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Abstract: This paper addresses the robustness of the constant-delay predictor feedback in
the case of distinct and uncertain time-varying input delays. Specifically, we consider the case
of a predictor feedback that is designed based on the knowledge of the nominal value of the
time-varying delay in each control input channel. We derive an LMI-based sufficient condition
ensuring the exponential stability of the closed-loop system for small enough variations of the
distinct time-varying input delays around their nominal value. Then we apply these results to
the feedback stabilization of a class of diagonal infinite-dimensional boundary control systems
exhibiting distinct time-varying delays in the boundary control inputs.

Keywords: Time-varying delay control, Predictor feedback, Robust stability, Partial
Differential Equations (PDEs), Boundary control.

1. INTRODUCTION

Following the early works of Artstein (1982), linear predic-
tor feedback has emerged as an efficient tool for the feed-
back stabilization of Linear Time-Invariant (LTI) systems
in the presence of constant arbitrarily long input delays.
Since then, many extensions of the original linear predictor
feedback have been reported in various directions; see
e.g. Krstic (2009) and references therein. Because the exact
value of the input delay is in general unknown, a number
of studies have been concerned with the robustness assess-
ment of predictor feedback control strategies w.r.t delay
mismatches. This includes the cases of constant (Krstic,
2008; Li et al., 2014) and time-varying (Bekiaris-Liberis
and Krstic, 2013; Karafyllis and Krstic, 2013; Selivanov
and Fridman, 2016; Lhachemi et al., 2019a) input delays.

The works cited above deal with a delay input that is
common to all the scalar control inputs. However, in prac-
tice, one might expect distinct input delays in each scalar
control input. To tackle this problem, various extensions
of the predictor feedback to distinct input delays were
reported in the literature (Artstein, 1982; Bekiaris-Liberis
and Krstic, 2016; Tsubakino et al., 2016; Bresch-Pietri and
Di Meglio, 2017). Input-to-state stability property w.r.t
additive plant disturbances and robustness to constant
multiplicative uncertainties in the inputs were studied in

? This publication has emanated from research supported in part
by a research grant from Science Foundation Ireland (SFI) un-
der grant number 16/RC/3872 and is co-funded under the Euro-
pean Regional Development Fund and by I-Form industry part-
ners. E-mails: hugo.lhachemi@ucd.ie, christophe.prieur@gipsa-lab.fr,
r.shorten@imperial.ac.uk

(Cai et al., 2019). In order to tackle uncertainties in either
the plant model or in the knowledge of the distinct input
delays, adaptive control strategies were developed in (Zhu
et al., 2018b,a).

In this paper, we are concerned with the robustness
of the constant-delay predictor feedback in the case of
distinct and uncertain time-varying input delays. The
result presented in this paper extends (Lhachemi et al.,
2019a), which dealt with a common input delay, and takes
the form of an LMI-based sufficient condition ensuring
the exponential stability of the closed-loop system for
small enough deviations of the distinct time-varying delays
around their nominal value.

The obtained stability result is applied to the feedback
stabilization of a class of diagonal infinite-dimensional
boundary control systems in the presence of distinct
time-varying delays in the boundary control inputs. The
adopted control strategy, inspired by (Russell, 1978) in the
case of a delay-free feedback control, consists of a predictor
feedback designed on a finite-dimensional truncated model
capturing the unstable modes of the infinite-dimensional
system. This approach was first reported in (Prieur and
Trélat, 2019) for the exponential stabilization of a reaction-
diffusion equation with a constant delay in the boundary
control and was then further developed in (Lhachemi and
Prieur, 2020; Lhachemi et al., 2019a,b). The objective of
the present paper is to extend these results to the case of
distinct input delays.

This paper is organized as follows. The robustness of
the constant predictor feedback w.r.t distinct, uncertain,
and time-varying delays is investigated in Section 2. The



extension of this result to the feedback stabilization of
a class of diagonal infinite-dimensional boundary control
systems is presented in Section 3. The results are applied
in Section 4, followed by concluding remarks in Section 5.

