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INTRODUCTION

State of the art

Proportional-Integral (PI) regulation control of infinitedimensional systems is an active topic of research. While early works in this area were reported in the 80's for bounded control operators [START_REF] Pohjolainen | Robust multivariable PI-controller for infinite dimensional systems[END_REF][START_REF] Pohjolainen | Robust controller for systems with exponentially stable strongly continuous semigroups[END_REF][START_REF] Xu | A robust PI-controller for infinite-dimensional systems[END_REF], the PI boundary regulation of infinitedimensional systems is more recent. This includes linear hyperbolic systems [START_REF] Santos | Boundary control with integral action for hyperbolic systems of conservation laws: Stability and experiments[END_REF][START_REF] Xu | Multivariable boundary PI control and regulation of a fluid flow system[END_REF][START_REF] Bastin | Stability of linear density-flow hyperbolic systems under PI boundary control[END_REF][START_REF] Lamare | Control of 2×2 linear hyperbolic systems: Backstepping-based trajectory generation and PI-based tracking[END_REF], 1-D nonlinear transport equation [START_REF] Coron | PI controllers for 1-D nonlinear transport equation[END_REF][START_REF] Trinh | Design of integral controllers for nonlinear systems governed by scalar hyperbolic partial differential equations[END_REF], regulation of the downside angular velocity of a drilling string [START_REF] Terrand-Jeanne | Regulation of the downside angular velocity of a drilling string with a PI controller[END_REF], and the regulation of a drilling pipe under friction [START_REF] Barreau | Practical stabilization of a drilling pipe under friction with a PI-controller[END_REF]. The PI regulation of open-loop exponentially stable semigroups with unbounded control operators were reported in (Terrand-Jeanne et al., 2018a, 2019) via a Lyapunov functionalbased design procedure. This paper is focused on the PI regulation control of the left Neumann trace of a one-dimensional reaction-diffusion equation, which might be either open-loop stable or unstable, with a delayed right Dirichlet boundary control. Specifically, we aim at achieving the Neumann trace track-This publication has emanated from research supported in part by a research grant from Science Foundation Ireland (SFI) under grant number 16/RC/3872 and is co-funded under the European Regional Development Fund and by I-Form industry partners.

ing of a constant reference input in spite of the presence of an arbitrarily large constant input delay and a stationary distributed disturbance. It was shown in [START_REF] Guzmán | Stabilization of the linear Kuramoto-Sivashinsky equation with a delayed boundary control[END_REF] that backstepping-based control design can be used to achieve the feedback stabilization of a reaction-diffusion equation in the presence of an arbitrarily large input delay. In this paper, we adopt the approach reported in [START_REF] Prieur | Feedback stabilization of a 1D linear reaction-diffusion equation with delay boundary control[END_REF] which takes advantage of the following design procedure initially reported in [START_REF] Russell | Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions[END_REF]: 1) design of the controller on a finite-dimensional model capturing the unstable modes of the original infinitedimensional system; 2) use of a suitable Lyapunov functional to guarantee the stability of the resulting closedloop infinite-dimensional system. This control design procedure, which was used in (Coron andTrélat, 2004, 2006;[START_REF] Schmidt | Controllability of Couette flows[END_REF] to stabilize semilinear heat, wave or fluid equations via (undelayed) boundary feedback control, was extended in [START_REF] Prieur | Feedback stabilization of a 1D linear reaction-diffusion equation with delay boundary control[END_REF] to the case of delay boundary control of a one-dimensional reaction-diffusion equation in which the contribution of the input-delay was managed by the synthesis of a predictor feedback via the classical Artstein transformation [START_REF] Artstein | Linear systems with delayed controls: a reduction[END_REF][START_REF] Richard | Time-delay systems: an overview of some recent advances and open problems[END_REF][START_REF] Bresch-Pietri | New formulation of predictors for finite-dimensional linear control systems with input delay[END_REF]. This control strategy was first reused in [START_REF] Guzmán | Stabilization of the linear Kuramoto-Sivashinsky equation with a delayed boundary control[END_REF] for the delay boundary feedback stabilization of a linear Kuramoto-Sivashinsky equation and then generalized to the delay boundary feedback stabilization of a class of diagonal infinite-dimensional systems for either a constant (Lhachemi and Prieur, 2020;[START_REF] Lhachemi | Control law realification for the feedback stabilization of a class of diagonal infinite-dimensional systems with delay boundary control[END_REF] or a time-varying (Lhachemi et al., 2019a(Lhachemi et al., , 2020) ) input delay.

