
HAL Id: hal-02958106
https://hal.science/hal-02958106

Submitted on 5 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inertial Velocity Estimation for Indoor Navigation
Through Magnetic Gradient-based EKF and LSTM

Learning Model
Makia Zmitri, Hassen Fourati, Christophe Prieur

To cite this version:
Makia Zmitri, Hassen Fourati, Christophe Prieur. Inertial Velocity Estimation for Indoor Navigation
Through Magnetic Gradient-based EKF and LSTM Learning Model. IROS 2020 - IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, Oct 2020, Las Vegas, United States. pp.1-6,
�10.1109/IROS45743.2020.9340772�. �hal-02958106�

https://hal.science/hal-02958106
https://hal.archives-ouvertes.fr


Inertial Velocity Estimation for Indoor Navigation Through Magnetic
Gradient-based EKF and LSTM Learning Model

Makia Zmitri, Hassen Fourati and Christophe Prieur

Abstract— This paper presents a novel method to improve
the inertial velocity estimation of a mobile body, for indoor
navigation, using solely raw data from a triad of inertial
sensors (accelerometer and gyroscope), as well as a determined
arrangement of magnetometers array. The key idea of the
method is the use of deep neural networks to dynamically tune
the measurement covariance matrix of an Extended Kalman
Filter (EKF). To do so, a Long Short-Term Memory (LSTM)
model is derived to determine a pseudo-measurement of inertial
velocity of the target under investigation. This measurement
is used afterwords to dynamically adapt the measurement
noise parameters of a magnetic field gradient-based EKF. As
it was shown in the literature, there is a strong relation
between inertial velocity and magnetic field gradient, which
is highlighted with the proposed approach in this paper. Its
performance is tested on the Openshoe dataset, and the obtained
results compete with the INS/ZUPT approach, that unlike
the proposed solution, can only be applied on foot-mounted
applications and is not adequate to all walking paces.

I. INTRODUCTION

The recent growth of interest in smart systems technology,
autonomous robotics and location-aware services generates a
strong motivation to develop robust and efficient techniques
for tracking the position of a moving body, in both outdoor
and indoor environments. Indoor navigation is difficult to
deal with because of the limited indoor coverage of Global
Positioning System (GPS). Nowadays, different solutions
have been proposed to deal with this issue, most of them
use a variety of sensors that usually require costly and
pre-installed infrastructures, which can be inaccessible in
various applications that introduce hostile environments or
emergency situations. For this reason, navigation solutions
that are independent from pre-equipped buildings are highly
preferred. The most used technique in these situations is
the one fusing data from low-cost Inertial Measurement
Units (IMUs), composed of accelerometers and gyroscopes.
Different approaches have been proposed to effectively han-
dle these sensors, as they introduce biases and errors, and
a simple integration of their outputs can not provide any
accurate position or orientation (attitude) estimations [11].
One possible solution is foot-mounted dead-reckoning using
the Zero-Velocity Update Technique (ZUPT) [5]. However,
this approach needs a very specific parameters tuning that de-
pends on the nature of the walking activity, which makes the
ZUPT unsuitable to general cases. Another way of exploiting
IMUs is by combining them with magnetic sensors. In fact,
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in indoor environments, important magnetic perturbations are
observed [2], that hold valuable information for indoor local-
ization. One of the innovative techniques that takes advantage
of these perturbations, has been firstly introduced in [15] and
[16]. It states that as long as the magnetic field gradient is
non-singular, the velocity can be reconstructed, from only
a 3-axis magnetometers array, a 3-axis accelerometer and
a 3-axis gyroscope measurements. This innovative technique
can be applied on any moving object in indoor environments,
and doesn’t require any particular sensors location. In [15],
authors considered that the magnetic field gradient is un-
known and assumed that it satisfies some first order dynamics
driven by white noises. In [16], the same authors extended
their approach by measuring the magnetic field gradient
(using three 3-axis magnetometers) along side with the
previous assumption (white noise-based dynamic equation).
To the best of the authors knowledge, this choice is not
fit to capture the magnetic field gradient dynamics and can
consequently degrade velocity estimation. For this reason,
in [18], a magnetic field gradient-based Extended Kalman
Filter (EKF) is proposed, that better models the magnetic
field gradient dynamics by using a set of spatially distributed
magnetometers array, and as a result, velocity estimation is
more accurate. One of the well-known difficulties of Kalman
filtering is its covariance matrices tuning (both process Q and
measurement N covariances). Not providing the adequate
values to the different noise parameters in these matrices
causes unbounded errors and thus, unexpected estimation
results. In fact, there is no general solution to properly tune
these covariance matrices and usually, it is based on empiri-
cal methods. More particularly, giving fixed noise parameters
to the measurement covariance N is unsuitable, as the
errors in sensor measurements vary in time, due to different
external factors (e.g temperature). In [10], different tuning
methodologies were demonstrated, to accurately handle an
EKF-based INS/GPS fusion. In [3], authors used a CNN to
tune the noise parameters of an Invariant Extended Kalman
Filter (IEKF), for the dead-reckoning of wheeled vehicles.
This was done by exploiting the assumptions on the velocity
that were presented in the form of pseudo-measurements,
and controlling their corresponding covariance matrices.
On the basis of this idea, an original architecture is proposed
in this paper to improve the performance of the magnetic
field gradient-based EKF. The approach dynamically adapts
the measurement covariance matrix N of the EKF, using
deep learning networks, in the purpose of having a better in-
ertial velocity estimation. To do so, a LSTM model is trained
to compute a pseudo-measurement of inertial velocity. The



