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Diffusion tensor imaging (DTI) is becoming a relevant diagnostic tool to understand

muscle disease and map muscle recovery processes following physical activity or

after injury. Segmenting all the individual leg muscles, necessary for quantification, is

still a time-consuming manual process. The purpose of this study was to evaluate the

impact of a supervised semi-automatic segmentation pipeline on the quantification

of DTI indices in individual upper leg muscles. Longitudinally acquired MRI datasets

(baseline, post-marathon and follow-up) of the upper legs of 11 subjects were used

in this study. MR datasets consisted of a DTI and Dixon acquisition. Semi-automatic

segmentations for the upper leg muscles were performed using a transversal propa-

gation approach developed by Ogier et al on the out-of-phase Dixon images at base-

line. These segmentations were longitudinally propagated for the post-marathon and

follow-up time points. Manual segmentations were performed on the water image of

the Dixon for each of the time points. Dice similarity coefficients (DSCs) were calcu-

lated to compare the manual and semi-automatic segmentations. Bland-Altman and

regression analyses were performed, to evaluate the impact of the two segmentation

methods on mean diffusivity (MD), fractional anisotropy (FA) and the third eigenvalue

(λ3). The average DSC for all analyzed muscles over all time points was 0.92 ± 0.01,

ranging between 0.48 and 0.99. Bland-Altman analysis showed that the 95% limits of

agreement for MD, FA and λ3 ranged between 0.5% and 3.0% for the transversal

propagation and between 0.7% and 3.0% for the longitudinal propagations. Similarly,

regression analysis showed good correlation for MD, FA and λ3 (r = 0.99, p < 60;

0.0001). In conclusion, the supervised semi-automatic segmentation framework

successfully quantified DTI indices in the upper-leg muscles compared with manual

segmentation while only requiring manual input of 30% of the slices, resulting in a

threefold reduction in segmentation time.

Abbreviations: BFL, biceps femoris long head muscle; BFS, biceps femoris short head muscle; CNN, convolutional neural network; DSC, Dice similarity coefficient; DTI, diffusion tensor imaging;

FA, fractional anisotropy; G, gracilis muscle; IVIM, intra-voxel incoherent motion; LoA, limits of agreement; MD, mean diffusivity; RF, rectus femoris muscle; S, sartorius muscle; SM,

semimembranosus muscle; SNR, signal-to-noise ratio; SPAIR, spectral attenuated inversion recovery; SPIR, spectral pre-saturation with inversion recovery; SSGR, slice selective gradient reversal;

ST, semitendinosus muscle; VI, vastus intermedius muscle; VL, vastus lateralis muscle; VM, vastus medialis muscle; λ 3, eigenvalue 3.
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1 | INTRODUCTION

MRI is extensively used in clinical evaluations of skeletal muscle to assess the location, extent and severity of several pathological conditions.1,2

The common contrast mechanisms in clinical skeletal muscle scans consist of T1-weighted contrast to assess muscle anatomy and fat infiltration,

and sequences that employ T2-weighted contrast to characterize muscle edema. Over the years, advances in MRI techniques and post-processing

have expanded the MRI toolbox for assessing healthy and diseased muscle composition, architecture, perfusion and function in a quantitative

manner, leading to what is known as quantitative MRI.

A quantitative MRI technique that has received considerable attention is diffusion tensor imaging (DTI). DTI probes the self-diffusivity of

water in tissue and its orientational dependence allows for three-dimensional reconstructions of muscle fiber architecture.3,4 Quantitative

DTI-derived indices are heavily dependent on tissue integrity and have been shown to change in a variety of skeletal muscle pathologies and

injuries.5,6 Furthermore, in sport medicine, DTI has shown promise as a relevant tool to understand the muscle recovery process that follows

physical activity and after injury.7,8 Our group investigated changes in DTI indices in the upper leg muscles during recovery after a marathon.9,10

Distinct changes in DTI indices were detected in muscles that appeared normal on T2-weighted images, demonstrating the added value of DTI as

a sensitive readout of muscle integrity.