Investigated control problem

Let L > 0, let c ∈ L ∞ (0, L), and let D > 0 be arbitrary. We consider the one-dimensional reaction-diffusion equation over (0, L) with delayed Dirichlet boundary control:

y t = y xx + c(x)y + d(x), (t, x) ∈ R * + × (0, L) (1a) y(t, 0) = 0, t ≥ 0 (1b) y(t, L) = u D (t) u(t -D), t ≥ 0 (1c) y(0, x) = y 0 (x),
x ∈ (0, L) (1d) where y(t, •) ∈ L 2 (0, L) is the state at time t, u(t) ∈ R is the control input, D > 0 is the (constant) control input delay, d ∈ L 2 (0, L) is a stationary distributed disturbance, and y 0 ∈ H 2 (0, L) with y 0 (0) = 0 and y 0 (L) = u(-D) is the initial condition.

Our objective is to achieve the PI regulation control of the left Neumann trace y x (t, 0) to some prescribed constant reference input r ∈ R in spite of the stationary distributed disturbance d, i.e., y x (t, 0) → r as t → +∞. Note that an exponentially stabilizing controller for (1a-1d) was reported in [START_REF] Prieur | Feedback stabilization of a 1D linear reaction-diffusion equation with delay boundary control[END_REF] in the disturbancefree case (d = 0) for a system trajectory evaluated in H1 0norm. The control strategy that we develop in the present paper elaborates on the one of [START_REF] Prieur | Feedback stabilization of a 1D linear reaction-diffusion equation with delay boundary control[END_REF], adequately combined with a PI procedure.

CONTROL DESIGN STRATEGY

The sets of nonnegative integers, positive integers, real, nonnegative real, and positive real are denoted by N, N * , R, R + , and R * + , respectively. All the finite-dimensional spaces R p are endowed with the usual Euclidean inner product x, y = x y and the associated 2-norm x =

x, x = √ x x. For any matrix M ∈ R p×q , M stands for the induced norm of M associated with the above 2norms. For a given symmetric matrix P ∈ R p×p , λ m (P ) and λ M (P ) denote its smallest and largest eigenvalues, respectively. In the sequel, the time derivative ∂f /∂t is either denoted by f t or ḟ while the spatial derivative ∂f /∂x is either denoted by f x or f .

Augmented system for PI feedback control

The control design objective is: 1) to stabilize the reactiondiffusion system (1a-1d); 2) to ensure the tracking of the constant reference input r ∈ R by the left Neumann trace y x (t, 0). We address this problem by designing a PI controller. Following the general PI scheme, we introduce a new state z(t) ∈ R taking the form of the integral of the tracking error y x (t, 0) -r:

y t = y xx + c(x)y + d(x), (t, x) ∈ R * + × (0, L) (2a) ż(t) = y x (t, 0) -r, t ≥ 0 (2b) y(t, 0) = 0, t ≥ 0 (2c) y(t, L) = u D (t) u(t -D), t ≥ 0 (2d) y(0, x) = y 0 (x), x ∈ (0, L) (2e) z(0) = z 0 (2f) with z 0 ∈ R the initial condition of the integral component.
As we are only concerned in prescribing the future of the system, we assume that the system is uncontrolled for t < 0, i.e. u(t) = 0 for t < 0. Thus, we assume in the rest of the paper that y 0 ∈ H 2 (0, L) ∩ H 1 0 (0, L).

Spectral reduction

We rewrite (2) as an equivalent homogeneous Dirichlet problem. Assuming 1 that u is continuously differentiable and setting w(t, x) = y(t, x) -x L u D (t), we have

w t = w xx + c(x)w + x L c(x)u D - x L uD (t) + d(x) (3a) ż(t) = w x (t, 0) + 1 L u D (t) -r (3b) w(t, 0) = w(t, L) = 0 (3c) w(0, x) = y 0 (x) - x L u D (0) = y 0 (x) (3d) 
z(0) = z 0 (3e) for t > 0 and x ∈ (0, 1). Introducing the real state-space L 2 (0, 1) endowed with its usual inner product f, g