2. DELAY-ROBUSTNESS OF PREDICTOR
FEEDBACK FOR LTI SYSTEMS

The sets of non-negative integers, positive integers, real,
non-negative real, positive real, and complex numbers are
denoted by N, N∗, R, R+, R∗+, and C, respectively. The real
and imaginary parts of a complex number z are denoted by
Re z and Im z, respectively. The field K denotes either R or
C. The set of n-dimensional vectors over K is denoted by
Kn and is endowed with the Euclidean norm ‖x‖ =

√
x∗x.

The set of n×m matrices over K is denoted by Kn×m and
is endowed with the induced norm denoted by ‖·‖. For any
symmetric matrix P ∈ Rn×n, P � 0 (resp. P � 0) means
that P is positive definite (resp. positive semi-definite).
The set of symmetric positive definite matrices of order
n is denoted by S+∗n . For any symmetric matrix P ∈
Rn×n, λm(P ) and λM (P ) denote the smallest and largest
eigenvalues of P , respectively. For M = (mi,j) ∈ Cn×m,
we introduce

R(M) ,

[
ReM − ImM
ImM ReM

]
∈ R2n×2m

where ReM , (Remi,j) ∈ Rn×m and ImM , (Immi,j) ∈
Rn×m. For any t0 > 0, we say that ϕ ∈ C0(R;R) is a
transition signal over [0, t0] if 0 ≤ ϕ ≤ 1, ϕ|(−∞,0] = 0,

and ϕ|[t0,+∞) = 1.

2.1 Problem setting

We study the feedback stabilization of the following LTI
system with distinct input delays:

ẋ(t) = Ax(t) +

m∑
k=1

Bkuk(t−Dk(t)), t ≥ 0, (1)

with A ∈ Rn×n and Bk ∈ Rn. Vectors x(t) ∈ Rn
and u(t) ∈ Rm denote the state and the control input,
respectively, while uk(t) ∈ R denotes the k-th component
of u(t). The command inputs are subject to distinct
and uncertain time-varying delays Dk ∈ C0(R+;R+). We
assume that there exist D0,k > 0 and 0 < δk < D0,k such
that |Dk(t) − D0,k| ≤ δk for all t ≥ 0. In this context,
we consider the following constant-delay linear predictor
feedback (Artstein, 1982, Example 5.2), which is based on
the knowledge of the constants nominal values D0,k:

u(t) = K

{
x(t) +

m∑
i=1

∫ t

t−D0,i

e(t−D0,i−s)ABiui(s) ds

}
(2)

for t ≥ 0, where the feedback gains Kk ∈ R1×n are selected
such that Acl , A+B̃K = A+

∑m
k=1 e

−D0,kABkKk is Hur-

witz with B = [B1 B2 . . . Bm], K =
[
K>1 K>2 . . . K>m

]>
,

and B̃ =
[
e−D0,1AB1 e

−D0,2AB2 . . . e
−D0,mABm

]
. The

existence of such a feedback gain K is ensured under the
assumption that the pair (A,B) is stabilizable. This claim
follows from the Hautus test because x>A = λx> and
x>B̃ = 0 for some λ ∈ C and x ∈ Cn\{0} implies that

0 = x>e−D0,kABk = e−D0,kλx>Bk for all 1 ≤ k ≤ m and
thus x>B = 0.

In the nominal configuration Di = D0,i, it is well known
that (2) ensures the exponential stabilization of (1), see
(Artstein, 1982, Example 5.2). In this section, we study
the robust exponential stability of the closed-loop system
(1-2) w.r.t delay mismatches, i.e. when Di 6= D0,i.

2.2 Preliminary results

For h > 0, we denote by W the space of absolutely
continuous functions ψ : [−h, 0] → Rn with square-

integrable derivative endowed with the norm ‖ψ‖W ,√
‖ψ(0)‖2 +

∫ 0

−h ‖ψ̇(θ)‖2 dθ. The following preliminary

Lemma is a variation of (Fridman, 2006, Thm 1).

