This process allows to control the structural properties of the final 214 

materials by simply varying the chemical nature of the reactants, the ageing time, and by 215 

removing/adding reactant species. This technique consists in dissolving the desired metal 216 

sources (inorganic salts or metal organic compounds) in water, at room temperature (Fig4.). 217 

The concentration of the metal cations can be varied to tune the substitution ratio of M
II
 and 218 

M
III

 cations and to obtain a wide range of materials (Corma et al. 1994; Valente et al. 2007, 219 

2009; Sharma et al. 2007). The appropriate amount of acid or base is then added to the 220 

reactants’ solution during hydrolysis to favor the condensation reaction. The solution is finally 221 

aged during several hours or days, at room temperature or lightly heated up to 100°C. Prince 222 

et al. (2009) proposed a general sol-gel method for the preparation of LDHs that can be 223 

adapted to obtain materials containing specific metallic cations and possessing a defined 224 

morphology in the view of a specific application. Ramos-Ramirez et al. (2009) also evidenced 225 

the formation of small amounts of brucite phase, in addition to hydrotalcite, with a Mg/Al 226 

molar ratio of 2 and explained this behavior by the similar structure of the two materials. 227 

Synthetic hydrotalcites can also be calcined and rehydrated without losing their lamellar 228 

structure. During regeneration, they show a “memory effect”, as evidenced by Climent et al. 229 

(2004) by using rehydrated sol-gel hydrotalcites for pharmaceutical applications. 230 
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Several parameters can be varied to improve the crystallinity (Kovanda et al. 2005b; 231 

Valente et al. 2009) of the particles, to modify their morphology (Valente et al. 2007, 2009, 232 

2010), and to enhance the surface area (Corma et al. 1994; Lopez et al. 1996, 1997a; Climent 233 

et al. 2004; Paredes et al. 2006; Valente et al. 2007; Prince et al. 2009). Parameters, as the 234 

composition of the aqueous media, the pH, and the ageing time, were considered (Corma et al. 235 

1994; Kovanda et al. 2005b). Lopez et al. (1997b) studied the impact of different alkoxides, 236 

such as magnesium (Mg(OEt)2) and aluminum (Al(NO3)3), used as reactants, on the thermal 237 

stability of a series of hydrotalcites. Most of the time, the comparison between the synthesis 238 

techniques and the parameters evidences the interest of using one or the other specific 239 

method, generally sol-gel or co-precipitation (Jitianu et al. 2000; Prinetto et al. 2000; 240 

Bolognini et al. 2003; Othman et al. 2006; Valente et al. 2007, 2010; Smalenskaite et al. 241 

2017). Smalenskaite et al. (2017) compared sol-gel and co-precipitation for the preparation of 242 

cerium-substituted Mg-Al LDHs; Othman et al.(2006) studied the impact of the thermal 243 

treatment on the structure of similar materials. In many cases, the sol-gel approach is 244 

preferred for its simplicity and the high quality of the materials obtained (Ramos et al. 1997; 245 

Othman et al. 2006; Valente et al. 2010; Lee et al. 2016; Smalenskaite et al. 2017). 246 

The sol-gel synthesis method is appreciated for its high reproducibility, the high 247 

homogeneity and purity of the obtained compounds, the small size of the particles (nanoscale) 248 

and their high specific surface area (Prince et al. 2009; Smalenskaite et al. 2017; Valeikiene et 249 

al. 2019). However, lower crystallinity is generally observed through this synthesis route 250 

(Smalenskaite et al. 2017). Often and depending on the final application of the materials, 251 

additional steps such as sonication, microwave irradiation (Benito et al. 2006) or 252 

hydrothermal treatment are required. 253 

 254 

1.4.  Hydrothermal treatment 255 
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As previously reported, the synthesis of LDHs by co-precipitation, sol-gel method or urea 256 

hydrolysis can be optimized by hydrothermal treatment in order to improve the crystallinity 257 

and the size of the crystallites (Kloprogge et al. 2004; Sharma et al. 2007). The treatment 258 

generally occurs under mild hydrothermal conditions, up to 200°C, autogenous pressure, with 259 

durations between hours to several days. Fig5. displays the hydrothermal synthesis process. 260 

Besides the improvement of the crystallinity, hydrothermal synthesis can be directly used as 261 

a synthesis method, in order to form LDH phases with increased particle sizes. It consists in 262 

dissolving the metallic salts into a solvent (generally water) before putting the solution into a 263 

stainless-steel reactor and heating under hydrothermal conditions, generally under medium 264 

temperatures (30-300°C) and steam pressure, with different synthesis times (few hours to 265 

several days) (Xu and Lu 2005; Liao et al. 2012; Bontchev et al. 2003; Bankauskaite and 266 

Baltakys 2011; Lin et al. 2019; Budhysutanto et al. 2010; Roelofs et al. 2001; Jang et al. 267 

2014). Several reactants such as inorganic salts and minerals can be used as metal sources. 268 

Most commonly, metal oxides and hydroxides (Xu and Lu 2005; Budhysutanto et al. 2010; 269 

Jang et al. 2014; Labuschagné et al. 2018) or nitrate salts (Roelofs et al. 2001; Bontchev et al. 270 

2003; Lin et al. 2019) are used as reactants, but other sources can be used: Ogawa et Asai 271 

(2000) used for example natural minerals (brucite and gibbsite) as starting materials to 272 

intercalate organic guests. Liao et al. (2012) also used natural brucite and Al(OH)3 as 273 

synthesis reactants to study the morphology and structural properties of hydrotalcites obtained 274 

under different synthesis conditions. 275 

Like for the other synthesis techniques, the Mg:Al molar ratio and the interlayer anions can 276 

be modified in order to obtain a wide range of hydrotalcites and LDHs with different 277 

structural properties. Bontchev et al. (2003) studied the impact of several interlayer anions 278 

(Cl
-
, Br

-
, I

-
, NO3

-
) on the physico-chemical characteristics of hydrotalcites. Moreover, this 279 

study showed the possibility to mix two different types of compensating anions to finely tune 280 
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the properties of these compounds. The hydrothermal synthesis of hydrotalcites with different 281 

soluble and insoluble magnesium and aluminum reactants in water has been studied by 282 

Bankauskaite and Baltakys (2011), with a fixed Mg:Al molar ratio of 3:1. The non-formation 283 

of hydrotalcite phases was observed in the presence of certain reactants. It was demonstrated 284 

that alumina and magnesium aluminum hydroxide were preferentially formed when using 285 

4MgCO3.Mg(OH)2.5H2O, even after 24h of hydrothermal treatment at 200°C. The choice of 286 

the appropriate metal salts is the most important parameter to be considered. More recently, 287 

the impact of the synthesis temperature (from 35 to 140°C) has been tested by Lin et al. 288 

(2019) to synthesize CuZnAl hydrotalcite-like catalysts for arsine abatement. The authors 289 

concluded on a significant influence of the synthesis conditions on the arsine removal 290 

efficiency without clear explanation. The problem comes from the multiplicity of the 291 

parameters varied during the synthesis of the catalysts (temperature, calcination, time, molar 292 

ratios), making the results difficult to interpret. The most recent studies focus on the green 293 

synthesis of hydrotalcites and derived materials for environmental concerns, as demonstrated 294 

by Labuschagné et al. (2018) by using untreated magnesium oxide and aluminum hydroxide 295 

for hydrothermal dissolution/precipitation in water.  296 

The advantages of using this synthesis process as additional treatment are the higher LDH 297 

crystallinity, crystallites dimension, and purity of the samples (Kovanda et al. 2005b; Sharma 298 

et al. 2007). In general, a higher content of hydrotalcite is observed by increasing the 299 

preparation temperature and the time of the hydrothermal treatment (Kovanda et al. 2005b). 300 

Unfortunately, the energy required to heat-up the solution and the long synthesis time (from 301 

hours to days) represent drawbacks for the industrial implementation of the hydrothermal 302 

treatment. 303 

 304 
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The recent advancements and progresses on the synthesis methodologies have been 305 

reviewed in this section. Moreover, each synthesis method has been detailed in order to 306 

enlighten the advantages and drawbacks in terms of structural and textural properties. The 307 

modulation of these features is crucial to drive the performances towards specific 308 

environmental and industrial applications. Table 1 lists the positive and negative impacts of 309 

the various synthesis routes on the structural and textural properties of LDHs. 310 

 311 

2. Use of hydrotalcites and derived materials in environmental applications 312 

The depletion of fossil fuels and their environmental impacts (global warming, pollution, 313 

health concerns…) are currently boosting the studies on alternative solutions and clean 314 

synthetic routes for the production of non-fossil carbon sources.  Recent international 315 

conventions agreed to the Kyoto Protocol and intended to reduce by 2050 the global 316 

emissions up to 50-60% (of those measured in 2006). The necessity in finding alternative 317 

environmental applications based on easy-to-use materials becomes more than urgent. Several 318 

reactions can be performed on layered materials, but their low thermal stability makes their 319 

implementation difficult. Clay minerals are generally stable up to 200°C due to the loss of the 320 

interlayer water and the consequent irreversible degradation of the structure at temperatures 321 

higher than 200°C. The presence of specific metal elements in the structure of the LDHs can 322 

enhance their catalytic properties, depending on the applications, as mentioned by Xu et al. 323 

(2011). Moreover, due to their composition (mainly metallic cations), LDHs can be calcined 324 

to form mixed oxides presenting enhanced catalytic properties. Even if much more 325 

environmental related processes can be carried out in presence of lamellar materials, only few 326 

of them are discussed in this review. Some specific environmental application covering 327 

various technological fields have been chosen to be reported in the present review article such 328 

as the adsorption/decomposition of gaseous pollutants (CO2, NOx, and SOx adsorption, and 329 
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elimination of VOCs), the adsorption of pollutants in aqueous media (as the adsorption of 330 

heavy metals and dyes), and the production of green energy vectors and/or chemical building 331 

blocks (hydrogen production and formation of 5-hydroxymethylfurfural). 332 

 333 

2.1.  Adsorption of atmospheric pollutants 334 

2.1.1. CO2 adsorption – Capture and storage 335 

Among the possible uses of hydrotalcite-like compounds and their derived mixed-oxides, 336 

CO2 adsorption gains interest. Methods for safely control and dispose of carbon dioxide 337 

emissions are widely studied in the last few years, mainly due to the increase of consciousness 338 

in climate changes (Wang et al. 2017). Among all the emitted greenhouse gases, the 339 

contribution of carbon dioxide to global warming has been estimated to more than 60%. For 340 

example, steam reforming of hydrocarbons (Marquevich et al. 2001; Ashok et al. 2008; Li et 341 

al. 2011), that is the most suitable process for hydrogen production, releases high amounts of 342 

carbon dioxide. Considering the large field of materials tested for CO2 capture and storage, 343 

zeolites, hydrotalcite and LDH-derived mixed oxides are widely studied thanks to their high 344 

surface area, pore structure, and charge density (Mao and Tamaura 1993; Tsuji et al. 1993; 345 

Yong et al. 2002; Wang et al. 2010; Dantas et al. 2015; Yang et al. 2019). Several reviews on 346 

CO2 adsorption explain that an appropriate adsorbent should satisfy several criteria such as (1) 347 

low-cost materials, (2) fast kinetics, (3) high adsorption capacity and selectivity, and (4) 348 

thermal and chemical stability towards several cycles (Yong et al. 2002; León et al. 2010; 349 