= L 0 f (x)g(x) dx and the operator A = ∂ xx + c id : D(A) ⊂ L 2 (0, L) → L 2 (0, L) defined on the domain D(A) = H 2 (0, L) ∩ H 1 0 (0, L), (3a-3c) can be rewritten as w t (t, •) = Aw(t, •) + a(•)u D (t) + b(•) uD (t) + d(•) (4a) ż(t) = w x (t, 0) + 1 L u D (t) -r (4b)
with a(x) = x L c(x) and b(x) = -x L for every x ∈ (0, L), with initial conditions (3d-3e). Since A is self-adjoint and has compact resolvent, we consider a Hilbert basis (e j ) j≥1 of L 2 (0, L) consisting of eigenfunctions of A associated with the sequence of simple real eigenvalues

-∞ < • • • < λ j < • • • < λ 1 with λ j -→ j→+∞ -∞.
Note that e j (•) ∈ H 1 0 (0, L) ∩ C 1 ([0, L]) for every j ≥ 1 and

e j (0) ∼ 2 L |λ j |, λ j ∼ - π 2 j 2 L 2 , (5) 
when j → +∞. Since w(0, •) = y 0 ∈ H 2 (0, L) ∩ H 1 0 (0, L), the classical solution w(t, •) ∈ H 2 (0, L) ∩ H 1 0 (0, L) of (4a) can be expanded as a series in the eigenfunctions e j (•), convergent in H 1 0 (0, L),

w(t, •) = +∞ j=1 w j (t)e j (•). (6) 
Thus ( 4) is equivalent to the infinite-dimensional control system:

ẇj (t) = λ j w j (t) + a j u D (t) + b j uD (t) + d j (7a) ż(t) = j≥1 w j (t)e j (0) + 1 L u D (t) -r (7b) 
for j ∈ N * , with w j (t) = w(t, •), e j , a j = a, e j , b j = b, e j , and d j = d, e j . Introducing the auxiliary control input v u, and denoting v D (t) v(t -D), (7) can be rewritten as uD

(t) = v D (t) (8a) ẇj (t) = λ j w j (t) + a j u D (t) + b j v D (t) + d j (8b) ż(t) = j≥1 w j (t)e j (0) + 1 L u D (t) -r (8c) 
for j ∈ N * . As u(t) = 0 for t < 0, (8a) yields v(t) = 0 for t < 0 and the initial condition u D (0) = 0.

Finite-dimensional truncated model

In what follows, we fix the integer n ∈ N * such that λ n+1 < 0 ≤ λ n . In particular, we have λ j ≥ 0 when 1 ≤ j ≤ n and λ j ≤ λ n+1 < 0 when j ≥ n + 1. Then, introducing as in [START_REF] Prieur | Feedback stabilization of a 1D linear reaction-diffusion equation with delay boundary control[END_REF]: 8a) and the n first equations of (8b) yield the truncated model:

X 1 (t) =     u D (t) w 1 (t) . . . w n (t)     , A 1 =     0 0 • • • 0 a 1 λ 1 • • • 0 . . . . . . . . . . . . a n 0 • • • λ n     , B 1 = (1 b 1 . . . b n ) , D 1 = (0 d 1 . . . d n ) , with X 1 (t) ∈ R n+1 , A 1 ∈ R (n+1)×(n+1) , B 1 ∈ R n+1 , D 1 ∈ R n+1 , (
Ẋ1 (t) = A 1 X 1 (t) + B 1 v D (t) + D 1 . (9) 
Now, as

e j (0) λj 2 ∼ 2L π 2 j 2 when j → +∞, we can introduce the change of variable ζ(t) z(t) - j≥n+1 e j (0) λ j w j (t), (10) 
whose time derivative is given by

ζ(t) = ż(t) - j≥n+1 e j (0) λ j ẇj (t) = αu D (t) + βv D (t) -γ + n j=1
w j (t)e j (0), where we have used (8b-8c), with

α = 1 L - j≥n+1 e j (0) λ j a j , β = - j≥n+1 e j (0) λ j b j , (11a) 
γ = r + j≥n+1 e j (0) λ j d j . (11b) 
Then we have

ζ(t) = L 1 X 1 (t) + βv D (t) -γ (12) 
with L 1 = α e 1 (0) . . . e n (0) ∈ R 1×(n+1) . Now, defining the augmented state-vector X

(t) = X 1 (t) ζ(t) ∈ R n+2 , the exogenous input Γ = D 1 -γ ∈ R n+2 and the matrices A = A 1 0 L 1 0 ∈ R (n+2)×(n+2) , B = B 1 β ∈ R n+2 ,
(13) we obtain from ( 9) and (12) the control system Ẋ(t) = AX(t) + Bv D (t) + Γ (14) which is the finite-dimensional truncated model capturing the unstable part of the infinite-dimensional system along with the introduced integral component for PI regulation. Putting together the truncated model ( 14) along with (8b) for j ≥ n + 1, we get the final representation used for both control design and stability analyses:

Ẋ(t) = AX(t) + Bv D (t) + Γ (15a) ẇj (t) = λ j w j (t) + a j u D (t) + b j v D (t) + d j (15b) with j ≥ n + 1.