Lemma 1. Let M,Nk ∈ Rn×n, D0,k > 0, and δk ∈
(0, D0,k) be given. Assume that there exist κ > 0, P1, Qk ∈
S+∗n , and P2, P3 ∈ Rn×n such that Θ(∆, κ) � 0 with
∆ = (δ1, . . . , δm) and Θ(∆, κ) defined by (3). Then, there
exists C0 > 0 such that, for any Dk ∈ C0(R+;R+) with
|Dk −D0,k| ≤ δk, the trajectory x of:

ẋ(t) = Mx(t) +

m∑
k=1

Nk {x(t−Dk(t))− x(t−D0,k)} , t ≥ 0;

x(τ) = x0(τ), τ ∈ [−h, 0]

with initial condition x0 ∈ W , where h = max
1≤k≤m

(D0,k +

δk), satisfies ‖x(t)‖ ≤ C0e
−κt‖x0‖W for all t ≥ 0.

Proof. First, as x0 ∈W , we note that

ẋ(t) = Mx(t) +

m∑
k=1

Nk

∫ t−Dk(t)

t−D0,k

ẋ(τ) dτ (4)

for all t ≥ 0. Inspired by (Fridman, 2014, Sec. 3.2), we
define V (t) = V1(t) + V2(t) with V1(t) = x(t)>P1x(t) and

V2(t) =

m∑
k=1

∫ −D0,k+δk

−D0,k−δk

∫ t

t+θ

e2κ(s−t)ẋ(s)>Qkẋ(s) dsdθ

where P1, Qk ∈ S+∗n . Taking the time derivative we have

V̇ (t) = 2x(t)>P1ẋ(t) + 2ẋ(t)>

(
m∑
k=1

δkQk

)
ẋ(t)− 2κV2(t)

−
m∑
k=1

∫ −D0,k+δk

−D0,k−δk
e2κθẋ(t+ θ)>Qkẋ(t+ θ) dθ (5)

for all t ≥ 0. Following Fridman (2006), we define P =[
P1 0
P2 P3

]
for some P2, P3 ∈ Rn×n. Then, using (4) we have

x(t)>P1ẋ(t) =

[
x(t)
ẋ(t)

]>
P>

[
0 I
M −I

] [
x(t)
ẋ(t)

]
(6)

+

m∑
k=1

∫ t−Dk(t)

t−D0,k

[
x(t)
ẋ(t)

]>
P>

[
0
Nk

]
ẋ(τ) dτ.

Using 2a>b ≤ ‖a‖2 + ‖b‖2, ∀a, b ∈ Rn, we obtain that

2

[
x(t)
ẋ(t)

]>
P>

[
0
Nk

]
ẋ(τ)

≤ e−2κ(τ−t)
[
x(t)
ẋ(t)

]>
P>

[
0
Nk

]
Q−1k

[
0
Nk

]>
P

[
x(t)
ẋ(t)

]
(7)



Θ(∆, κ) =



2κP1 +M>P2 + P>2 M P1 − P>2 +M>P3 δ1P
>
2 N1 δ2P

>
2 N2 . . . δmP

>
2 Nm

P1 − P2 + P>3 M −P3 − P>3 + 2

m∑
k=1

δkQk δ1P
>
3 N1 δ2P

>
3 N2 . . . δmP

>
3 Nm

δ1N
>
1 P2 δ1N

>
1 P3 −δ1e−2κD0,1Q1 0 . . . 0

δ2N
>
2 P2 δ2N

>
2 P3 0 −δ2e−2κD0,2Q2 . . . 0

...
...

...
...

. . .
...

δmN
>
mP2 δmN

>
mP3 0 0 . . . −δme−2κD0,mQm


.

(3)

+ e2κ(τ−t)ẋ(τ)>Qkẋ(τ).

We deduce from (5-7) that

V̇ (t) + 2κV (t) ≤
[
x(t)
ẋ(t)

]>
Ψ

[
x(t)
ẋ(t)

]
,

where

Ψ , P>
[

0 I
M −I

]
+

[
0 I
M −I

]>
P + 2

κP1 0

0

m∑
k=1

δkQk


+

m∑
k=1

δke
2κD0,kP>

[
0
Nk

]
Q−1k

[
0
Nk

]>
P.