Wang et al. 2017; Yang et al. 2019). The adsorption of CO2 requires materials with large 350 

specific surface area, but also a high number of accessible basic sites. Regarding the synthesis 351 

method adapted to this application, a high number of active sites and large particles are 352 

required for better adsorption efficiency. Thus, the co-precipitation method represents the best 353 

solution to reach these requirements, especially when the LDHs structure is modified by the 354 
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addition of metal cations. The higher the energy of active sites, the stronger CO2 interacts 355 

with the sites and remains trapped. Recently, zeolites are reported as efficient CO2 adsorbents 356 

thanks to their size, charge density, and tunable chemical composition (Jiang et al. 2018; Yu 357 

et al. 2018). Hydrotalcite-based materials are thereby interesting alternative materials to 358 

zeolites, as their chemical composition can also be finely tuned. CO2 adsorption performed on 359 

these materials is a natural phenomenon, as hydrotalcite can adsorb carbon dioxide thanks to 360 

the reaction of atmospheric CO2 with the compensating ions present in the interlayer space. 361 

This has been evidenced by Ishihara et al. (2013) by intercalating 
13

C carbonate anions in the 362 

hydrotalcite structure. They were exchanged with carbonate anions derived from atmospheric 363 

CO2 within 1 day, showing the dynamism of the carbon cycle in nature. Moreover, these 364 

materials can be regenerated several times, without losing their adsorption capacity and 365 

selectivity towards CO2, are hydrothermally stable, and lead to fast sorption kinetics. A huge 366 

amount of studies has been performed on these materials in order to find the most efficient 367 

preparation route for CO2 capture, such as impregnation of commercial hydrotalcites (Bhatta 368 

et al. 2015), synthesis of tunable Mg/Al hydrotalcites (Tsuji et al. 1993; Moreira et al. 2006; 369 

Dantas et al. 2015), and mixed oxides derived from hydrotalcites (León et al. 2010; Gao et al. 370 

2013; Radha and Navrotsky 2014; Colonna et al. 2018). Table 2 summarizes the synthesis 371 

conditions, the specific surface area, and the CO2 adsorption capacity of the LDHs and related 372 

mixed oxides. It shows that the surface area is strongly linked to the CO2 adsorption capacity: 373 

a higher surface area is related to an increase in the sorption capacity. 374 

The preliminary studies of CO2 adsorption by hydrotalcite, layered double hydroxides and 375 

related materials have been performed by Mao and Tamaura (1993) by varying the 376 

M(II)/M(III) molar ratio and consequently the layer charge of the synthesized hydrotalcites. 377 

The composition tuning resulted in a wide range of materials capable of chemically adsorb 378 

CO2 with different adsorption capacities (from 0.4 to 1.5 mmol.g
-1

). The same year, Tsuji et 379 
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al. (1993) synthesized various LDHs by changing the M(II) cation nature. The selectivity 380 

towards carbon dioxide adsorption depended on the cation in the following order: Cu-Al ~ 381 

Zn-Al < Co-Al < Mg-Al < Ni-Al, and was related to the thermal behavior of the various 382 

compounds. Moreover, the sorption capacities of these materials have been drastically 383 

increased by removing the carbonate counterions in the Mg-Al and Co-Al LDHs. Several 384 

years later Wang et al. (2010) studied substitution of divalent metal cations M(II) by trivalent 385 

metal cations M(III) (Al
3+

, Ga
3+

, Fe
3+

 and Mn
3+

) in CO2 adsorption at high temperature, 386 

performed on calcined samples. 387 

Few years after Tsuji et al. (1993), the studies about CO2 adsorption were mainly focused 388 

on industrial applications and enlightened the influence of structural parameters derived from 389 

the thermal treatment of LDHs, leading to the formation of related mixed oxides. Ram Reddy 390 

et al. (2006) showed that, depending on the applied treatment temperature, the samples 391 

exhibited different sorption capacities and reversibility. The highest sorption capacities were 392 

observed on samples pretreated at 400°C and a sorption temperature of 200°C, leading to CO2 393 

adsorption of 0.486 mmol.g
-1

. The pretreatment conditions showed also an impact on the 394 

regeneration behavior (cycling studies). Two years later, the same team (Ram Reddy et al. 395 

2008) studied high-temperature CO2 adsorption in industrial conditions. An increase of the 396 

sorption efficiency was observed, from 0.61 to 0.71 mmol.g
-1

, in presence of dry and wet CO2 397 

respectively, with more than 90% of the original capacity recovered by regeneration. Dadwahl 398 

et al. (2008) reported on the influence of the particle size on CO2 adsorption, and analyzed the 399 

formation of large particles by co-precipitation. Mixed oxides generally exhibit higher 400 

sorption capacities due to the higher specific surface area than the fresh samples, but the 401 

analysis conditions (sorption temperature, mixture of gas, etc…) affect the CO2 adsorption 402 

capacities in the same way than on non-calcined samples, as demonstrated by León et al. 403 

(2010). The obtained capacities, in the 0.58-1.15 mmol.g
-1

 range at 50°C, and 0.40-0.84 404 



17 
 

mmol.g
-1

 range at 100°C, depend on the pretreatment temperature, 450 or 700°C respectively. 405 

Regarding the reversibility of these materials, the co-precipitation method at high 406 

supersaturation conditions is more adapted than that at low supersaturation, due to the 407 

formation of weaker basic sites for the latter. As previously explained, Wang et al. (2010) 408 

studied the influence of M(III) cation type towards high-temperature CO2 adsorption on 409 

calcined samples at different temperatures, from 250 to 400°C. Different phases have been 410 

observed depending on the calcination temperature: MgFe2O4 and MgMnO4 with coexistence 411 

of MgO with the appropriate M(III) cations, whereas only MgO phases have been observed in 412 

MgAl and MgGa LDHs. Moreover, the M(III) cation nature did not affect the sorption 413 

capacity (around 0.4 mmol.g
-1

), except for the calcined MgGa LDH  that gave lower values of 414 

CO2 sorption capacity due to its lower thermal stability. Gao et al. (2013) discovered the 415 

optimal parameters to obtain hydrotalcites with improved CO2 adsorption capacity: synthesis 416 

by co-precipitation method, at high supersaturation conditions, with a Mg/Al molar ratio 417 

between 3 and 3.5, and a pre-calcination temperature of 400°C (The CO2 adsorption 418 

measurements were performed during 5 hours at 200°C). The operating conditions 419 

(temperature and pressure) impact the adsorption capacity of CO2
 
too: Ramirez-Moreno et al. 420 

(2014) stated that high pressures (up to 4350 kPa) and temperatures (30-350°C) are related to 421 

higher CO2 adsorption levels, with a maximum value of 5.76 mmol.g
-1

 measured at 300°C 422 

and 3450 kPa. Higher values can be reached at higher temperatures and pressures, and related 423 

to structural changes in the LDHs framework (formation of magnesium oxides and periclase 424 

for example). 425 

The most recent researches focus on modifications of the structure of LDHs synthesized by 426 

co-precipitation in order to increase their CO2 adsorption capacity. Similar to simple ion-427 

exchange reaction, the potassium impregnation consists in putting the synthesized materials 428 

into a solution with a defined concentration of potassium salt during few hours, followed by 429 
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the washing of the salt excess. K2CO3 impregnation seems to increase the number of surface 430 

active sites despite a decrease in the specific surface area. This impregnation leads to high 431 

adsorption capacities, as demonstrated by Bhatta et al. (2015): values up to 1.10 mmol.g
-1

 at 432 

300°C for the initial sorption cycle, and of 0.42 mmol.g
-1

 for the following 9 cycles of 433 

adsorption/desorption were measured. Polymers addition can modify the textural properties of 434 

layered materials and contribute to the enhancement of the CO2 sorption capacity, as showed 435 

by Dantas et al. (2015) by the addition of a co-polymer that increased the CO2 uptake from 436 

0.72 to 1.36 mmol.g
-1

. Tang et al. (2018) increased the basal spacing of LDHs by exchanging 437 

anions with dodecylsulfonate ions in order to chemically graft (3-aminopropyl)triethoxysilane 438 

(APS) and enhance the CO2 sorption capacity (up to 2.09 mmol.g
-1

 at 50°C). The presence of 439 

amino groups in the interlamellar space strongly contributed to the capture of carbon dioxide 440 

through the zwitterion mechanism and weak bonding. By optimizing the synthesis parameters, 441 

Thouchprasitchaia et al. (2018) obtained a series of calcined teraethylenepentamine (TEPA)-442 

supported hydrotalcites. At first, increasing the TEPA loading led to higher adsorption 443 

capacities, explained by the availability of more basic sites with a higher affinity for CO2. A 444 

too high TEPA content resulted in the decrease of the sorption capacity due to the steric 445 

hindrance of TEPA that blocks the access of CO2 to the sorption sites. 446 

Among the large panel of industrial applications, sorption enhanced reactions processes 447 

(SERP) gained huge interest in the last decade, especially thanks to novel modifications 448 

introduced into LDHs structure. SERPs have been developed for the efficient conversion of 449 

methane to hydrogen. The main drawback of this process is the formation and release of large 450 

amounts of CO2, then materials with high carbon dioxide sorption capacity are crucial for this 451 

application. The first amine modifications of LDHs for CO2 adsorption performance towards 452 

SERP applications have been performed by Wang et al. (2012b, a) via two different routes: 453 

anionic surfactant-mediated synthesis and exfoliation. In the first case, low CO2 adsorption 454 
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capacities (up to 0.6 mmol.g
-1

) have been recorded, mainly due to the presence of Sodium 455 

Dodecyl Sulfate (SDS) in the interlayer space. SDS can be then removed using 456 

monoethylamine extraction (ion exchange reaction), leading to higher sorption values 457 

(between 1.15 and 1.4 mmol.g
-1

) (Fig6.). On the opposite, the exfoliation route in the presence 458 

of toluene allows to graft amine groups on the surface of LDHs giving high sorption 459 

capacities towards CO2 (around 1.7 mmol.g
-1

 at 80°C). The two studies underline the 460 

importance of the interlayer space in LDHs: sodium dodecyl sulfate and aminosilanes 461 

molecules present in this area cover the main part of the basic sites involved in the CO2 462 

adsorption, consequently lowering the sorption capacity. It is important to consider the steric 463 

hindrance when considering lamellar materials. Most of the time, K-promoted hydrotalcites 464 

are interesting adsorbents in SERP, as the potassium presence leads to sorption capacities 465 

higher than 1 mmol.g
-1

, as demonstrated by Wu et al. (2013). Moreover, the adsorption 466 

capacity and kinetics were not affected even after 10 cycles, which is interesting for SERP 467 

applications. Coenen et al. (2017b, a) also published about K-promoted hydrotalcites in a 468 

series of publications for sorption-enhanced water-gas shift. This article points out the 469 

importance of chemisorbed CO2 and H2O, strongly linked to the specific adsorption sites. The 470 

presence of four different adsorption site types was identified: two site types with high 471 

affinity for CO2, one for H2O and one on which CO2 and H2O can competitively adsorb. The 472 

CO2 adsorption sites can be easily regenerated in presence of N2, and the cycling is favored at 473 

high temperatures. In the most recent study of the same group (2018), the adsorption 474 

processes were studied by infrared spectroscopy, showing once again the presence of the four 475 

types of adsorption sites. The presence of water molecules enables the decomposition of the 476 

strong bonds with carbonate sites, ameliorating the cycling behavior. The comparison 477 

between LDHs and zeolites has been recently performed by Megías-Sayago et al. (2019) and 478 

the importance of the surface area was evidenced. While zeolites exhibited surface areas 479 
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around 360 m².g
-1

 and adsorb CO2 up to 1.142 mmol.g
-1

, MgAl and CaAl LDHs presented 480 

lower specific surface areas (50 and 21 m².g
-1

) and adsorb carbon dioxide up to 0.68 and 0.10 481 

mmol.g
-1

, respectively. 482 

Table 3 and Fig7. display the CO2 adsorption capacities of various LDHs reported in the 483 

literature. Non-modified materials exhibit values between 0.5 and 1 mmol.g
-1

, while modified 484 

LDHs present much higher values, up to 6.1 mmol.g
-1

. 485 

 486 

As demonstrated by various studies, LDHs are interesting alternatives to zeolites and 487 

activated carbons for CO2 adsorption and storage. Adsorption capacities between 0.5 and 6 488 

mmol.g
-1

 could be measured depending on the structural modifications, the pre-treatments 489 

performed prior the adsorption, and the configuration of the adsorption experiments 490 