Control design strategy

The adopted control design strategy relies on the use of the classical predictor feedback to stabilize the finitedimensional truncated model (15a). Specifically, introducing the Artstein transformation [START_REF] Artstein | Linear systems with delayed controls: a reduction[END_REF])

Z(t) = X(t) + t t-D e A(t-D-τ ) Bv(τ ) dτ, (16) 
we have Ż(t) = AZ(t) + e -DA Bv(t) + Γ.

Since (A, B) satisfies the Kalman condition (the proof of this claim is omitted due to space limitation; details can be found in [START_REF] Lhachemi | PI regulation of a reaction-diffusion equation with delayed boundary control[END_REF]), the pair (A, e -DA B) also satisfies the Kalman condition and we infer the existence of a feedback gain KZ(t) where χ [0,+∞) denotes the characteristic function of the interval [0, +∞), we obtain the stable closed-loop dynamics Ż(t) = A K Z(t) + Γ.

K ∈ R 1×(n+2) such that A K A + e -DA BK is Hurwitz. Setting v(t) = χ [0,+∞) (t)
Remark 1. In original coordinates, the control input v is solution of the fixed point implicit equation

v(t) = χ [0,+∞) (t)KX(t)+K t max(t-D,0) e A(t-D-τ ) Bv(τ ) dτ.
Existence and uniqueness of the solution of the above equation are reported in [START_REF] Bresch-Pietri | New formulation of predictors for finite-dimensional linear control systems with input delay[END_REF]. •

Characterization of the equilibrium point

We characterize the equilibrium point of the closed-loop system associated with a constant reference input r ∈ R and a stationary distributed disturbance d ∈ L 2 (0, L). In the sequel, we denote by a subscript "e" the equilibrium value of the different quantities. Noting that u D,e = u e and v D,e = v e , we have 0 = A K Z e + Γ 0 = λ j w j,e + a j u e + b j v e + d j , j ≥ n + 1

In particular, from v e = KZ e , we have AZ e + e -DA Bv e + Γ = 0. As the first row of A and Γ are null and [1 0 . . . 0] e -DA B = 1, we obtain that v e = 0. Moreover we have Z e = -A -1 K Γ. Then we can set X e = Z e because AX e + Bv D,e + Γ = A K Z e + Γ = 0, which is compatible with the Artstein transformation since v e = 0 implies Z e = X e + t t-D e (t-s-D)A Bv e ds. Then we have

u e = u D,e = [1 0 . . . 0] Z e = -[1 0 . . . 0] A -1
K Γ, and w j,e = -a j λ j u e -d j λ j for j ≥ n + 1. Now, noting that both (w j,e ) j and (λ j w j,e ) j are square-summable sequences, we can define w e j≥1 w j,e e j ∈ D(A) = H 2 (0, L) ∩ H 1 0 (0, L).

Expending the last row of AX e + Γ = 0, we obtain that w e (0) + 1 L u e = r. Consequently, the introduction of y e w e + x L u e yields y e (0) = r. Finally, from Aw e = j≥1 λ j w j,e e j we deduce that Aw e + au D,e + bv D,e + d = 0.

Dynamics of deviations

We now define the deviations of the various quantities with respect to their equilibrium value: ∆X = X -X e , ∆Z = Z -Z e , ∆w = w -w e , ∆w j = w j -w j,e , ∆ζ = ζζ e , ∆u = u -u e , ∆u D = u D -u e , ∆v = v -v e , and ∆v D = v D -v D,e . Then, in original coordinates:

∆w t = A∆w + a∆u D + b∆v D (17) and ∆ Ẋ(t) = A∆X(t) + B∆v D (t)
∆ ẇj (t) = λ j ∆w j (t) + a j ∆u D (t) + b j ∆v D (t) for j ≥ n + 1 with the auxiliary control input ∆v(t) = χ [0,+∞) (t)K∆Z(t) (because v e = KZ e = 0) where

∆Z(t) = ∆X(t) + t t-D e (t-s-D)A B∆v(s) ds. ( 18 
)
In Z coordinates, the closed-loop dynamics is given by ∆

Ż(t) = A K ∆Z(t) (19a) ∆ ẇj (t) = λ j ∆w j (t) + a j ∆u D (t) + b j ∆v D (t) (19b) for j ≥ n + 1.