From Θ(∆, κ) � 0, the use of the Schur comple-

ment yields V̇ (t) + 2κV (t) ≤ 0. The conclusion fol-
lows from the fact that λm(P1)‖x(t)‖2 ≤ V (t) ≤
max (λM(P1), 2

∑m
k=1 δkλM(Qk)) ‖x(t+ ·)‖2W , ∀t ≥ 0. 2

Remark 1. Assume that there exist δ1, . . . , δm > 0 such
that the LMI Θ(∆, 0) ≺ 0 is feasible. By a continuity
argument, there exists κ > 0 such that Θ(∆, κ) � 0. Then,
the feasability of Θ(∆, 0) ≺ 0 implies the existence of κ > 0
such that the conclusions of Lemma 1 apply. ◦

The conclusions of Lemma 1 imply that M is Hurwitz. A
form of converse result is stated in the next Lemma. The
proof is analogous to (Lhachemi et al., 2019a, Lem. 2).

Lemma 2. Let M,Nk ∈ Rn×n with M Hurwitz and
D0,k > 0 be given. Then there exist δk ∈ (0, D0,k) and
κ > 0 such that the LMI Θ(∆, κ) ≺ 0 is feasible.

2.3 Robustness of constant-delay predictor feedback with
respect to distinct time-varying input delays

We can now state the main result of this section.

Theorem 1. Let A ∈ Rn×n and Bk ∈ Rn be such that
(A,B) is stabilizable. Let D0,k > 0 be given nominal
delays and let ϕ be a transition signal 1 over [0, t0] with
t0 > 0. Let feedback gains 2 Kk ∈ R1×n be such that
Acl , A +

∑m
k=1 e

−D0,kABkKk is Hurwitz. Then, there
exist δk ∈ (0, D0,k) such that for any Dk ∈ C0(R+;R+)
with |Dk −D0,k| ≤ δk, the closed-loop system given by

ẋ(t) = Ax(t) +

m∑
k=1

Bkuk(t−Dk(t)), (8a)

u(t) = ϕ(t)Kx(t) (8b)

+ ϕ(t)K

m∑
i=1

∫ t

t−D0,i

e(t−D0,i−s)ABiui(s) ds,

1 See notation section.
2 Existence is ensured by the stabilizability property of the pair
(A,B), see discussion in Subsection 2.1.

x(0) = x0, (8c)

u(τ) = 0, − max
1≤k≤m

(D0,k + δk) ≤ τ ≤ 0 (8d)

with initial condition x0 ∈ Rn is exponentially stable in the
sense that there exist constants κ,C1 > 0, independent of
x0 and Dk, such that ‖x(t)‖+‖u(t)‖ ≤ C1e

−κt‖x0‖ for all
t ≥ 0. In particular, this conclusion holds true (resp., with
given decay rate κ > 0) for any δk ∈ (0, D0,k) such that
there exist P1, Qk ∈ S+∗n and P2, P3 ∈ Rn×n for which the
LMI Θ(∆, 0) ≺ 0 (resp., Θ(∆, κ) � 0) holds with M = Acl,
Nk = BkKk, and ∆ = (δ1, . . . , δm).

Remark 2. The control input u is obtained as the solu-
tion of the fixed point equation (8b). The existence and
uniqueness of u can be shown as in (Bresch-Pietri et al.,
2018) by rewriting (8b) as

u(t) = ϕ(t)Kx(t) (9)

+ ϕ(t)K

∫ t

max(t−D0,0)

e(t−D0−s)AB̂(t, s)u(s) ds

where D0 = max
1≤k≤m

D0,k and B̂(t, s) ∈ Rn×m with the k-th

column given by B̂k(t, s) = 1|[t−D0,k,t]
(s)e(D0−D0,k)ABk.