(operating temperature and pressure, gas composition, time of adsorption). Older papers 491 

stated on the optimal synthesis conditions and co-precipitation performed at high-492 

supersaturation seems to be the most adapted method. More recent researches focus on 493 

sorption-enhanced reaction processes, due to the needs of minimize the release of CO2 while 494 

producing hydrogen from methane. Regarding the synthesis process, co-precipitation allows 495 

to obtain large and crystalline particles, increasing the amount of basic sites that are required 496 

to reach large amounts of CO2 adsorbed. The calcination of such materials leads to the 497 

formation of mixed oxides with higher surface areas, and consequently an increased number 498 

of basic sites. One of the most important parameter to take into account in this application is 499 

the specific surface area that is strongly related to the CO2 adsorption capacity. Moreover, 500 

Table 2 evidences slightly higher adsorption capacities for the materials synthesized by co-501 

precipitation at high supersaturation conditions than for those prepared at low supersaturation 502 

conditions, except in the samples modified with TEPA (up to 6 mmol.g
-1

), as shown by 503 
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Thouchprasitchaia et al. (2018). However, the commercial hydrotalcite tested by Wu et al. 504 

(2013) exhibits similar adsorption capacities than the modified LDHs. 505 

 506 

2.1.2. NOx and SOx adsorption 507 

Among the wide family of atmospheric pollutants, nitrogen and sulfur-based molecules are 508 

emitted from power plants, petroleum refinery, and vehicle engines (Yang et al. 2014). 509 

Nitrogen oxides (NOx) and Sulfur oxides (SOx, a mixture of SO2 and SO3) are released into 510 

the atmosphere with exhausted gases, causing environmental and climatic concerns such as 511 

acid rains, photochemical smog and human diseases (asthma for example) (Corma et al. 1997; 512 

Yu et al. 2006; Yang et al. 2014; Wang et al. 2018). The control of these emissions is 513 

becoming mandatory due to the increased awareness towards the climate change. Moreover, 514 

several laws and strict regulations have been put into place in the last decade, and encourage 515 

researches on more efficient ways to reduce them. Several depollution processes have been 516 

developed with good results, such as the direct decomposition (Yokomichi et al. 1996; 517 

Imanaka and Masui 2012; Gunugunuri et al. 2018; Gunugunuri and Roberts 2019), adsorption 518 

(Mahzoul et al. 1999; Sedlmair et al. 2003; Atribak et al. 2009), Selective Catalytic Reduction 519 

(SCR) (Lukyanov et al. 1995; Forzatti et al. 2010; Gao et al. 2018; Gramigni et al. 2019; Wu 520 

et al. 2019b; Li et al. 2019b), and NOx Storage and Reduction (NSR) (Castoldi et al. 2006; 521 

Breen et al. 2008; Sakano and Kawamura 2018; Umeno et al. 2019). LDHs are interesting due 522 

to their efficiency in a wide range of application, as catalysts and adsorbents. In recent years, 523 

hydrotalcite-like compounds have exhibited good NOx and SOx adsorption capacities. This 524 

chapter is dedicated to the adsorption and removal of these atmospheric pollutants by LDHs 525 

and related mixed oxides; the synthesis conditions of each LDH are reported in the Table 4 526 

with the associated structural modifications. 527 

  528 
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The most important part of the emitted NOx comes from the Fluid Catalytic Cracking 529 

(FCC) method employed by refinery processes to convert heavy distillates into lighter ones, 530 

such as gasoline and diesel. In this process, the catalyst gets progressively covered with coke 531 

and needs to be reactivated by burning and oxidizing the coke in a regenerator unit, NOx is 532 

here produced (Chaparala et al. 2015). The catalysts are reactivated by reduction at 750°C, so 533 

most of the studies are focused on experiments under these conditions. The storage and 534 

catalytic reduction of NOx compounds on the surface of LDH catalysts occurs firstly on the 535 

catalytic sites to form nitrites and nitrates, as shown in Fig8, and according to the following 536 

reactions (Guo et al. 2018): 537 

 NO + Co
3+

 - O
2-

 → Co
2+

 - (ONO
-
) formation of nitrite 538 

 NO2 + Co
3+

 - O
2-

 → Co
2+

 - (ONO2
-
) formation of nitrate 539 

Nitrites are unstable on the active sites and are then oxidized to nitrate in the presence of O2 540 

or decomposed via the following reactions: 541 

 2NO2
-
 + O2 → 2NO3

-
 by direct oxidation 542 

Co
2+

 - (ONO
-
) → Co

3+
 - O

2-
 + NO by decomposition 543 

2Co
2+

 - (ONO
-
) → 2Co

3+
 - O

2-
 + N2 + O2 by decomposition 544 

The stored NOx is finally converted to N2 and H2O by reacting with H2 at 350°C: 545 

 2NO
3-

 + 5H2 → N2 + O
2-

 + 5H2O 546 

 2NO
2-

 + 3H2 → N2 + O
2-

 + 3H2O 547 

The first catalytic removal of NOx using copper-containing LDHs-derived mixed oxides 548 

has been reported in the late 90s by Corma et al. (1994). The possibility to incorporate the 549 

catalyst in the FCC units was explored, because NOx can be decomposed by the catalyst 550 

reduced under a reductive atmosphere at 550°C, conditions close to those present in the 551 

regenerator unit of a FCC plant. The simultaneous removal of NOx and SOx in conditions 552 

close to those of the regenerator unit was investigated: Cu-mixed oxides derived from 553 
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hydrotalcite showed to be able to remove both SO2 (via an oxidation or reduction reaction) 554 

and NO (via reduction and/or decomposition) at the same time in the presence of small 555 

amounts of O2 (between 0 and 1.5%). Doping the catalysts with transition metals, such as 556 

cobalt, is of great interest on the storage capacity of NOx in hydrotalcites; Palomares et al. 557 

(1999) studied the catalytic activity of CoMgAl mixed oxides derived from hydrotalcites. 558 

Besides increasing the surface area by addition of cobalt, the authors concluded that in 559 

presence of O2 (up to 1%) the catalyst is able to efficiently remove the atmospheric pollutants. 560 

In presence of oxygen in the feed and at 750°C, cobalt-containing materials showed to be 561 

more selective towards NO reduction than Cu-based compounds. Almost 100% of NO 562 

conversion was reached in less than 50s and remained stable during time. Yu et al. (2006) 563 

prepared a range of CoxMg3-x/Al hydrotalcite-like compounds, where x varied from 0 (pure 564 

MgAl hydrotalcite) to 3 (pure CoAl hydrotalcite). Despite the decrease of the specific surface 565 

area while increasing the cobalt content, the results showed that higher storage capacities of 566 

NOx were reached at low temperatures with mixed oxides of intermediate Co concentrations 567 

(0.22 mmol.g
-1

 at 100°C for x = 0.5). The pure phases exhibited the lowest storage capacities, 568 

around 0.14 mmol.g
-1

 for MgAl and CoAl hydrotalcites. These results are explained by the 569 

increase in the pore size, from 11.6 nm in the pure MgAl mixed oxides to 24.8 nm for the 570 

samples with the highest cobalt concentration. Similar experiments were performed the next 571 

year by the same team (Yu et al. 2007) with two catalysts: Ca2CoAl-oxide and 572 

Ca2CoLa0.1Al0.9-oxide, derived from their LDH precursors. NOx storage capacities up to 0.65 573 

mmol.g
-1

 at 250°C were measured. Noble metals such as platinum, palladium and ruthenium 574 

have also been intensively studied towards the storage of NOx due to their high catalytic 575 

redox properties. Cheng et al. (2004) worked on Pt/MgAl oxides: MgAl oxides supports with 576 

different molar ratios were obtained by calcination of hydrotalcites, while platinum cations 577 

were incorporated by incipient wetness impregnation. The authors concluded that by 578 
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increasing the Mg/Al molar ratio in the initial hydrotalcites, the stored amount of NOx at 579 

350°C was enhanced. Moreover, the addition of platinum as active phase greatly improved 580 

the NOx storage capacity (from 0.06 to 0.50 mmol.g
-1

). NOx are stored as nitrates that are 581 

more stable over Pt/Mg oxides than over Pt/MgAl oxides. A similar approach has been 582 

performed by Silletti et al. (2006) with Pd/MgAl oxides. Additional adsorption sites were 583 

created, bringing to an increase of 70% in the adsorption capacity, when compared to the 584 

MgAl oxides (according to the reaction PdO(s) + NO2 → Pd(NO3)(s)). Finally, RuMgAl oxides 585 

have been reported by Li et al. (2007) and exhibited good performances, with a maximum 586 

storage capacity of 0.22 mmol.g
-1

 at 350°C. 587 

The most recent researches focus on low temperature storage and release of NOx between 588 

150 and 300°C, as reported by Cui et al. (2019) with manganese-doped mixed oxides derived 589 

from hydrotalcite precursors. The incorporation of manganese provokes changes in the crystal 590 

phases with formation of Mn3O4 and MgMn2O4 spinel besides brucite. These changes result 591 

in the increase of the surface area (from 108 to 139 m².g
-1

) and of the pore size (from 14 to 23 592 

nm), while the presence of manganese favors the oxidation of NO during adsorption. The 593 

largest adsorption capacity of 0.426 mmol.g
-1

 at 300°C was obtained in the presence of 15 594 

wt% of Mn, as reported in Fig9. The efficiency of LDHs containing various metallic elements 595 

towards the adsorption of NOx pollutants has also been reported by Li et al. (2019b) on a 596 

novel NiMnTi mixed oxide, showing high surface area and strong reducibility, resulting in 597 

strong surface acidity. Moreover, manganese, nickel and titanium give interesting redox 598 

properties to LDHs and gained interest in the last years (Wang et al. 2018; Wu et al. 2019b; Li 599 

et al. 2019b). The recent study performed by Kameda et al. (2019) presents another approach 600 

on the adsorption of NOx. The employed catalysts were fresh MgAl hydrotalcites that could 601 

be simply recycled by anion desorption in a solution of Na2CO3. Low NO removal rate was 602 
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observed, but the removal of NO2 was possible, and stable at around 50% removal degree, 603 

during 3 cycles. 604 

Concerning SOx removal for industrial applications, several patents are related to the use of 605 

hydrotalcites in FCC units (Pinnavaia et al. 1991, 1992; Vierheilig 2003). These compounds 606 

are emitted during the oxidative regeneration process of the catalysts at 700-800°C. The 607 

general FCC process applied to the SOx removal is schematized in Fig10. Regarding the 608 

process conditions, several requirements are needed to trap SOx (Mathieu et al. 2013): (1) a 609 

high thermal stability of the adsorbent under FCC conditions, (2) the ability to oxidize SO2 to 610 

SO3, (3) the possibility to regenerate the adsorbent under a reductive flow of H2 to release 611 

sulfur as H2S, (4) the possibility to strongly chemisorb SOx in the regenerator unit, and (5) the 612 

absence of negative impact of the adsorbent on the conversion and selectivity of FCC 613 

products. LDHs and hydrotalcites can answer to these requirements: they have the ability to 614 

form mixed oxides of the desired elements, stable at high temperatures, and are able to be 615 

regenerated in water. The catalytic activity of such compounds strongly depends on the 616 

surface area (related to the number of active sites) and on the type of metallic cation 617 

employed (for their ability to react with SOx compounds) (Cantú et al. 2005; Valente and 618 