STABILITY ANALYSIS

The stability of the closed-loop infinite-dimensional system is assessed by the following theorem. Theorem 1. There exist κ, C 1 > 0 such that ∆u

D (t) 2 + ∆ζ(t) 2 + ∆w(t) 2 H 1 0 (0,L) (20) 
≤ C 1 e -2κt ∆u D (0) 2 + ∆ζ(0) 2 + ∆w(0) 2 H 1 0 (0,L)
. The proof of Theorem 1 relies on the following Lyapunov function:

V (t) = M 2 ∆Z(t) P ∆Z(t) (21) + M 2 t max(t-D,0) ∆Z(s) P ∆Z(s) ds - 1 2 j≥1 λ j ∆w j (t) 2 ,
where P ∈ R (n+2)×(n+2) is the solution of the Lyapunov equation

A K P + P A K = -I and M > 0 is chosen such that M > max γ 1 λ 1 λ m (P ) , 2 γ 1 a 2 + b 2 e -DA K 2 K 2
with γ 1 2 max 1, De 2D A BK 2 . Useful properties of V are stated in the three following lemmas. Due to space limitation, only a sketch of proof is provided. Lemma 1. There exists a constant C 1 > 0 such that

V (t) ≥ C 1 j≥1 (1 + |λ j |)∆w j (t) 2 , (22a) 
V (t) ≥ C 1 ∆u D (t) 2 + ∆ζ(t) 2 + ∆w(t) 2 H 1 0 (0,L) , (22b) V (t) ≥ C 1 ∆Z(t) 2 , (22c) for every t ≥ 0.
Sketch of proof Using M > γ1λ1 λm(P ) , the claimed estimates are obtained similarly to the ones reported in [START_REF] Prieur | Feedback stabilization of a 1D linear reaction-diffusion equation with delay boundary control[END_REF]. 2 Lemma 2. There exist κ, C 2 > 0 such that V (t) ≤ e -2κ(t-D) V (D) for every t ≥ D.

Sketch of proof

As A is self-adjoint, we have for t > D,

V (t) = - M 2 ∆Z(t) 2 - M 2 t t-D ∆Z(s) 2 ds -A∆w(t) 2 -A∆w(t), a ∆u D (t) -A∆w(t), b ∆v D (t). The use of Cauchy-Schwarz and Young inequalities show that V (t) ≤ - 1 2 A∆w(t) 2 - γ 2 λ M (P ) ∆Z(t) P ∆Z(t) + t t-D ∆Z(s) P ∆Z(s) ds for all t > D and γ 2 = M/2-γ 1 a 2 + b 2 e -DA K 2 K 2 > 0.
Similarly to [START_REF] Prieur | Feedback stabilization of a 1D linear reaction-diffusion equation with delay boundary control[END_REF], we infer the existence of a constant γ 3 > 0 such that, for all t ≥ 0, -A∆w(t), ∆w(t) ≤ γ 3 A∆w(t) 2 . Consequently, we obtain that V (t) ≤ -2κV (t) for all

t > D with κ = 1 2 min 2γ 2 M λ M (P ) , 1 γ 3 > 0. 2 Lemma 3. There exists C 2 > 0 such that V (t) ≤ C 2 ∆u D (0) 2 + ∆ζ(0) 2 + ∆w(0) 2 H 1 0 (0,L) for all 0 ≤ t ≤ D with ∆u D (0) = -u e .
Sketch of proof Estimations similar to the ones reported in the proof of Lemma 2 show the existence of γ 4 > 0 such that V (t) ≤ γ 4 ∆X(0) 2 for all 0 ≤ t < D. Therefore, V (t) ≤ V (0) + Dγ 4 ∆X(0) 2 for all 0 ≤ t ≤ D. The estimation of V (0) from ( 21) and a direct integration with t ≤ D show the claimed result. 2

The proof of Theorem 1 is now a straightforward combination of the results reported in Lemmas 1, 2 and 3. Recalling that ∆v(t) = K∆Z(t) for t ≥ 0 and ∆v(t) = 0 for t < 0, we also obtain that ∆v D (t) 2 ≤ Ĉ1 e -2κt ∆u D (0) 2 + ∆ζ(0) 2 + ∆w(0) 2

H 1 0 (0,L) (23) for t ≥ 0 with Ĉ1 = K 2 C 1 e 2κD .