latter is then fed to the EKF and used to properly set the
degree of confidence given to it by the filter. This is encoded
in its corresponding covariance matrix that is set automati-
cally by the proposed adapter. To evaluate the performance
of the proposed approach, a comparison is achieved with the
traditional INS/ZUPT method on the open source Openshoe
dataset [14]. First, a notable improvement on the velocity
estimation is displayed, compared to when only the magnetic
field gradient-based EKF with fixed covariance matrices is
used. Then, the estimation results of the proposed approach
are shown to be very close to the INS/ZUPT results. This
is considered very promising, having in mind that unlike
ZUPT, the proposed method is independent from walking
paces (i.e. walking slowly or running) and is applicable on
any other kind of dataset, which doesn’t have to correspond
to a foot-mounted framework, and can be extended to other
applications.

II. PROBLEM STATEMENT

The proposed work in this paper is related to the naviga-
tion of a rigid body in indoor environments, by relying only
on measurements from Micro Electro Mechanical Systems
(MEMS) inertial sensors, as well as a spatially distributed
3-axis MEMS magnetometer’s array. The goal is to design
an approach that estimates the attitude matrix R ∈ SO(3)
(the group of rotations in 3D Euclidean space), the inertial
velocity vn = [vnx vny vnz]

> ∈ R3×1 and eventually if
possible the position Mn = [Mnx Mny Mnz]

> ∈ R3×1

from a given starting configuration (R0, v0, M0).

A. Equations of motion

Two frames of coordinates are used to deal with the
problem cited above:

• a local inertial frame <n fixed to the Earth and its
associated orthonormal basis Bn = (~in,~jn,~kn);

• a body frame <b attached to the moving body and its
associated orthonormal basis Bb = (~ib,~jb,~kb).

Variables expressed in <n (resp. <b) are marked by the
subscript n (resp. b).
The attitude matrix R represents the rotation between these
two frames, from <n to <b. This matrix can be expressed
in terms of quaternion, denoted by q, such as R = R(q)
[18]. The quaternion is a hypercomplex number of rank 4
such that q = [q0 q>vect]

>, where q0 is the scalar part and
qvect = [q1 q2 q3]

> is the vector part. The reader is invited
to refer to [9] for more details about quaternion algebra.
The main equation that describes the variation of quaternion,
can be defined from angular velocity measurements ω =
[ωx ωy ωz]

> ∈ R3×1 of <b with respect to <n, given by
a 3-axis gyroscope such as,

dq

dt
=

1

2
[ωq×]q (1)

where ωq = [0 ω>]> and [ωq×] is its skew-symmetric
matrix.