Quintana-Solorzano 2011; Mathieu et al. 2013). The first experiments, focused on MgO, 619 

Al2O3 and MgAl spinels derived from pure MgAl hydrotalcites, showed very low 620 

performances; MgO forms stable MgSO4 compounds and Al2O3 forms Al2(SO4)3 that is very 621 

unstable at these temperatures, leading to the release of sulfate species in the regenerator (Yoo 622 

et al. 1992). Three basic reactions are involved in the removal of SOx in the FCC regenerators 623 

(Yoo et al. 1992): 624 

(1) SO2 + O2 → SO3 625 

(2) SO3 + MgO → MgSO4 626 

(3) MgSO4 + 4H2 → MgO + H2S + 3H2O 627 
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Based on these equations, several oxides derived from hydrotalcites and LDHs have been 628 

tested in the last decade. The most studied samples were prepared by addition of transition 629 

metals similar to those used in the NOx removal processes. Cantú et al. (2005) reported for 630 

example on mixed oxides derived from MgAlFeCe hydrotalcites. Despite the lower surface 631 

area and low SO2 adsorption capacity, the oxides containing iron and cerium presented an 632 

interesting resistance to deactivation. The addition of cerium increased the adsorption rates 633 

and reduced the saturation times, while a limited amount of iron improved the catalytic 634 

regeneration of SOx adsorbents. A similar study was then performed by Valente and 635 

Quintana-Solorzano (2011) in partial and full combustion conditions (used for regeneration). 636 

The performances of mixed oxides derived from MgAlFeCe hydrotalcites were compared to 637 

those of a commercial catalyst. Hydrotalcites showed a lower deactivation rate and the 638 

necessity to use 33% less material than the commercial catalyst. However, only very few 639 

recent papers report on the adsorption and removal of SOx by LDHs-based materials. The 640 

most recent researches focus on catalysts capable of simultaneously adsorb SOx and NOx 641 

(Kameda et al. 2011, 2019a, 2020). 642 

 643 

NOx and SOx are dangerous compounds formed during the regeneration process of the 644 

catalysts employed in the FCC units. Due to their toxicity, their removal has been widely 645 

studied. Hydrotalcites and mixed oxides derived from LDHs, in particular those containing 646 

transition metals (copper or cerium) or noble metals (platinum, palladium or ruthenium) have 647 

been considered for this application. High specific surface area, large pore sizes and improved 648 

catalytic properties have been obtained by the addition of metallic cations, leading to 649 

interesting results in NOx and SOx adsorption in regeneration conditions (around 750°C 650 

under a reducing atmosphere). Co-precipitation was the most widely used synthesis method 651 

for LDHs, allowing to obtain high specific surface areas, pore sizes and a high number of 652 
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active sites. Higher adsorption capacities were reached with co-precipitated LDHs (0.10-0.65 653 

mmol.g
-1

), compared to commercial samples (up to 0.06 mmol.g
-1

), as shown by the Table 3. 654 

The specific surface areas remain in the same range of values (between 100 and 250 m².g
-1

) 655 

thanks to the modifications performed on the commercial LDHs, which evidences that the 656 

specific surface area is not the only parameter to be taken into consideration for increasing the 657 

performances in this application. Some additional studies have been performed on the 658 

simultaneous adsorption of NOx and SOx in order to obtain a polyvalent compound stable 659 

under the conditions of the FCC regenerator units (Kameda et al. 2011, 2019a, 2020). 660 

 661 

2.1.3. VOCs total decomposition 662 

Volatile Organic Compounds (VOCs) give origin to an important class of organic 663 

pollutants, such as toluene, ethanol, methanol, acetone and ethylene (Bahranowski et al. 1999; 664 

Carpentier et al. 2002; Gennequin et al. 2010a; Mrad et al. 2015; Kamal et al. 2016). They are 665 

emitted from various industrial processes and transport vehicles and represent a serious 666 

environmental problem. VOCs are the major contributors to air pollution due to their direct 667 

toxic and carcinogenic properties, or indirect contribution to ozone formation. The 668 

decomposition of VOCs is thereby crucial for an environmental point of view. VOCs removal 669 

requires technologies working under hard conditions (temperatures up to 1100°C and 670 

presence of toxic products). The possibility to eliminate VOCs at temperatures lower than 671 

those reached during classical combustion is of great interest. Catalytic total combustion of 672 

VOCs is then one of the most effective and economically attractive treatment explored in the 673 

last decades (Bahranowski et al. 1999; Mikulová et al. 2007; Dula et al. 2007; Tanasoi et al. 674 

2009; Palacio et al. 2010; Kamal et al. 2016). Most catalysts used for the total decomposition 675 

of VOCs contain noble metals, such as palladium and gold. Mixed oxides based on transition 676 

metals have been also successfully tested with similar activity, as cheaper alternative. The 677 
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catalysts must present a high thermal stability and a large number of active sites. Co-678 

precipitation is once again the most adapted method to obtain the desired properties. It permits 679 

to easily substitute cations in the structure and to promote the formation of large platelets with 680 

a high number of active sites. The synthesis conditions of all the samples cited in this part 681 

have been listed in Table 5. 682 

 683 

Similarly to CO2 adsorption, the total decomposition of VOCs by hydrotalcites and LDHs 684 

has been studied on various catalysts presenting different substitutions, and in different 685 

analytical conditions. The tests were mainly focused on the total decomposition of toluene or 686 

ethanol. The first experiments focused on the elimination of VOCs by mixed oxides derived 687 

from LDHs have been performed in the late 90s, even if the reaction was already known since 688 

many decades. Moderated temperatures, around 200°C, are required for this catalytic reaction. 689 

The catalysts are mixed oxides and amorphous phases obtained by calcination of LDHs at 690 

high temperature. Bahranowski et al. (1999) reported on the impact of Cu(II) and Cr(III) 691 

cations in mixed oxides derived from parent LDHs on the total oxidation of toluene and 692 

ethanol performed at various temperature. The authors observed that the purity and 693 

crystallinity of the materials depends on the initial Cu:Cr molar ratio, and that the catalyst 694 

derived from the CuCr hydrotalcite, with an initial Cu:Cr molar ratio of 2, gave the best 695 

catalytic performances in both toluene and ethanol oxidations. A similar study, focused on the 696 

crystallinity of the LDH precursors, was performed few years later by Mikulova et al. (2007) 697 

on calcined NiAl LDHs. The analyses showed slightly lower catalytic activities than for CuCr 698 

hydrotalcites-derived oxides synthesized by Bahranowski et al. (1999) towards toluene 699 

oxidation. In ethanol oxidation, the formation of reaction intermediates, such as acetaldehyde, 700 

could be avoided by increasing the reaction temperature. Cobalt-containing hydrotalcite 701 

precursors with different compositions were tested by Gennequin et al. (2009, 2010b). They 702 
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showed interesting activities in toluene oxidation, especially the sample containing the highest 703 

amount of cobalt, that presented the highest specific surface area, well dispersed oxides and 704 

lower presence of cobalt aluminate species. Fig11. shows the impact of the calcination 705 

temperature of Co-containing hydrotalcites on the toluene conversion. The same research 706 

group also performed studies focused on the memory effect of hydrotalcite (Gennequin et al. 707 

2010a), their ability to regenerate their structure by simple wetting or impregnation. In this 708 

case, cobalt impregnation led to the partial regeneration of the LDH structure and improved 709 

the toluene oxidation activity. 710 

Palacio et al. (2010) studied the impact of different trimetallic hydrotalcites (ZnCuAl and 711 

MnCuAl), after calcination at 450°C, over the oxidation of toluene. The MnCuAl catalysts 712 

showed to be the most efficient (Mrad et al. 2015). Dula et al. (2007) performed a similar 713 

study on MgAlMn-oxide (obtained from calcination of the parent LDH). The catalyst was 714 

more active than MnO4-impregnated MgAl LDH for the combustion of toluene under air. 715 

This behavior can be explained by the enhanced presence of redox sites on the surface of the 716 

as-generated mixed oxide particles. Methane is a bit more difficult to oxidize due to its high 717 

inertness: its complete oxidation occurs at much higher temperature than toluene and ethanol, 718 

as studied by Tanasoi et al. (2009), with 50% of methane decomposition at 480-490°C over a 719 

calcined Cu-containing MgAl-LDH catalyst. This work shows that the catalytic activity is 720 

dependent of the reducible amount of copper in the catalyst. Aguilera et al. (2011) performed 721 

a more complete study on the total oxidation of 3 different VOCs: butanol, ethanol and 722 

toluene by copper-manganese and cobalt-manganese catalysts derived from the parent LDHs. 723 

The catalytic activity depended on the VOC type, and the activity scale was the following for 724 

both catalyst: butanol < ethanol < toluene. Some other studies (Chmielarz et al. (2012)) 725 

focused on mono-carbon VOCs (methane, methanol, and formic acid). The calcination 726 

temperature had a direct impact on the complete oxidation: the presence of cobalt phases, 727 
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obtained at high calcination temperatures (up to 800°C), induced higher catalytic activities in 728 

conversions of methanol and formic acid. 729 

Other modifications, such as the type of interlayer anion or the use of a support, can be 730 

introduced in the catalyst conception. Carpentier et al. (2002) demonstrated that the 731 

substitution of  carbonate anions by palladium complexes in the interlayer space of Mg/Al 732 

hydrotalcites improves the catalytic activity. Kovanda and Jirátová (2011a, b) supported 733 

several mixed oxides, derived from hydrotalcites, on Al2O3/Al or calcined alumina, and 734 

resulted in interesting catalytic activities with the production of side products such as 735 

acetaldehyde. Spinel phases identified in the calcined samples are also linked to the high 736 

conversion values observed. 737 

 738 

Similar to CO2 adsorption, the total elimination of VOCs remains a very important 739 

environmental issue to be solved. Most of the LDHs used in this field are synthesized by co-740 

precipitation method that makes possible the structural substitution of metallic cations, such 741 

as chromium or copper, in order to increase the catalytic activity. Differently than for the 742 

samples used in NOx and SOx adsorption, the materials prepared for VOCs elimination, and 743 

that contains metal cations in the structure, show similar specific surface area values (between 744 

10 and 250 m².g
-1

) when obtained at low or high supersaturation conditions (Table 5). The 745 

main differences in the samples comes essentially from the inserted metallic cation and the 746 

thermal treatment (temperature and duration). According to the literature, the total elimination 747 

of VOCs by LDH-based materials is very promising.  748 

 749 

2.1.Adsorption of aqueous pollutants 750 

Nowadays the pollution of water is mainly deriving from several industrial effluents 751 

(papermaking, textiles and dyeing for example) and agricultural activities (Chuang et al. 752 
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2008; Tzompantzi et al. 2011; Ali 2012). Some of the pollutants released in nature can move 753 

into soils and plants. Their high mobility provokes a global concern due to their significant 754 

impact on the human health, biotoxicity and carcinogenic effects (Lv et al. 2006; Chuang et 755 

al. 2008). As water resource is a fundamental resource on earth and remains rare in some 756 

regions, the need to find cheap and efficient depollution processes has increased worldwide. 757 

The wide family of aqueous pollutants includes inorganic pollutants (toxic heavy metals such 758 

as As, Pb, Cd, Ni, Zn and Cr for example (Lehmann et al. 1999; Yang et al. 2005; El-Sayed et 759 

al. 2016; Wan et al. 2017)), organic pollutants (mainly dyes from paper and textile industries 760 