Equation (9) was studied in (Bresch-Pietri et al., 2018,

Eq. 5) in the case ϕ = 1 and B̂ a constant matrix
independent of s, t. However, noting that 0 ≤ ϕ ≤ 1 and

‖B̂(t, s)‖ ≤
∑m
k=1 ‖e(D0−D0,k)ABk‖, where the right hand

side of the latter inequality is a constant, the developments
of (Bresch-Pietri et al., 2018, Subsec. 4.1) can be reapplied
in a straightforward manner to show the existence and
uniqueness of a function u solution of (9). Finally, the
existence and uniqueness of the system trajectories of (8)
can be shown by an induction argument. ◦

Proof. Let δk ∈ (0, D0,k) be such that Θ(∆, 0) ≺ 0 is
feasible (Lemma 2). By a continuity argument, let κ > 0
be such that Θ(∆, κ) � 0. We introduce (Artstein, 1982):

z(t) = x(t) +

m∑
k=1

∫ t

t−D0,k

e(t−D0,k−s)ABkuk(s) ds (10)

for all t ≥ 0. In particular, u = ϕKz and we infer that

ż(t) =

(
A+ ϕ(t)

m∑
k=1

e−D0,kABkKk

)
z(t) (11)

+

m∑
k=1

BkKk{[ϕz](t−Dk(t))− [ϕz](t−D0,k)}

for all t ≥ 0. For t ≥ t1 , t0 + max
1≤k≤m

(D0,k + δk) we have

ż(t) = Aclz(t)+

m∑
k=1

BkKk{z(t−Dk(t))−z(t−D0,k)} (12)



with Acl = A+
∑m
k=1 e

−D0,kABkKk Hurwitz and the initial
condition z|[t0,t1] which is of class C1. The application of

Lemma 1 shows that ‖z(t)‖ ≤ C0e
−κ(t−t1)‖z(t1 + ·)‖W for

all t ≥ t1. Now, based on (11), classical estimations (using
e.g. Grönwall’s inequality) show the existence of a constant
c1 > 0, independent of x0 and Dk, such that ‖z(t)‖ ≤
c1‖x0‖ for all 0 ≤ t ≤ t1. The later estimate, combined
with (11), yields the existence of c̃0 > 0, independent of
x0 and Dk, such that ‖ż(t)‖ ≤ c̃0‖x0‖ for all 0 ≤ t ≤ t1.
Then, we infer that ‖z(t1 + ·)‖W ≤ c̃1‖x0‖ with c̃1 =√
c21 + max

1≤k≤m
(D0,k + δk)c̃20 and thus ‖z(t)‖ ≤ C̃0e

−κt‖x0‖

for all t ≥ 0 with C̃0 = eκt1 max(C0c̃1, c1) > 0. The
conclusion follows from u = ϕKz and (10). 2

3. APPLICATION TO A CLASS OF DIAGONAL
INFINITE-DIMENSIONAL SYSTEMS

3.1 Problem setting

Let D0,k > 0 and δk ∈ (0, D0,k) be given. We consider:
dX

dt
(t) = AX(t), t ≥ 0

BX(t) = ũ(t), t ≥ 0

X(0) = X0

(13)

on the separable Hilbert spaceH with A : D(A) ⊂ H → H
a linear (unbounded) operator and B : D(B) ⊂ H → Km
with D(A) ⊂ D(B) a linear boundary operator. The
control input takes the form

ũ(t) = (u1(t−D1(t)), . . . , um(t−Dm(t))) (14)

with ui(τ) = 0 for τ ≤ 0 and Dk(t) ∈ (D0,k−δk, D0,k+δk).
Following the terminology of (Curtain and Zwart, 2012,
Def. 3.3.2), we assume that (A,B) is a boundary control
system; we denote by A0 the associated disturbance-free
operator and by B ∈ L(Km,H) an associated lifting
operator.

Assumption 1. Operator A0 is a Riesz spectral operator
(Curtain and Zwart, 2012, Def. 2.3.4), i.e. is a linear
and closed operator with simple eigenvalues λn and corre-
sponding eigenvectors φn ∈ D(A0), n ∈ N∗, that satisfy:
(1) {φn, n ∈ N∗} is a Riesz basis; (2) for any distinct

a, b ∈ {λn, n ∈ N∗}, [a, b] 6⊂ {λn, n ∈ N∗}.