To determine the inertial velocity vn and position Mn, the
following kinematic model is introduced,

dvn
dt

= R>ab − g ;
dMn

dt
= vn (2)

where ab = [abx aby abz]
> ∈ R3×1 is the acceleration

in <b, measured by a 3-axis accelerometer. In this work
the effects of Earth rotation and Coriolis acceleration are
ignored, and the gravity vector g = [0 0 gz]

> ∈ R3×1 is
considered known.

B. The magnetic field gradient to observe velocity

The following variables can be introduced at first:
• The magnetic field measured in <b by a 3-axis mag-

netometer, which depends on time and space, Bb =
[Bbx Bby Bbz]

> ∈ R3×1;
• The Jacobian matrix ∇Bb ∈ R3×3, which represents

the gradient of the magnetic field, measured on a fixed
point Pb = [xbp ybp zbp]

> ∈ R3×1 and defined by

∇Bb(Pb(t)) =
∂Bb(Pb(t))

∂Pb(t)
(3)

In this work, the magnetic field disturbances, that are often
observed indoors [2], are used to generate accurate estimates
of velocity. This technique was firstly introduced in [15], and
it resides on deriving Maxwell’s equations [7] to obtain the
following dynamic equation1 of the sensed magnetic field in
<b,

dBb

dt
= −ω ×Bb +∇Bbvb (4)

where vb = Rvn ∈ R3×1 is the velocity in <b.
As long as ∇Bb is non-singular, vb is observable and can
be estimated (see [16] for the observability proof). However,
a remaining issue in this case is to reliably measure ∇Bb.
In [15] and [16], model (4) is considered and ∇Bb mea-
surements are computed from a magnetometers array and
assumed to satisfy a white noise-based model. In this case,
the following points can be mentioned:
• the obtained ∇Bb from the magnetometers array may

contain a large noise coming first, from each noisy mag-
netometer measurement, and second, from the approx-
imations taken into account to compute the different
Jacobians representing the elements of ∇Bb;

• modeling ∇Bb components with a white noise is not
sufficient to capture full information on their dynamics.

These two arguments suggest that an accurate representation
of ∇Bb needs to be derived, or else, velocity estimation will
suffer from unbounded errors especially when ∇Bb has low
values, as shown in [4].
In [18], a novel method that deals with this issue is proposed,
through introducing a new equation that models efficiently
the dynamics of ∇Bb, using higher order spatial derivatives
of the magnetic field,

d∇Bb

dt
= Tbvb +∇Bb[ω×]− [ω×]∇Bb (5)

1× is the cross product of two vectors in R3.



where Tb ∈ R3×3×3 is a tensor representing the first spatial
derivative of ∇Bb in <b. The reader can refer to [18] for
more information on how Tb is measured.

C. Continuous-time dynamic model

To estimate attitude, inertial velocity and eventually po-
sition, a magnetic field gradient-based EKF alongside with
a LSTM model are proposed. The EKF is established using
the continuous-time dynamic model represented as follows:

dq

dt
=

1

2
[ωq×]q

dvn
dt

= R>ab − g

dBb

dt
= −ω ×Bb +∇BbRvn

d∇Bb

dt
= TbRvn +∇Bb[ω×]− [ω×]∇Bb

(6)

The state vector for this dynamic model is x =
[q vn Bb ∇Bb]

> ∈ R15×1, the input vector is u =
[ω ab Tb]

> ∈ R13×1, and the output (measurement)
vector is y = [Bb ∇Bb]

> ∈ R8×1. Recall that only 7
elements of Tb are sufficient to calculate all the tensor’s
components, see [18]. This model is used to design the
magnetic field gradient-based EKF, however, minor changes
are applied when combining the latter with a LSTM model,
in particular, a new element is added to the measurement
vector. This proposed EKF-LSTM estimation approach is
explained further in the next section.