(Tzompantzi et al. 2011; Ahmed and Gasser 2012; de Sá et al. 2013; Shan et al. 2014), but 761 

also drugs and pharmaceuticals (Chuang et al. 2008; Zhao et al. 2015; Yu et al. 2017)). Many 762 

approaches have been proposed for water treatment, including coagulation (Zou et al. 2016a, 763 

b), precipitation (Barrera-Díaz et al. 2012; Cheng et al. 2015), sedimentation (Rubí et al. 764 

2009; Guo et al. 2009), sorption (Karickhoff 1984; Fosso-Kankeu et al. 2010; Alila et al. 765 

2011), and ion exchange (Leinonen et al. 1994; Mazur et al. 2016). Regarding the literature, 766 

sorption is the most versatile process for removing pollutants at relatively low concentrations, 767 

and it is environmentally friendly. This process includes the use of lamellar materials such as 768 

clay minerals (Milutinović-Nikolić et al. 2014, p. 99; Wang et al. 2015; Yang et al. 2015) and 769 

LDHs (Yang et al. 2005; Chuang et al. 2008; Ahmed and Gasser 2012; Zou et al. 2017), but 770 

also activated carbons (Beita-Sandí et al. 2016; Bedin et al. 2016), graphene (Li et al. 2012; 771 

Song et al. 2015; Sun et al. 2017), and metal oxides (Tzompantzi et al. 2011; Cheng et al. 772 

2015; Zou et al. 2017). The main obstacle using these materials is their relatively low 773 

adsorption capacity, so the majority of the studies is focused on increasing their efficiency. 774 

This part of the review discusses about the last advances in the use of LDHs and derived 775 

mixed oxides in the adsorption and removal or aqueous pollutants in the last decades. The 776 

synthesis parameters of the materials described in this part are listed in the Table 6. 777 
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Inorganic pollutants are mainly constituted of heavy metals such as arsenic, lead, cadmium, 778 

nickel, zinc and chromium. Their toxicity has been well documented, and their removal 779 

gained large focus in the last decades (Barrera-Díaz et al. 2012). Thanks to their accessible 780 

and expansible interlayer space, LDHs are interesting adsorbents and ion exchangers of these 781 

pollutants. Their use has been firstly documented in the late ‘90s and the performances often 782 

compared to those of other inorganic sorbents, such as activated carbons and metal oxides 783 

(Lehmann et al. 1999). Pure MgAl hydrotalcites generally exhibit interesting removal 784 

capacities, up to 50% of Cr(VI) and 100% Zn(II) at pH 4,  and are able to act as anion-785 

exchangers (in the interlayer space) and proton-acceptors (presence of carbonate ions CO3
2-

). 786 

Moreover, an increase of the solution pH leads to a partial dissolution of the LDH structure 787 

and causes the precipitation of cationic metal species increasing the overall removal of 788 

inorganic pollutants. These materials are also efficient towards the removal of trace levels of 789 

pollutants, such as arsenic and selenium for example, as described by Yang et al. (2005) by 790 

using calcined and uncalcined MgAl hydrotalcites. The adsorption values of uncalcined 791 

samples are strongly influenced by the pH of the solution, while no influence of pH was 792 

measured on calcined samples (Fig12). In both cases, the desorption of As(V) and Se(IV) 793 

strongly depended on the anion species, with maximum amounts of 100ppm in presence of 794 

HPO4
2-

 and 1000ppm with SO4
2-

, and with desorption yields close to 100%. Several 795 

parameters influence the removal capacity by LDHs, such as the pH of the solution, the initial 796 

pollutant concentration, and the adsorbent dosage (Lv et al. 2006). Similar to other 797 

applications previously discussed, the addition of metallic cations in the structure of LDHs 798 

and derived mixed oxides increases the specific surface area and the pore volume of these 799 

materials, leading to better sorption capacities. El-Sayed et al. (2016) reported the efficiency 800 

of MgAlZn mixed oxides derived from calcined hydrotalcites and observed adsorption 801 

capacities up to 1.98 and 1.19 mmol.g
-1

 for Co(II) and Ni(II), respectively. A more recent 802 
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study showed the positive impact of incorporating LDHs onto a matrix of other nature. Once 803 

incorporated into biochar (Xue et al. 2016), MgFe LDHs can uptake nitrates with values up to 804 

0.4 mmol.g
-1

, which are higher than those obtained on MgFe LDHs alone (0.08 mmol.g
-1

) or 805 

on activated carbons (0.15 mmol.g
-1

). Chitosan has also been tested due to the possibility to 806 

adsorb large amounts of metal ions. Indeed, TiFe LDHs modified with chitosan can exhibit 807 

high removal capacities (close to 100%) for cadmium and phosphate in mono- and multiple-808 

pollutant solutions (Mahmoud et al. 2017). The use of hierarchical SiO2@LDHs on SiO2 809 

spheres has been studied by Yang et al. (2017) to remove uranium (U(VI)) from aqueous 810 

solution. Thanks to the complexations and electrostatic interactions with the abundant 811 

oxygen-containing functional groups, a maximum sorption capacity of 1.27 mmol.g
-1

 was 812 

reported. Similar adsorption capacities have been reported by Zou et al. (2017) using CaMgAl 813 

LDHs and derived mixed oxides, with values depending on the calcination temperature of the 814 

LDH: from 0.55 (for uncalcined LDH) up to 2.04 mmol.g
-1

 (for calcined LDH at 500°C). 815 

Another family of pollutants regroups the organic aqueous pollutants (pharmaceuticals and 816 

molecules with high molecular mass) that are released in nature by chemical industries, 817 

creating serious environmental issues due to their high toxicity, even at low concentrations 818 

(Chuang et al. 2008; Tzompantzi et al. 2011). The interest in finding new sorbent for 819 

removing such compounds from water increased in the last ten years, even if the toxicity and 820 

the possibility to adsorb these pollutants by natural materials is known since the ‘80 (Zepp 821 

and Schlotzhauer 1981; Karickhoff 1984). Sorption is one of the most common treatment to 822 

remove organic pollutants from nature; LDHs and derived mixed oxides are great candidates 823 

thanks to the high sorption capacity in the interlayer region, the large specific surface area and 824 

the presence of reactive surfaces (Pavan et al. 1999, 2000; Seki and Yurdakoç 2005; Chuang 825 

et al. 2008). Phenolic compounds are the most common organic water pollutants and their 826 

adsorption has been widely studied. Tzompantzi et al. (2011) reported on the fast 827 
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photocatalytic degradation of phenols in the presence of ZnAl mixed oxides derived from 828 

LDHs. The photodegradation rate is maximized thanks to the electron transfer from Zn
2+

 to 829 

Al
3+

. The removal of phenol molecules by photocatalysis has also been reported by Seftel et 830 

al. (2015) using TiO2 deposited on various LDHs matrices presenting different cation 831 

compositions (Zn
2+

, Cu
2+

, Al
3+

, Fe
3+

 and Ti
4+

). The specific surface area depended on the 832 

cations (from 5 m
2
.g

-1
 with Cu-substituted LDH to 199 m

2
.g

-1
 for Fe-substituted LDH), and 833 

almost 90% efficiency towards phenol adsorption by all the TiO2-modified LDHs was 834 

obtained after 5h of UV and visible light irradiation. 835 

Concerning dyes elimination from aqueous solutions, a number of technologies were 836 

recently developed, such as the adsorption by activated carbon (Özacar and Şengil 2002) or 837 

the nanofiltration (Koyuncu 2002; Lau and Ismail 2009). However, the formation of sludges 838 

in large quantities or the high operation cost make them not suitable for industrial and large-839 

scale applications (Ahmed and Gasser 2012). The low cost and regeneration properties of 840 

LDHs make the use of such materials interesting, as demonstrated by Ahmed and Gasser 841 

(2012) on the removal of Crystal Red, an anionic dye. Fig13 shows the adsorption of the dye; 842 

after only 15min, 97% of the dye is removed when starting from a solution with a 843 

concentration of 100 mg.L
-1

. Moreover, LDH can be regenerated and cycled several times. 844 

Similar experiments were also performed by de Sá et al. (2013) with the Sunset Yellow FCF, 845 

a synthetic dye used to color food. The increase of the interlayer distance was observed, 846 

indicating that the adsorption takes place by simple ion exchange in this area. Magnetic 847 

materials can also be great sorbents towards organic dyes, as studied by Shan et al. (2014) by 848 

using magnetic Fe3O4/MgAl hydrotalcites to remove three different red dyes (reactive red, 849 

congo red, and acid red 1). The uptake equilibrium was reached after 30 min without 850 

significant impact on the solution pH. The different results reported all along this review show 851 

that the morphology of the LDHs has a great impact on the specific surface area and plays a 852 
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role on the adsorption capacity. A recent study performed by Li et al. (2016) focused on the 853 

adsorption of congo red by MgAl hydrotalcite. The specific surface area increased from 24.74 854 

to 165.07 m
2
.g

-1
 upon calcination of the parent hydrotalcite, due to the enhancement of the 855 

microporosity deriving from the dehydroxylation of the layers and the decomposition of 856 

carbonate anions. However, only a slight increase of the adsorption capacity (from 0.186 to 857 

0.206 mmol.g
-1

) was observed. Indeed, the adsorption mechanism implies the anion exchange 858 

in the interlayer space and the sorption on the external surface, while the internal surface 859 

related to microporosity is not involved in the process due to accessibility problems. 860 

The adsorption of aqueous pollutants, inorganic (toxic heavy metals) and organic (dyes and 861 

heavy molecules), by LDHs and derived mixed oxides has been discussed. Due to the increase 862 

of industrial and agricultural activities, these dangerous and harmful compounds can be found 863 

in high concentrations and need to be removed from aqueous media. Their sorption by 864 

lamellar materials, more specifically LDHs, is one of the most investigated solutions. As the 865 

adsorption of these pollutants takes place in the interlayer space and on the external surfaces, 866 

LDHs and derived mixed oxides with large external specific surface area are required. The co-867 

precipitation method is the most employed because of its ability to form a wide range of 868 

LDHs with high crystallinity and reactive surfaces, mainly by substituting magnesium and/or 869 

aluminum by other metallic cations in the structure at different molar ratios. According to 870 

Table 6, similar specific surface areas were obtained with the samples synthesized by co-871 

precipitation either at low or high supersaturation conditions (between 5 and 230 m².g
-1

). 872 

Other synthesis methods such as the ball milling (Mahmoud et al. 2017) or the ethanol-water 873 

mediated solvothermal method (Li et al. 2016) are also interesting alternatives to obtain 874 

materials with high surface areas (around 150 m².g
-1

). Based on the existing literature, the 875 

adsorption of aqueous pollutants on LDHs and their derived materials reveals to be a 876 

promising alternative. 877 
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 878 

2.2.  Other applications 879 

2.2.1. Hydrogen production 880 

The need of alternative energies to replace fossil fuels is growing since the last decade. 881 

Hydrogen is a clean energy vector that can be produced from several processes such as steam 882 

reforming, partial oxidation, or Sorption Enhanced Reaction Process (SERP) (Marquevich et 883 

al. 2001; He et al. 2009, 2010; Halabi et al. 2012a, b; Chanburanasiri et al. 2013; Cesar et al. 884 

2016; Homsi et al. 2017). Hydrogen production is carried out in presence of CO2 adsorption 885 

processes (as reported in the section “2.1.1 CO2 adsorption – Capture and storage”). Sikander 886 

et al. (2017) reported in a review article the different hydrogen production processes carried 887 

out in the presence of hydrotalcite-base catalysts. The feedstock is generally constituted of 888 

light hydrocarbons such as ethanol, methanol or methane, even if biomass is a promising 889 

environment-friendly hydrogen source being highly available worldwide, relatively cheap and 890 

renewable (He et al. 2009, 2010; Contreras et al. 2014; Cesar et al. 2016; Zardin and Perez-891 