We introduce {ψn, n ∈ N∗} the biorthogonal sequence as-
sociated with the Riesz basis {φn, n ∈ N∗}, i.e. 〈φk, ψl〉 =
δk,l ∈ {0, 1} with δk,l = 1 if and only if k = l. Then, there
exist constants mR,MR > 0 such that, for any x ∈ H,
x =

∑
n≥1 〈x, ψn〉φn and

mR

∑
n≥1

| 〈x, ψn〉 |2 ≤ ‖x‖2 ≤MR

∑
n≥1

| 〈x, ψn〉 |2. (15)

Assumption 2. There exist N0 ∈ N∗ and α ∈ R∗+ such that
Reλn ≤ −α for all n ≥ N0 + 1.

3.2 Spectral reduction

Under the regularity ũ ∈ C2([0,+∞);Km) with ũ(0) = 0
and X0 ∈ D(A0), there exists a unique classical solution
X ∈ C0(R+;D(A)) ∩ C1(R+;H) of (13) (Curtain and
Zwart, 2012, Th. 3.3.3). Introducing the coefficient of

projection cn(t) , 〈X(t), ψn〉, we have for all t ≥ 0 that
(Lhachemi and Shorten, 2019):

ċn(t) = λncn(t) + 〈(A− λnI)Bũ(t), ψn〉 . (16)

Let E = (e1, e2, . . . , em) be the canonical basis of Km and

let bn,k , 〈(A− λnI)Bek, ψn〉. Then (16) yields

Ẏ (t) = AN0
Y (t) +

m∑
k=1

BN0,kuk(t−Dk(t)), (17)

for all t ≥ 0, where AN0
= diag(λ1, . . . , λN0

) ∈ KN0×N0 ,
BN0,k = (bn,k)1≤n≤N0

∈ KN0 , and

Y (t) = [c1(t) . . . cN0
(t)]
> ∈ KN0 . (18)

Introducing the matrix BN0
= [BN0,1 . . . BN0,m], we

assume that the following holds.

Assumption 3. (AN0 , BN0) is stabilizable.

With B̃N0 =
[
e−D0,1AN0BN0,1 . . . e

−D0,mAN0BN0,m

]
, the

above assumption ensures that 3 the pair (AN0 , B̃N0) is
stabilizable and thus the existence of a feedback gain

K =
[
K>1 K>2 . . . K>m

]> ∈ Km×N0 such that Acl , AN0 +

B̃N0
K = AN0

+
∑m
k=1 e

−D0,kAN0BN0,kKk is Hurwitz.

3.3 Dynamics of the closed-loop system

Let t0, D0,k > 0 and δk ∈ (0, D0,k) be given. Let ϕ ∈
C2(R;R) be a transition signal over [0, t0] and Dk ∈
C2(R+;R) be a time-varying delay such that |Dk−D0,k| ≤
δk. The dynamics of the closed-loop system is given by:

dX

dt
(t) = AX(t), (19a)

BX(t) = ũ(t), (19b)

u(t) = ϕ(t)KY (t) (19c)

+ ϕ(t)K

m∑
i=1

∫ t

t−D0,i

e(t−D0,i−s)AN0BN0,iui(s) ds,

X(0) = X0, (19d)

u(τ) = 0, − max
1≤k≤m

(D0,k + δk) ≤ τ ≤ 0, (19e)

for any t ≥ 0 with ũ and Y given by (14) and (18),
respectively. The gain K ∈ Km×N0 is selected such that
Acl = AN0

+ B̃N0
K is Hurwitz.

The well-posedness of (19) in terms of classical solutions
associated with initial conditions X0 ∈ D(A0) can be
shown similarly to (Lhachemi et al., 2019a, Lem. 3).

3.4 Exponential stability of the closed-loop system

We can now state the main result of this section.