III. EKF-LSTM ESTIMATION APPROACH

In this section, the proposed estimation schema is detailed.
A LSTM-based learning model is used to dynamically tune
the measurement covariance matrix N ∈ R11×11 of the
magnetic field gradient-based EKF. The approach which
consists of three main blocks, is represented in Fig. 1, and
is summarized as follows:
• a LSTM-model is trained to give a pseudo-

measurement of inertial velocity, denoted
vlstm = [vnx,lstm vny,lstm vnz,lstm]> ∈ R3×1;

• vlstm is added to the output vector of the magnetic field
gradient-based EKF, represented by the continuous-time
dynamic model (6), such as y = [Bb ∇Bb vlstm]> ∈
R11×1;

• the measurement covariance matrix adapter determines
the most suitable noise parameters of the measurement
covariance matrix N corresponding to vlstm;

• EKF uses the continuous-time dynamic model (6),
inertial and magnetic measurements, vlstm and N to
better estimate the states, especially the magnetic field
gradient and the velocity.

In the following subsections a detailed explanation of the two
blocks: the LSTM model and the measurement covariance
matrix adapter, used in the magnetic field gradient based-
EKF, to estimate x̂ = [q̂ v̂n B̂b ∇̂Bb]

>.

Fig. 1: The proposed EKF-LSTM estimation system

A. LSTM model

The use of a deep learning algorithm inside the proposed
approach is done to obtain a pseudo-measurement of inertial
velocity. This pseudo-measurement is then used in the EKF,
and the level of confidence given to this measurement is
controlled by N , as it will be explained further in the next
subsection.
After reviewing the literature, it appears that the LSTM is
one of the best learning solutions. This choice can actually
be straightforward as LSTM-based models are considered
very suitable for time series data, and they do not require
any complex implementation. LSTM is an extension of
artificial Recurrent Neural Network (RNN) architecture [6].
Its particularity is that it has feedback connections, which
distinguish it from standard feedforward neural networks
[12]. These feedback connections qualify the network to not
only process single data points, but also an entire sequence
of data, by retaining data information over long time periods.

B. Measurement covariance matrix adapter

The pseudo-measurement of inertial velocity vlstm is
fed from the trained LSTM-based model to the magnetic
field gradient-based EKF. At this point, the role of the
measurement covariance matrix adapter, represented with
the orange block in Fig. 1, is to dynamically assess the
noise parameters in N , that reflect confidence in the new
measurement vlstm. The measurement covariance matrix can
be represented with N = diag(N1,N2,N3), where N1<i≤3
are the measurement covariance matrices corresponding to
Bb, ∇Bb and vlstm respectively. In this work, the main
interest is in N3 ∈ R3×3, the covariance matrix of the
measurement vlstm. Regarding the other noise parameters
(i.e. N1<i≤2), their values are fixed taking into account
the noise standard deviation, indicated in the magnetometer
datasheet, and their dynamic adaptation is left for future
work. The same goes for the process covariance matrix
Q ∈ R15×15.
Algorithm 1 represents the measurement covariance matrix
adapter, with α ∈ R>0 a multiplication factor, and ε ∈ R>0

a chosen threshold that indicates whether the amplitude of
the LSTM predicted velocity is sufficiently low.
Then, the EKF estimates vn using the magnetic field
gradient-based technique, aided by the LSTM estimate vlstm.
This is clearly understood when large values are assigned
(equal to αI3) to N3,i. On the other hand, when vlstm has
an amplitude that is close to zero, the EKF gives it more



EKF initialization;
for i = 1 : length (testdata) do

N3,i = αI3;
EKF prediction;
if vlstm,i ≤ ε then

N3,i = I3;
end
EKF update;

end
Algorithm 1: Measurement covariance matrix adapter

confidence by attributing lower values (equal to I3) to N3,i.
The reason for this strategy is the fact that vlstm prediction
is more accurate when its 3-axis values are close to zero,
than when they are not. This behavior can be explained with
the insufficiency of data that corresponds to high amplitudes
of inertial velocity in the used training dataset. To back up
this assumption, the impact of the high amplitudes training
data percentage on the predicted velocity vlstm accuracy is
analyzed using the boxplot [17] in Fig. 2.
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Fig. 2: Effect of high amplitudes training data percentage
on RMSE of predicted velocity. Larger the percentage of
training data, the smaller velocity RMSE of the testing data
becomes.