Lopez 2017; García-Sancho et al. 2018; Sikander et al. 2018). The hydrogen production 892 

reactions are reported in the following equations (de Souza et al. 2012): 893 

(1) C2H5OH + H2O → 2CO + 4H2 in presence of ethanol in water, 894 

(2) C2H5OH → CH3CHO + H2 895 

(3) CH3CHO → CH4 + CO by decomposition of ethanol and the further 896 

decomposition of acetaldehyde, 897 

(4) CH4 + H2O → CO + 3H2 in presence of methane in water, 898 

(5) CH4 + CO2 → 2CO + 2H2 in presence of methane in carbon dioxide. 899 

The drawback in using hydrotalcite-derived catalysts for these processes is the high 900 

operating temperature needed (up to 900°C) to calcine the layered materials prior to the 901 

catalytic reaction. Moreover, the formation of carbon monoxide can lead to the formation of 902 
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carbonaceous materials (also named coke) that brings to the progressive deactivation of the 903 

active sites, as shown by de Souza et al. (2012) in the Boudouard reaction: 2CO → CO2 + 904 

C(s). The synthesis conditions of the LDHs and related mixed oxides discussed in this part are 905 

summarized in Table 7. 906 

 907 

The first experiments using LDHs to produce hydrogen were performed, in the last decade, 908 

by steam reforming. Marquevich et al. (2001) studied the feasibility with sunflower oil, as 909 

feedstock, and Ni/Al mixed oxides derived from calcined LDHs, as catalyst. More recently, 910 

steam reforming was studied in the presence of hydrocarbons such as ethanol, methane or 911 

ethylene glycol. For each source, the key-point for process development is to identify the 912 

most efficient catalysts and synthesize it by varying the synthesis conditions or the chemical 913 

composition. Contreras et al. (2014) reported in a review article the various catalysts tested 914 

for hydrogen production by steam reforming. Ni-containing catalysts show very good 915 

catalytic activity for the conversion of ethanol and ethylene glycol, as shown by He et al. 916 

(2009, 2010) and Cesar et al. (2016), respectively. In the first case, the catalytic activity of 917 

Co-Ni catalysts decreased by increasing the nickel content. In presence of ethylene glycol, 918 

Cesar et al. (2016) showed that Pt-containing catalysts are the most active and selective. 919 

Finally, a complete study on the steam reforming process, carried out with methane as 920 

feedstock, has been reported by Halabi et al. (2012a, b), using calcined K2CO3-promoted 921 

Mg/Al hydrotalcite with in-situ CO2 capture. A similar study has been performed by 922 

Chanburanasiri et al. (2013) by comparing the impact of different commercial K2CO3 on the 923 

sorption efficiency and H2 production. The co-precipitation method revealed to be the most 924 

adapted for the easy substitution of the cations in the structure. In some syntheses, co-925 

precipitation was performed in the presence of urea in order to improve the crystal size and 926 

the number of active sites. 927 
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Methane decomposition is the second process largely studied for hydrogen production. 928 

Methane is firstly adsorbed on the surface of the catalysts and then decomposed on the active 929 

sites. Graphite-like structure or coke can accumulate on the active sites and block them, 930 

leading to a progressive deactivation of the catalyst. The presence of transition metals (Ni, 931 

Co) in the catalyst structure positively contributes to methane decomposition at low 932 

temperatures and with high yields. By varying the Cu/Al molar ratios (maintaining fixed Ni 933 

content) of calcined Ni/Cu/Al hydrotalcites, Ashok et al. (2008) identified the ideal 934 

composition (Ni/Cu/Al=60/25/15) to obtain the highest hydrogen yield. The amount of Ni in 935 

Ni/Mg/Al hydrotalcites can also be modulated; García-Sancho et al. (2017) investigated the 936 

influence of the nickel content on hydrogen production. Fig14. shows the methane conversion 937 

and the hydrogen production in the presence of hydrotalcites of various nickel content during 938 

temperature-programmed tests. 55% of methane conversion with 100% hydrogen selectivity 939 

was measured on a catalyst containing 46%at of nickel in the structure. The conversion was 940 

not improved by increasing the nickel content, due to the presence of inactive isolated Ni 941 

particles among the spinel phases. One year later, the same team (García-Sancho et al. 2018) 942 

compared the impact of adding nickel during the synthesis of hydrotalcites prior to the 943 

calcination and to form bulk Ni-mixed oxides, or after the calcination of the hydrotalcites (to 944 

produce Ni-supported mixed oxides). The two kind of catalysts show similar activities, and 945 

only slight differences in the reduction temperatures of the catalysts were observed. The 946 

impact of the calcination temperature was studied by Sikander et al. (2018) on Mg/Ni/Al 947 

hydrotalcites with different nickel content. The sample containing 40%at nickel showed the 948 

best performances after calcination at 500 and 750°C. The presence of spinel-like structures 949 

on the catalyst surface favors the diffusion of the deposited carbon, enhancing the overall 950 

catalytic activity. 951 

 952 
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Hydrogen can be produced by various processes, such as steam reforming and methane 953 

decomposition. Highly active and selective catalysts exist and are listed in Table 8. The 954 

possibility to tune the catalysts composition is fundamental to form mixed oxides with high 955 

catalytic activity. Most of the studies discussed in this section are focused on the co-956 

precipitation method for the possibility of operating structural substitutions, particularly to 957 

add nickel cations in the LDH structure. Table 7 also shows the interest in using co-958 

precipitated LDHs instead of commercial samples; the specific surface areas of the 959 

synthesized samples is higher than that of the commercial ones (between 69 and 156 m².g
-1

 960 

instead of 15-104 in the commercial hydrotalcites). Urea is also introduced during preparation 961 

in order to obtain a high number of active sites and increase the size of the platelets. 962 

Moreover, the hydrogen production can be combined with CO2 adsorption with interesting 963 

results. Combining CO2 capture and H2 formation in the same process is promising for future 964 

industrial applications. 965 

 966 

2.2.2. 5-Hydroxymethylfurfural formation 967 

Thanks to its natural abundance, biomass is a promising sustainable feedstock: 968 

carbohydrates are the largest natural carbon source constituting up to 75% of the annual 969 

biomass production, with promising applications in chemistry, food, paper, and 970 

pharmaceutical industries (Rosatella et al. 2011; Zakrzewska et al. 2011). Carbohydrates are 971 

rich in oxygen and can be easily reduced and dehydrated into a large spectrum of chemicals 972 

such as 5-Hydroxymethylfurfural (5-HMF) or levulinic acid. The US Department of Energy 973 

listed 5-HMF among the top 10 value-added chemicals; it is generally used as an intermediate 974 

to synthesize a wide range of chemicals nowadays derived from petroleum. Unfortunately, 5-975 

HMF is not extensively produced at industrial scale due to the high production cost (van 976 

Putten et al. 2013). Fructose and glucose conversion are well-documented reactions that occur 977 
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at relatively low temperature (below 150°C). These mild reaction conditions allow the use of 978 

clays, hybrids and other lamellar materials as catalysts. The dehydration of fructose leads to 979 

the formation of 5-Hydroxymethylfurfural (5-HMF), the main reaction product, and other by-980 

products, such as levulinic acid and formic acid, that are formed by degradation of 5-HMF, as 981 

explained in Fig15. The catalysts used in this reaction must present a high specific surface 982 

area in order to maximize the catalytic surface and react with the fructose dissolved in the 983 

solvent (generally water). These requirements can be fulfilled by LDHs synthesized by the 984 

sol-gel method or any other method implying a hydrothermal treatment, and that present high 985 

specific surface areas and an improved thermal stability. The synthesis parameters of all the 986 

cited samples are reported in Table 9. 987 

 988 

The main drawback in using clays, hybrids and other lamellar materials in catalytic 989 

reactions is their thermal stability. In typical natural clays, dehydration occurs below 200°C 990 

with the removal of interlayer and surface water, while irreversible dehydroxylation with 991 

formation of oxides starts already around 350°C, depending on the type of metallic cations in 992 

the starting material. Several catalytic reactions occur above 300°C, thus the majority of the 993 

studies performed with LDHs is based on mixed oxide catalysts obtained by their calcination. 994 

However, few experiments have been performed on modified clay minerals such as 995 

montmorillonite; thanks to their expandable layers and swelling properties, these minerals can 996 

be easily modified by ion-exchange and pillaring in order to modify their structural properties. 997 

Lourvanij and Rorrer (1994) studied the partial dehydration of glucose to organic acids on 998 

iron-, chromium-, aluminum-, and non-pillared montmorillonite.  Their large pore size (higher 999 

than 10Å) allows the diffusion of glucose molecules (equal to 8.6Å) in the interlayer space, as 1000 

demonstrated by the Fig16. Depending on the reaction path, coke formation, leading to their 1001 

progressive deactivation, has been observed. Further studies have been performed by Fang et 1002 
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al. (2014) with a commercial montmorillonite (K-10) to compare the impact of the reaction 1003 

solvent: dimethyl sulfoxide (DMSO) and butyl-3-methylimidazole chloride ([BMIM]Cl) were 1004 

used. The results are shown in Fig17. and point out the higher conversion of glucose in 1005 

presence of higher concentrations of [BMIM]Cl in DMSO. The efficient recycling of the 1006 

solvent (up to six times) without significant loss of the catalytic activity was also observed. 1007 

Beside the well-known basicity of hydrotalcites, LDHs and related materials, only few 1008 

studies on the dehydration of fructose in 5-Hydroxymethylfurfural have been performed on 1009 

these materials. However, recent researches pointed out the promising application of these 1010 

materials in the transformation of biomass-derived monomers (Chheda and Dumesic 2007; Li 1011 

et al. 2011; Climent et al. 2014). Zeolites are widely employed for such applications, but 1012 

mixed oxides represent a great alternative thanks to their easy synthesis by sol-gel method or 1013 

by simple thermal treatment of LDHs and hydrotalcites.  1014 

In the case of glucose catalysis, three different reactions can be expected: dehydration, 1015 

isomerization, and retro-aldol condensation. The first reaction generally allows to form HMF 1016 

and levulinic acid in the presence of acid catalysts, while the other reactions are favored in the 1017 

presence of basic materials to form fructose or lactic acid. The bifunctional acid-base 1018 

properties of Al-Zr mixed oxides bring to different reaction products: HMF and levulinic acid 1019 

are formed by dehydration on the acid sites, while lactic acid and fructose are obtained by 1020 

isomerization and retro-aldol condensation in the basic sites. 1021 

 As explained in this part, the catalytic formation of 5-HMF by dehydration of glucose with 1022 

the use of hydrotalcites or LDHs is not much documented, but the potential use of their 1023 

related mixed oxides shows interesting results that may be promising for future researches as 1024 

zeolite substitutes and needs further investigations. Even if the specific surface areas of the 1025 

LDHs reported in the Table 9 are similar to those of modified montmorillonites, the catalytic 1026 
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activity in this application is related to the surface acidity, limiting the potential use of LDHs. 1027 

Moreover, the sol-gel method or hydrothermal treatment can be easily performed to obtain 1028 

LDHs adapted to this application. 1029 

 1030 

 1031 

Conclusion 1032 

LDHs, hydrotalcites and their related materials gained huge interest in the last decades 1033 

thanks to their simple synthesis processes and numerous applications. Even if they are mainly 1034 

synthesized by co-precipitation or hydrothermal methods, the possibility to combine different 1035 