SETPOINT REFERENCE TRACKING ANALYSIS

We assess that the tracking of the constant reference input r is achieved in spite of the stationary distributed disturbance d. Theorem 2. Let κ > 0 be provided by Theorem 1. There exists C 2 > 0 such that |y x (t, 0) -r| (24)

≤ C 2 e -κt |∆u D (0)| + |∆ζ(0)| + ∆w(0) H 1 0 (0,L) + A∆w(0) L 2 (0,L) .
Sketch of proof Recalling that w e,x (0) + 1 L u e = r, we have

|y x (t, 0) -r| = w x (t, 0) + 1 L u D (t) -r ≤ |w x (t, 0) -w e,x (0)| + 1 L |∆u D (t)|. (25)
From the exponential convergence of ∆u D (t) to zero provided by (20), it is sufficient to study the term w x (t, 0)w e,x (0) = j≥1 ∆w j (t)e j (0). As e j (0) ∼ 2 L |λ j |, there exists a constant γ 7 > 0 such that |e j (0)| ≤ γ 7 |λ j | for all j ≥ n + 1. Let m ≥ n + 1 be such that η -λ m > κ > 0. Thus λ j ≤ -η < -κ < 0 for all j ≥ m. We have:

|w x (t, 0) -w e,x (0)| ≤ m-1 j=1 |∆w j (t)||e j (0)| + γ 7 j≥m |λ j ||∆w j (t)| ≤ m-1 j=1 e j (0) 2 m-1 j=1 ∆w j (t) 2 (26) + γ 7 j≥m 1 |λ j | j≥m λ 2 j ∆w j (t) 2
where j≥m

1 |λj | < +∞ because |λ j | ∼ π 2 j 2 /L 2 .
Based on (20) and Poincaré inequality, it is sufficient to study the term j≥m λ 2 j ∆w j (t) 2 . To do so, we integrate (19b) for j ≥ m and we use estimates ( 20) and ( 23 

λ 2 j ∆w j (t) 2 ≤ 2e -2κt A∆w(0) 2 + 2C 2 3 η 2 (η -κ) 2 e -2κt ∆CI 2 . (27) with C 3 > 0 defined by C 2 3 = j≥m C 2 3,j ≤ 2C 1 a 2 + 2 Ĉ1 b 2 .
Using now (25) along with (26) and estimates ( 20) and ( 27), we obtain the existence of a constant C 2 > 0 such that the claimed estimate (24) holds for all t ≥ 0. 2

NUMERICAL ILLUSTRATION

We take c = 1.25, L = 2π, and D = 1 s. The three first eigenvalues of the open-loop system are λ 1 = 1, λ 2 = 0.25, and λ 2 = -1. Only the two first modes need to be stabilized. Thus we have n = 2 and we compute the feedback gain K ∈ R 1×4 such that the poles of the closed-loop truncated model (capturing the two unstable modes of the infinite-dimensional system plus two integral components, one for the control input and one for reference tracking) are given by -0.5, -0.6, -0.7, and -0.8. The adopted numerical scheme is the modal approximation of the infinite-dimensional system using its first 10 modes. initial condition is set as y 0 (x) = -x L 1 -x L . The obtained simulation results with r = 50 and d(x) = x are depicted in Fig. 1. As expected from the theoretical analysis, the PI controller achieves the stabilization of the reaction-diffusion equation and ensures that the Neumann trace y x (t, 0) tracks the constant reference input r.

CONCLUSION

This paper discussed the PI regulation control of the left Neumann trace of a one-dimensional linear reactiondiffusion equation with delayed right Dirichlet boundary control. The proposed strategy extends to PI control a recently proposed approach for the delay boundary feedback stabilization of infinite-dimensional systems combining spectral reduction and the use of the classical Artstein transformation for handling the delay in the control input. The validity of this control strategy for the tracking of a constant reference input and in the presence of a stationary perturbation was assessed via a Lyapunov-based argument. The extension of these results to the set-point regulation control of a time-varying reference input r(t) and in the presence of a time-varying distributed perturbation d(t, x) can be found in [START_REF] Lhachemi | PI regulation of a reaction-diffusion equation with delayed boundary control[END_REF].
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  Fig. 1. Time evolution of the closed-loop system

This property will be ensured by the construction carried out in the sequel.