For this experiment, a dataset with 5913 samples is used.
It is created from the Openshoe dataset and contains sensor
measurements corresponding to dynamic phases with high
velocity amplitudes. This dataset is divided into 70% (equiv-
alent to 4139 samples) for the training, and 30% (equivalent
to 1774 samples) for the testing. Then the Root Mean Square
Error (RMSE) between the INS/ZUPT-based velocity and
the LSTM predicted one (of the testing set) is measured for
different used percentages of the training dataset. The process
is repeated 20 times for each training data percentage. Note
that the 30% corresponding to the testing set are always fixed.
As the training data percentage increases, the RMSE of the
predicted velocity of the testing set gradually decreases (for
instance by looking at the median values represented by the
red horizontal lines). This result indicates that as more inputs
are provided to the LSTM during training for the dynamic

phases, the prediction of vlstm is more accurate.
Nevertheless, high accuracy of the deep learning network
is not mandatory in this work. A small training database is
sufficient to detect when vlstm is close to zero. The low
accuracy during the dynamic phases is handled through the
tuning of the magnetic field gradient-based EKF with the
measurement covariance matrix adapter.

IV. EXPERIMENTAL SCENARIO AND RESULTS

The performance of the magnetic field gradient-based EKF
is presented in this section, and how the inertial velocity
estimation results should be improved. Then, the proposed
EKF-LSTM approach is applied and it exhibits better perfor-
mance on the velocity estimation and it impacts the position
determination.

A. Magnetic field gradient-based EKF

In order to assess the performance of the magnetic field
gradient-based EKF, 50% of the data provided by Openshoe
is used2. Under Matlab, a comparison between the proposed
algorithm, and the INS/ZUPT-based velocity estimation [13]
is achieved. In Fig. 3, the estimation results for vn are plotted.
The proposed EKF succeeds to estimate accurate inertial
velocity at some phases of the walking scenario, without any
additional velocity correction as the case for the INS/ZUPT-
based method.
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Fig. 3: Estimation of vn with the magnetic field gradient-
based EKF and without the LSTM algorithm

Despite the intermittent errors that are seen in the comparison
above, this first result is very promising, as it doesn’t rely
on any foot-mounted related technique, and is independent
from the walking pace, as the case for ZUPT. To the best of
authors knowledge, the proposed method can be extended to
any other type of applications (drones, wheeled-robots, etc.),
that are in search for reliable methods for inertial velocity
estimation.
There are multiple sources of errors that are seen in Fig. 3.
For instance, the different approximations taken into account
to extract the spatial derivatives of ∇Bb (Tb for example) can

2The dataset provides measurements for only one 3-axis magnetometer.
The rest of the magnetic array data is simulated.



lead to some errors, others can be the result of linearization
process of the EKF, etc.
One of the additional encountered difficulties when dealing
with the Kalman filter, is the tuning of its covariance matrices
(i.e. process and measurement covariances). Then, using a
fixed N , is not suitable for situations where the error in
sensor readings varies in time due to external factors (e.g.
temperature). Based on this idea, an EKF-LSTM system is
proposed that generates a pseudo-measurement of inertial
velocity, feeds it to the magnetic field gradient-based EKF,
and uses its dynamic to tune its corresponding covariance
matrix.

B. Magnetic field gradient-based EKF aided by LSTM net-
work

The implementation details and evaluation results of the
proposed EKF-LSTM approach are detailed in the following,
starting from the training process until the estimation one.
The result of the reconstructed trajectory corresponding to
the estimated velocity is also analyzed and discussed.

1) LSTM training details: The full proposed algorithm is
implemented under Matlab using the deep learning toolbox.
The diagram represented in Fig. 4 illustrates the architecture
of the designed LSTM network. It starts with a sequence

Fig. 4: Diagram of the used LSTM network

input layer receiving 9 features, representing raw data of 3-
axis accelerometer, 3-axis gyroscope, and 3-axis magnetome-
ter, followed by a LSTM layer containing 100 hidden units.
Then, a fully connected layer to the 3-axis velocity vlstm,
and finally a regression layer that computes a loss function
representing the Mean Squared Error (MSE) between the true
velocity (Openshoe INS/ZUPT velocity in this case) and the
determined one. This network computes then, for each time
step i,

vlstm,i = LSTM(wi, ab,i, Bb,i) (7)