M(II) and M(III) cations and interlayer anions in their structure allows to tailor the chemical 1036 

composition, as well as their structural properties (surface areas, pore sizes, number of active 1037 

sites), making them potential catalysts in several industrial and environmental processes. 1038 

Moreover, their memory effect permits to reuse them many times, which is interesting at 1039 

industrial scales. 1040 

In this review, the impact of synthesis methods on the structural and textural properties of 1041 

LDHs has been discussed in order to identify the most suitable synthesis process for a chosen 1042 

environmental application. The adsorption of pollutants (atmospheric and aqueous) and 1043 

hydrogen production are important environmental applications in which LDHs can find their 1044 

place. The key parameter for implementing the use of LDHs and derived materials is the 1045 

choice of the appropriate synthesis process. The adsorption of pollutants requires high amount 1046 

of basic sites and strong thermal stability that can be obtained using the co-precipitation 1047 

method to synthesize LDHs. On the other side, the formation of 5-HMF takes place on the 1048 

acid sites that can be potentially obtained by sol-gel or hydrothermal synthesis. Finally, the 1049 

intercalation, impregnation or addition of appropriate elements (metals) with uniform 1050 
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dispersion is important for hydrogen production to increase the catalytic activity of 1051 

hydrotalcites (Fig18.). 1052 
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Fig1. Environmental applications of hydrotalcites discussed in this review. 1744 
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Fig2. Scheme of the co-precipitation method applied to the LDHs synthesis. 1746 
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Fig3. Scheme of the synthesis of hydrotalcites via urea hydrolysis. 1748 
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Fig4. Scheme of the synthesis of hydrotalcites by sol-gel process. 1750 
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Fig5. Hydrothermal synthesis process applied to hydrotalcite synthesis. 1752 
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Table 1. Main structural and textural impacts of different synthesis processes on LDHs. 1754 
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Synthesis method Advantages Drawbacks 

Co-precipitation 

- High crystallinity 

with post-treatment 

- Easy insertion of 

metallic elements 

- Large Particles (formation of 

aggregates) 

- Low specific surface area 

Use of urea 

- Large thin platelets 

- Narrow particle size 

distribution 

- Formation of CO2 by urea 

decomposition, formation of 

carbonates as counter-anions 

Sol-gel 

- High homogeneity 

- High purity 

- Small particles 

(nanoscale) = high 

specific surface area 

- Short times (hours) 

- Low crystallinity 

- Additional treatments required 

(microwave irradiation, 

ultrasonication, or 

hydrothermal treatment) 

Hydrothermal 

- Increases 

crystallinity 

- Increases particle 

size 

- Increases purity 

- High energy (heating) and time 

(hours to days) demand 

- More efficient as an additional 

treatment of other synthesis 

methods 

 1755 

Table 2. Synthesis parameters of the LDHs and mixed oxides cited in the part “2.1.1. CO2 1756 

adsorption – Capture and storage”. 1757 

Reference 
Type of 

material 

Surface area 

(m².g
-1

) 

Adsorption 

capacity 

(mmol.g
-1

) 

Synthesis method / 

structural modifications 

Mao and Tamaura 

1993 
MgAlFe LDH – – 

Co-precipitation at 

various Al/(Mg+Al) 

molar ratios. 

Tsuji et al. 1993 Various LDHs – – 

Co-precipitation with 

change of the M(II) 

cations: Mg
2+

, Ni
2+

, Zn
2+

, 

Co
2+

. 
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Wang et al. 2010 
Mg-M(III) 

LDHs 
82.4 – 148.6 0.050 – 0.462 

Co-precipitation with 

change of the M(III) 

cations: Al
3+

, Ga
3+

, Fe
3+

, 

Mn
3+

, Cr
3+

, Ce
3+

, La
3+

. 

Ram Reddy et al. 

2006 

Calcined 

MgAl LDHs 
63 – 167 0.231 – 0.486 

Co-precipitation and 

calcination at different 

temperatures from 200 to 

600°C for 4h. 

Ram Reddy et al. 

2008 

Calcined 

MgAl LDHs 
– – 

Co-precipitation and 

calcination at 400°C for 

4h. 

Dadwhal et al. 

2008 

Calcined 

MgAl LDHs 
– 0.7 

Co-precipitation and 

calcination at 500°C for 

4h. 

León et al. 2010 
Calcined 

MgAl LDHs 
62 – 190 0.4 – 1.15 

Co-precipitation at low 

and high supersaturation 

and calcination at 450 or 

700°C for 7h. Anion 

exchange by K
+
 or Na

+
 

prior the calcination. 

Gao et al. 2013 
Calcined 

MgAl LDHs 
154 – 239  0.30 – 0.72 

Co-precipitation followed 

by hydrothermal 

treatment at 120°C for 6h, 

urea method, or urea 

decomposition followed 

by microwave irradiation 

at 120°C 200W for 

30min. 

Ramírez-Moreno 

et al. 2014 
MgAl LDHs 136.6 – 296.3 0.2 – 0.75 

Co-precipitation at low 

supersaturation. 

Bhatta et al. 2015 

MgAl LDH 

supported in 

coal-derived 

graphitic 

material 

41 – 219.6 0.48 – 1.10 
Co-precipitation at low 

supersaturation. 
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Dantas et al. 2015 

MgAl LDHs 

expanded with 

a polymer 

50.1 – 61.1 0.72 – 1.36 
Co-precipitation at low 

supersaturation. 

Tang et al. 2018 

MgAl LDHs 

enlarged by 

SDS ions 

before 

grafting 3-

APS 

– 1.55 – 2.09 
Co-precipitation at high 

supersaturation. 

Thouchprasitchaia 

et al. 2018 

TEPA-

functionalized 

calcined 

MgAl LDHs 

(hydrotalcite) 

5.7 – 165.2 2.03 – 6.03 
Co-precipitation at low 

supersaturation. 

Wang et al. 2012b, 

a 

Amine-

modified 

MgAl LDHs 

via exfoliation 

or anionic 

surfactant-

mediated 

routes 

– 0.75 – 1.8 
Co-precipitation at high 

supersaturation. 

Wu et al. 2013 
K-promoted 

hydrotalcite 
– 1.15 Commercial hydrotalcite. 
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 1758 

Fig6. CO2 adsorption by amine-modified MgAl hydrotalcites at different temperatures (from 1759 

Wang et al. (2012b)). 1760 

 1761 

Table 3. CO2 adsorption by several types of hydrotalcites according to literature. 1762 

M(II)/M(III) 

molar ratio 

CO2 adsorbed 

(mmol.g
-1

) 

Synthesis 

process 

Modifications / 

improvements 
References 

3 0.5 
Co-

precipitation 
- 

Ram Reddy et al. 

2006 

2.87 0.7 
Co-

precipitation 
- 

Dadwhal et al. 

2008 

2 – 3 0.7 – 1.5 
Co-

precipitation 
- 

Albuquerque et al. 

2016 

1 – 5 0.4 – 1.5 
Co-

precipitation 
Fe-promoted 

Mao and Tamaura 

1993 

1.2 0.15 – 0.6 
Co-

precipitation 
Different M(II) cations Tsuji et al. 1993 

3 0.6 – 1.15 
Co-

precipitation 
K- or Na-promoted León et al. 2010 
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3 1.31 Hydrothermal K-promoted Jang et al. 2014 

2 0.42 – 1.10 
Co-

precipitation 
K-promoted Bhatta et al. 2015 

2 2.09 
Co-

precipitation 

K-promoted + Ga 

substitution 
Silva et al. 2017 

3 2.1 
Co-

precipitation 
TEPA-supported 

Thouchprasitchaia 

et al. 2018 

2 – 3 2.04 
Co-

precipitation 

(3-AP)triethoxysilane-

grafted 
Tang et al. 2018 

 1763 

 1764 

Fig7. Comparison between non-modified (red) and modified (blue) hydrotalcites and derived 1765 

materials on the CO2 sorption capacity, according to Table 3. 1766 

 1767 

Table 4. Synthesis conditions of the LDHs and mixed oxides cited in the part “2.1.2. NOx 1768 

and SOx adsorption”. 1769 

Reference Type of Surface area Adsorption capacity Synthesis method / 



68 
 

material (m².g
-1

) (mmol.g
-1

) structural modifications 

Corma et 

al. 1994 

Calcined 

CuMgAl LDHs 
– – 

Co-precipitation with fixed 

Mg/Al molar ratio at 3 and 

10 molar% Cu, then 

calcination at 750°C for 3h. 

Palomares 

et al. 1999 

Calcined 

CuMgAl and 

CoMgAl LDHs 

117 – 210 – 
Co-precipitation similar to 

Corma et al. 1994b. 

Yu et al. 

2006 

Calcined 

CoMgAl LDHs 
21.6 – 162.7 – 

Co-precipitation at low 

supersaturation with change 

of the Co/Mg molar ratio, 

then calcination at 800°C 

for 4h. 

Yu et al. 

2007 

Calcined 

CaCoAl and 

CaCiLaAl 

LDHs 

– 0.602 – 0.651 

Co-precipitation at low 

supersaturation, then 

calcination at 800°C for 4h. 

Cheng et 

al. 2004 

Calcined MgAl 

LDHs 

impregnated 

with Pt 

121 – 249 0.061 – 0.505 

Co-precipitation at low 

supersaturation, then 

calcination at 600°C for 5h 

and impregnation with 

Pt(NH3)4(OH)2. 

Silletti et 

al. 2006 

Pd adsorbed on 

calcined 

commercial 

MgAl LDH 

~ 190 0.003 – 0.062 

Commercial LDH with a 

Mg:Al molar ratio of 7:3 

calcined at 600°C, then 

[Pd(acac)2] adsorbed on 

freshly calcined samples. 

Li et al. 

2007 

Calcined 

MgRuAl LDHs 
280 0.220 

Co-precipitation at low 

supersaturation, then 

calcination at 600°C for 6h. 

Cui et al. 

2019 

Calcined 

MnMgAl 

LDHs 

108 – 144 0.104 – 0.426 

Co-precipitation at low 

precipitation assisted by 

CTAB, then calcination at 

600°C for 6h. 
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Kameda 

et al. 

2019a, b 

MgAl LDHs – – 
Co-precipitation at low 

supersaturation. 

Cantú et 

al. 2005 

Calcined MgAl 

and MgFe 

LDHs 

74 – 204 – 
Co-precipitation at low 

supersaturation. 

 1770 

Fig8. Schematic representation of LDH-derived catalysts for NOx storage and reduction 1771 

(from Yu et al. 2009). 1772 
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 1773 

Fig9. NOx storage capacity at different temperatures of mixed oxides derived from MnMgAl 1774 

LDHs containing 15 wt% Mn (from Cui et al. 2019). 1775 



71 
 

 1776 

Fig10. Simplified scheme of the Fluid Catalytic Cracking (FCC) process adapted to SOx 1777 

removal (from Valente and Quintana-Solorzano 2011). 1778 

Table 5. Synthesis parameters of the LDHs and mixed oxides cited in the part “2.1.3. VOCs 1779 

total decomposition”. 1780 

Reference Type of material 
Surface area 

(m².g
-1

) 
Synthesis method 

Bahranowski 

et al. 1999 

Calcined CuCr, ZnCr, 

and CuAl LDHs 

CuCr-LDHs : 

10 – 20 

ZnCr LDH : 

41 

CuAl LDH : 

56 

Co-precipitation at low supersaturation 

and calcination at 600°C for 3h. The 

CuCr-LDHs have been synthesized with 

M(II):M(III) molar ratios of 1:1, 2:1, 

and 3:1. ZnCr and CuAl were used to 

investigate separately the role of Cu and 

Cr. 