Theorem 2. Let (A,B) be an abstract boundary control
system such that Assumptions 1, 2, and 3 hold true. There
exist δk ∈ (0, D0,k) and η > 0 such that, for any given
δr > 0, we have the existence of a constant C2 > 0 such
that, for any X0 ∈ D(A0) and Dk ∈ C2(R+;R) with

|Dk −D0,k| ≤ δk and sup
t∈R+

∣∣∣Ḋk(t)
∣∣∣ ≤ δr, the trajectory X

and the control input u of the closed-loop dynamics (19)
satisfy ‖X(t)‖ + ‖u(t)‖ ≤ C2e

−ηt‖X0‖ for all t ≥ 0. In

3 See discussion in Subsection 2.1.



particular, this conclusion holds true for any δk ∈ (0, D0,k)
such that Θ(∆, 0) ≺ 0 is feasible with

• in the case K = R, M = AN0 + B̃N0K, Nk =
BN0,kKk, P1, Qk ∈ S+∗n , and P2, P3 ∈ Rn×n;

• in the case K = C, M = R(AN0
+ B̃N0

K), Nk =
R(BN0,kKk), P1, Qk ∈ S+∗2n , and P2, P3 ∈ R2n×2n.

Furthermore, if κ > 0 is such that Θ(∆, κ) � 0 is feasible,
then the decay rate η can be selected as any element of
(0, κ] if α > κ or (0, α) if α ≤ κ.

Proof. Let δk ∈ (0, D0,k) and κ > 0 be such that
Θ(∆, κ) � 0 is feasible (see Lemma 2). We introduce
η ∈ (0, κ] if α > κ or η ∈ (0, α) if α ≤ κ and we select

ε ∈ (0, 1) such that αε , α(1 − ε) > η. Let δr > 0
be arbitrarily given. The key point of the proof relies on
the introduction of the functional (which is finite for any

t ≥ 0, see (15)): V (t) = 1
2

∑
k≥N0+1 |〈X(t)−Bũ(t), ψk〉|2

for t ≥ 0. As shown in (Lhachemi et al., 2019a, Proof of
Thm. 3), we have

‖X(t)‖ ≤ ‖Bũ(t)‖

+

√
2MR

(
V (t) + ‖Y (t)‖2 +

1

mR
‖Bũ(t)‖2

)
for all t ≥ 0. Introducing

Z(t) = Y (t) +

m∑
i=1

∫ t

t−D0,i

e(t−D0,i−s)AN0BN0,iui(s) ds,

we have that u = ϕKZ. As Y satisfies (17) with

Acl = AN0 + B̃N0K Hurwitz, Theorem 1 shows that
‖Y (t)‖ + ‖u(t)‖ ≤ C1e

−κt‖Y (0)‖ ≤ C1e
−ηt‖X0‖/

√
mR

and ‖Z(t)‖ ≤ C̃0e
−κt‖Y (0)‖ ≤ C̃0e

−ηt‖X0‖/
√
mR for all

t ≥ 0, and thus

‖ũ(t)‖ ≤
√
m max

1≤k≤m
|uk(t−Dk(t))|

≤
√
m max

1≤k≤m
‖u(t−Dk(t))‖ ≤

√
mC1e

ηD̂

√
mR

e−ηt‖X0‖

with D̂ = max
1≤k≤m

(D0,k + δk). Recalling that B is bounded,

the proof will be complete if we can show the existence of
a constant C̃1 > 0, independent of X0 and Dk, such that
V (t) ≤ C̃1e

−2ηt‖X0‖2. Following (Lhachemi et al., 2019a,

Proof of Thm. 3), the computation of V̇ and the use of
both (16) and Young’s inequality yield

V̇ (t) ≤ −2αεV (t) (20)

+
1

2εα

∑
k≥N0+1

(
|〈ABũ(t), ψk〉|2 +

∣∣〈B ˙̃u(t), ψk
〉∣∣2) .

The estimation of the right hand side of the above inequal-
ity slightly differs from (Lhachemi et al., 2019a, Proof of
Thm. 3) due to the presence of distinct delays. First, we

have for all t ≥ D̂ + t0 that∑
k≥N0+1

|〈ABũ(t), ψk〉|2

≤ m
m∑
i=1

∑
k≥1

|〈ABei, ψk〉|2 |KiZ(t−Di(t))|2

≤ m

mR

m∑
i=1

‖ABei‖2‖Ki‖2‖Z(t−Di(t))‖2.