For the training process, the Adam optimizer [8] is used
with an initial learning rate of 0.01, and the model is trained
for 100 epochs. Before training, a standardization [1] is
applied on the Openshoe dataset, which consists basically
in subtracting the arithmetic mean from the given data and
dividing it by the standard deviation. Then, 50% of this
data are used to form the training set and the other 50%
are for the testing. The 50% training portion is equivalent
to 7038 samples, which is considered small for a training
process. This is the advantage of the proposed approach,
that it doesn’t require any complex artificial intelligence step
that might need a large time computation or memory usage.
The result of inertial velocity determination using the LSTM,
applied on the testing set is displayed in Fig. 5. As expected,
the accuracy of the determined velocity from the LSTM

during phases where it has large amplitudes is lower than the
phases where the amplitude is close to zero. As demonstrated
in Fig. 2, this is due to the usage of a training set that lacks
high amplitudes velocity data.
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Fig. 5: Determination of vn with only the LSTM algorithm

Other deep learning algorithms may outperform this LSTM
learning model, and adding more training data can improve
accuracy results, however, as indicated earlier, a high de-
termination accuracy is not required at this step, as the
final velocity estimation is obtained from the magnetic field
gradient-based EKF.

2) EKF-LSTM estimation results: The velocity estimate
vlstm is fed to the measurement vector of EKF (as pseudo-
measurement). Within its loop, algorithm 1 is ran, to dy-
namically adapt the corresponding covariance matrix. The
threshold ε is 0.1ms−1 and the multiplication factor α is
104. These values correspond to the tested data, and can
change according to the studied dataset. The performance
of the proposed EKF-LSTM-based estimation is evaluated
on the testing set, by comparing the obtained results to the
INS/ZUPT algorithm ones. In Fig. 6, the 3-axis components
of inertial velocity vn are plotted. The velocity estimate v̂n
(blue solid line) given by the approach is now very close to
the INS/ZUPT estimate (red solid line). The RMSE between
the two results is around 0.23ms−1, which is very promising
considering that the proposed method does not use any foot-
mounted related estimation techniques.
To analyze the effect of velocity estimation on the trajectory
reconstruction, v̂n is integrated and the 2D estimated position
M̂n is plotted and represented in Fig. 7. The estimated
trajectory (blue solide line) is close to the tested one (black
solid line), and the same squared shape is maintained.
Table I presents the traveled distance, as well as the coordi-
nates of the arrival points for both trajectories. The arrival
point of the tested trajectory is different from the starting
point, that is the same for both trajectories.
The error of the final arrival point between the two trajecto-
ries is around 1.8m which competes with top ranked methods
in the literature, that require either a costly and heavy pre-
installed infrastructure or a very specific sensor location (as
the case for ZUPT). It is also important to highlight that in
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Fig. 6: Estimation of vn with the EKF-LSTM system

Fig. 7: 2D trajectory reconstruction

TABLE I: Comparison between the INS/ZUPT reconstructed
trajectory and the one from the proposed approach

INS/ZUPT EKF/LSTM
Traveled distance [m] 45.01 43.42
Arrival point coordinates [m] [-0.41, 7, 0.06] [-1.8, 6.89, 0.6]

this work, the Openshoe INS/ZUPT estimation results are
considered as the ground truth. However, no conclusions
can be made on their accuracy, as no actual ground truth
is provided. This means that results given by the proposed
approach, can be closer to reality than the ones computed
from the INS/ZUPT approach.

V. CONCLUSIONS

In this paper, the inertial velocity and position estimation
from a magnetic field gradient-based EKF aided by a LSTM
algorithm was proposed. The LSTM model was introduced
to provide a pseudo-measurement of velocity for the EKF,
and a covariance matrix adapter was applied to dynamically
tune its corresponding noise parameters. The final inertial
velocity estimate from the proposed approach competes with
the INS/ZUPT results, as it requires only IMU and magnetic
measurements, and doesn’t rely on any particular sensor

location or walking pace parameterization. It was shown that
the reconstructed trajectory from this novel method is very
close to the one from INS/ZUPT technique, and small drifts
were observed. Other datasets corresponding to different
applications (e.g. drones, land robots, etc.) need to be tested
to highlight more the efficiency of the proposed solution.
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