Mikulová et 

al. 2007 
Calcined NiAl LDH 52 – 161 

Co-precipitation at low supersaturation 

and calcination at 450°C for 4h. 
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Gennequin 

et al. 2009, 

2010b 

Calcined CoMgAl 

LDHs 
72 – 141 

Co-precipitation at high supersaturation 

with varying Co:Mg:Al molar ratio of 

6:0:2, 4:2:2, 2:4:2 and 0:6:2, and 

calcination at 500°C for 4h. 

Gennequin 

et al. 2010a 

Co-deposited calcined 

MgAl LDHs 
3 – 233 

Co-precipitation at high supersaturation, 

and calcination at different 

temperatures: 500, 600, 700, 800, and 

900°C. Co was then deposited by 

aqueous impregnation method. 

Palacio et al. 

2010 

Calcined MnCuAl and 

ZnCuAl LDHs 
45 – 108 

Co-precipitation at high supersaturation 

and calcination at 450 and 600°C. 

Dula et al. 

2007 

Calcined MgMnAl 

LDHs 
137 – 191 

Co-precipitation at low supersaturation 

and calcination at 600°C for 4h. 2 

different samples have been prepared 

with Mn either within the structure or in 

the ionic form as permanganate anions 

in the interlayer space. 

Tanasoi et 

al. 2009 

Calcined CuMgAl 

LDHs 
114 – 188 

Co-precipitation at low supersaturation 

with various copper content from 1 to 20 

at%, and calcination at 750°C for 8h. 

Aguilera et 

al. 2011 

Calcined MnMgAl, 

CuMnMgAl and 

CoMnMgAl LDHs 

75 – 249 

Co-precipitation at low supersaturation 

with varying Cu/Mn and Co/Mn molar 

ratios of 0.5, 0.25, 0.1, and 0.05, and 

calcination at 500°C for 16h. 

Chmielarz et 

al. 2012 

Calcined CuMgAl, 

CoMgAl and 

CuCoMgAl LDHs 

60 – 217 

Co-precipitation at low supersaturation 

and calcination at 700 or 800°C. The 

samples calcined at 800°C were 

modified with potassium using aqueous 

impregnation method and calcined again 

at 600°C. 

Carpentier 

et al. 2002 

Calcined MgAl LDH 

with interlayer Pd 

complex 

33 – 69 

Co-precipitation at low supersaturation 

in presence of H2PdCl4 and calcination 

at 290 and 500°C for 4h. 

Kovanda 

and Jirátová 
Several calcined LDHs 

28 – 150 (203 

with Ni) 

Co-precipitation at low supersaturation 

and calcination at 500°C for 4h. NiAl, 
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2011a, b NiMn, CoAl, CoMn, NiCoAl, NiCoMn, 

NiCuAl, NiCuMn, CoCuAl, and 

CoCuMn have been obtained in order to 

compare with similar mixed oxides 

deposited on Al2O3/Al support. 

 1781 

Fig11. Toluene conversion versus temperature for Co-containing hydrotalcites previously 1782 

calcined at various temperatures (from Gennequin et al. (2010a)). 1783 

 1784 

Table 6. Synthesis conditions of the LDHs and mixed oxides cited in the part “2.2. 1785 

Adsorption of aqueous pollutants”. 1786 

Reference Type of material 
Surface area 

(m².g
-1

) 
Synthesis method 

Lehmann et 

al. 1999 

Commercial MgAl 

LDH (hydrotalcite) 
34.8 Commercial hydrotalcite. 

Yang et al. 

2005 
Calcined MgAl LDHs 47 – 198 

Co-precipitation at high 

supersaturation, then calcination at 

500°C for 4h. 

Lv et al. 

2006 

Calcined MgAl, ZnAl, 

and NiAl LDHs 
39.9 – 240.6 

Synthesis method similar to co-

precipitation with the use of urea, 

then calcination at various 
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temperatures (from 200 to 800°C). 

El-Sayed et 

al. 2016 

Calcined MgAlZn 

LDHs 
65.1 

Co-precipitation with 15 wt% Zn, 

then calcination at 450°C for 5h. 

Xue et al. 

2016 
Biochar/MgFe LDHs 

3.9 (pores filled 

by biochar) 

LDH directly synthesized in presence 

of the biochar by the liquid-phase 

deposition method. 

Mahmoud 

et al. 2017 
Ti-Fe chitosan LDHs 146.5 

Ball milling method for 10h at 300 

rpm with titanium isopropoxide, iron 

nitrate, and chitosan. 

Yang et al. 

2017 

SiO2 supported on 

MgAl LDHs 
– 

In situ co-precipitation method at 

high supersaturation. 

Zou et al. 

2017 

Calcined CaMgAl 

LDHs 
43 – 157.8 

Hydrothermal synthesis, then 

calcination at various temperatures 

(from 200 to 600°C) for 3h. 

Tzompantzi 

et al. 2011 
Calcined ZnAl LDHs 155 – 228 

Co-precipitation at low 

supersaturation with different Zn/Al 

molar ratios, then calcination at 

400°C for 12h. 

Seftel et al. 

2015 

Various LDHs 

containing Zn
2+

, Cu
2+

, 

Al
3+

, Fe
3+

 or Ti
4+

 

5 – 230 

Co-precipitation at low 

supersaturation with various 

M(II)/M(III) molar ratios. 

Ahmed and 

Gasser 2012 

MgFe LDHs with Cl
-
 

or CO3
2-

 as 

compensating anion 

– 

Separate nucleation and aging 

method with colloid mill rotating at 

5000 rpm for 3min. 

de Sá et al. 

2013 
CaAl LDHs – 

Co-precipitation at high 

supersaturation. 

Shan et al. 

2014 

Magnetic Fe3O4/MgAl 

LDHs 
133 

Co-precipitation at low 

supersaturation. 

Li et al. 

2016 
MgAl LDHs 

uncalcined : 

24.7 

calcined : 

165.1 

Low temperature ethanol-water 

mediated solvothermal method in an 

autoclave at 190°C for 1h. 
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 1787 

Fig12. Effect of pH on the uptake of As(V) and Se(IV) on (a) calcined and (b) uncalcined 1788 

LDHs (from Yang et al. 2005). 1789 

 1790 
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Fig13. Effect of contact time on percentage of dye removal Mg-Fe-CO3-LDH (from Ahmed 1791 

and Gasser 2012). 1792 

Table 7. Synthesis conditions of the LDHs and mixed oxides cited in the part “2.3.1. 1793 

Hydrogen production”. 1794 

Reference 
Type of 

material 

Surface area 

(m².g
-1

) 
Synthesis method 

Marquevich et 

al. 2001 

Calcined NiAl 

hydrotalcite 
104 

Co-precipitation at high supersaturation, 

calcination at 400°C for 4h, then reduction 

under nitrogen steam at 600°C. 

He et al. 2009, 

2010 

Co-NiMgAl 

hydrotalcite 

uncalcined : 

73 – 144 

calcined : 

103 – 180 

Co-precipitation at high supersaturation and 

calcination at 600°C for 6h. The metal 

loading was fixed at 40% and the Co-Ni 

composition was varied from 40 to 0, 30-

10, to 20-20, 10-30, and 0-40. 

Cesar et al. 2016 
NiMgAl 

hydrotalcite 
– 

Co-precipitation at low supersaturation and 

calcination at 750°C for 4h. 

Halabi et al. 

2012a, b 

Calcined MgAl 

LDHs 
15.6 

Commercial hydrotalcite calcined at 400°C 

for 4h and loaded with K2CO3 by dry 

impregnation method. 

Chanburanasiri 

et al. 2013 
MgAl LDHs 104 

Commercial K2CO3-promoted hydrotalcite 

in cylindrical shape. 

Ashok et al. 2008 
Calcined 

NiCuAl LDHs 
120 – 182 

Co-precipitation at low supersaturation and 

calcination at 450°C for 5h. Atomic ratio 

between divalent (Ni
2+

 + Cu
2+

) and trivalent 

(Al
3+

) cations varied from 2 to 9 but 

constant nickel metal content. 

García-Sancho 

et al. 2017 

Calcined 

NiMgAl LDHs 
69 – 156 

Co-precipitation at low supersaturation in 

presence of urea, and calcination at 850°C 

for 10h. 

Sikander et al. 

2018 

Calcined 

NiMgAl LDHs 
– 

Co-precipitation at low supersaturation, and 

calcination at different temperatures: 550, 

700, and 800°C for 6h. 
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 1795 

 1796 

Fig14. Temperature-programmed methane conversion (a) and hydrogen production (b) by 1797 

nickel-containing calcined hydrotalcites (from García-Sancho et al. 2017). 1798 

 1799 

Table 8. H2 production by several types of hydrotalcite-based materials. 1800 

M(II)/M(III) 

molar ratio 

Conversion 

(%) 

Selectivity 

(%) 

Synthesis 

method 
Source References 

2 20 – 79.7 66.6 – 72.1 
Co-

precipitation 

Sunflower 

oil 

Marquevich et al. 

2001 

3 62 70 
Co-

precipitation 
Ethanol He et al. 2009 
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- 100 70 
Co-

precipitation 
Ethanol de Souza et al. 2012 

1.56 72 – 99.6 91.3 – 99.8 Commercial Methane Halabi et al. 2012b 

1 49 – 94 56.1 – 96.5 
Co-

precipitation 

Ethylene 

glycol 
Cesar et al. 2016 

M(II)/M(III) 

molar ratio 

Conversion 

(%) 

H2 produced 

(a.u.) 

Synthesis 

method 
Source References 

3 15 – 55 246 – 1253 
Urea + co-

precipitation 
Methane 

García-Sancho et al. 

2017 

3 15 – 40 250 – 1100 
Urea + co-

precipitation 
Methane 

García-Sancho et al. 

2018 

 1801 

Fig15. Scheme of the reactions involved in fructose dehydration and the resulting formation 1802 

of 5-HMF and byproducts (from Dou et al. 2018). 1803 

 1804 

Table 9. Synthesis parameters of the lamellar materials cited in the part “2.3.2. 5-1805 

Hydroxymethylfurfural formation”. 1806 

Reference Type of material 
Surface area 

(m².g
-1

) 
Synthesis method 
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Lourvanij and 

Rorrer 1994 

Pillared Na-

montmorillonite 
137.7 – 249.6 

Na-montmorillonite mixed into the 

pillaring agent solution. 

Fang et al. 2014 
Cr-montmorillonite 

K10 
– 

K-10 montmorillonite exchanged 

with Cr cations. 

Chheda and 

Dumesic 2007 

Calcined MgAl LDH, 

MgO/ZrO2 

andMgO/TiO2 

~ 300 

MgAl LDH synthesized by co-

precipitation at low supersaturation, 

and mixed oxides by sol-gel method. 

All these samples have been clacined 

at 450°C for 8h. 

Li et al. 2011 Calcined NiMgAl LDH 34 – 117 

Co-precipitation at low 

supersaturation with varying Ni at%, 

and calcination at 800°C for 5h. 

Zeng et al. 

2009b 
Calcined AlZr LDHs 66 – 281 

Co-precipitation at high 

supersaturation and calcination at 

500°C for 6h. 

 1807 

 1808 

Fig16. Proposed intraparticle diffusion and reaction scheme for glucose and fructose within a 1809 

pillared clay catalyst. Reaction 1: sequential dehydration of glucose to HMF and organic acid. 1810 

Reaction 2: isomerization of glucose to fructose. (from Lourvanij and Rorrer 1994). 1811 
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 1812 

Fig17. Catalytic conversion of glucose into 5-HMF at various [BMIM]Cl concentrations in 1813 

DMSO, e = DMSO only (from Fang et al. 2014). 1814 
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 1815 

Fig18. Relations between structural properties and applications of hydrotalcites and related 1816 

materials. 1817 