Similarly, we have that∑
k≥N0+1

∣∣〈B ˙̃u(t), ψk
〉∣∣2

≤ m
m∑
i=1

|1− Ḋi(t)|2
∑
k≥1

|〈Bei, ψk〉|2 |u̇i(t−Di(t))|2

≤ βm

mR

m∑
i=1

‖Bei‖2 |u̇i(t−Di(t))|2.

with β = (1 + δr)
2. For t ≥ t1 , 2D̂ + t0 we have 4

u̇i(t−Di(t)) = KiŻ(t−Di(t))

(12)
= KiAclZ(t−Di(t))

+Ki

m∑
k=1

BN0,kKk{Z(t−Di(t)−Dk(t−Di(t)))

− Z(t−Di(t)−D0,k)}
and we deduce that∑
k≥N0+1

∣∣〈B ˙̃u(t), ψk
〉∣∣2

≤ βm(m+ 1)

mR

m∑
i=1

‖Bei‖2‖KiAcl‖2‖Z(t−Di(t))‖2

+
βm(m+ 1)

mR

m∑
i=1

m∑
k=1

‖Bei‖2‖KiBN0,kKk‖2

× ‖Z(t−Di(t)−Dk(t−Di(t)))− Z(t−Di(t)−D0,k)‖2

for all t ≥ t1. Recalling that ‖Z(t)‖ ≤ C̃0e
−ηt‖X0‖/

√
mR

for all t ≥ 0, we obtain that, for all t ≥ t1, V̇ (t) ≤
−2αεV (t)+ω(t) where ω(t) ≤ k1e−2ηt‖X0‖2 with k1 > 0 a
constant that is independent of X0 and Dk. The rest of the
proof is identical to (Lhachemi et al., 2019a, Thm. 3). 2

4. ILLUSTRATIVE EXAMPLE

We illustrate Thm. 2 via the following reaction-diffusion
equation with delayed Dirichlet boundary controls:

yt(t, x) = ayxx(t, x) + cy(t, x), (t, x) ∈ R+ × (0, L)[
y(t, 0)
y(t, L)

]
=

[
u1(t−D1(t))
u2(t−D2(t))

]
, t > 0

where a, c > 0, y(t, x) ∈ R, and u(t) ∈ R2. Introducing
the real state-space H = L2(0, L) endowed with 〈f, g〉H =∫ L
0
fg dx, it can be shown similarly to (Lhachemi et al.,

2019a) that the assumptions, hence the conclusions, of
Theorem 2 apply. For numerical simulations we set a =
c = 0.5, L = 2π, D0,1 = 1 s, D0,2 = 0.5 s, and t0 = 0.5 s.
We have two unstable modes λ1 = 0.375 and λ2 = 0 while
the two first stable modes are such that λ3 = −0.625 and
λ4 = −1.5. Setting N0 = 3, the feedback gain K ∈ R2×3 is
computed to place the poles of the closed-loop truncated
model at −0.75, −1, and −1.25. Theorem 2 ensures the
exponential stability of the closed-loop system for δ1 =
0.450 and δ2 = 0.308. The time domain evolution of the
closed-loop system, obtained based on the 30 dominant
modes of the system, is depicted in Figs. 1-3. As expected
from Theorem 2, both the system state and the control
input converge to zero.
4 In the corresponding computation in (Lhachemi et al., 2019a, p7),
the four occurrences of Z(t−2D(t)) must be replaced by Z(t−D(t)−
D(t−D(t))). The remainder of the proof remains unchanged.



-50
8

0

50

6 10

y(
t,x

)

100

x

4

Time (s)

150

52
0 0

Fig. 1. Time evolution of y(t) for the closed-loop system

0 2 4 6 8 10
Time (s)

0

100

200

u(
t-

D
(t

)) u1

u2

Fig. 2. Delayed command effort ũ(t)
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5. CONCLUSION

This paper assessed the robustness of the predictor feed-
back for the stabilization of LTI systems in the presence
distinct and uncertain time-varying input delays. This
result has been extended to the stabilization of a class
of diagonal infinite-dimensional boundary control systems
and was illustrated with a reaction-diffusion equation.
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