The analysis of DTI acquisitions requires many post-processing steps for calculation of the DTI indices, which have been almost entirely

automated—for more details see, eg, Reference 11. However, segmentation of all the leg muscles, necessary for quantification, is a time-

consuming manual process, in which the accuracy and reproducibility may be operator dependent.12 Therefore, there is great need for (semi-)

automatic segmentation tools in the context of quantitative imaging of skeletal muscle. Recently, some (semi-) automatic approaches have been

proposed for skeletal muscle12–20 and showed good correspondence, reflected by high Dice similarity coefficient (DSC) values, with manual

segmentation. However, these approaches only focused on either a partial volume of the muscles or entire muscle groups rather than the full

volume of individual muscles. Moreover, so far little is known about the impact that (semi-) automatic segmentation approaches may have on

quantification of imaging outcome measures in skeletal muscle, especially on DTI analysis.

The purpose of this paper was to evaluate a supervised muscle segmentation framework, previously developed by Ogier et al,21,22 for the

quantification of DTI indices in individual muscles. Using this tool, we aimed to assess the accuracy, feasibility and impact on the quantification of

DTI indices considering manual segmentation as the ground truth. Also, we aimed to assess the corresponding reduction in work load compared

with manual segmentation.

2 | METHODS

2.1 | Participants and study set-up

The study set-up and the MRI protocol of the study are reported in detail by Hooijmans et al.10 For this study we included 11 subjects who

competed in the marathon in Amsterdam (The Netherlands) on 15 October 2017. The participants were 51 ± 6-year-old males of average fitness

level. MRI examinations were obtained at three time points: (1) baseline (1 week prior to the marathon), (2) post-marathon (24-48 h after the mar-

athon) and (3) follow-up (2 weeks after the marathon). The study was approved by the local medical ethics committee and all participants signed

written informed consent.

2.2 | MRI protocol

Participants received an MRI examination of both upper legs on a 3 T MR scanner (Ingenia, Philips, Best, The Netherlands) using a 16-element ante-

rior body receive coil and a 12-channel table top coil. Subjects were positioned in a feet-first supine position in the scanner. The data were acquired

in three transversal stacks with 30 mm overlap, covering 498 mm proximal to distal with a field of view (FOV) of 480 × 276 mm2. The total duration

of the scan protocol was 48 min and included diffusion-weighted spin-echo Echo-planar imaging for DTI parameter estimations (SE-EPI,
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bandwidth = 31 Hz/pixel, TR = 5,000 ms, TE = 57 ms, matrix = 160 × 92, voxel size = 3 × 3 × 6 mm3, number of slices = 31, SENSE = 1.9, b-values

(s/mm2)/no. of directions = 0/1, 1/6, 10/3, 25/3, 100/3, 200/6, 400/8 and 600/12, fat suppression: combination of a spectral pre-saturation inver-

sion recovery (SPIR) pulse, spectral attenuated inversion recovery (SPAIR) pulse and slice selective gradient reversal (SSGR)). A combination of the

three suppression techniques was used to suppress the signal from both the olefinic and aliphatic fat peaks. The signal from the olefinic fat peak at

5.3 ppm was suppressed with a non-selective SPIR pulse, whereas the aliphatic main peak at 1.3 ppm was suppressed using a combination of SPAIR

and SSGR.23–25 In the SSGR consecutive opposite slice selective gradients are applied on consecutive radiofrequency pulses, which are centered on

the water section, resulting in a reduction of the excited fat section and consequently of the fat signal intensity.26 For anatomical reference a four-

point mDIXON fast field echo sequence was used (MS-FFE, bandwidth = 434 Hz/pixel, TR = 210 ms, TE = 2.60, 3.36, 4.12 and 4.88 ms,

matrix = 320 × 184, voxel size = 1.5 × 1.5 × 6 mm3, number of slices = 31, SENSE = 2), a noise map to calculate signal-to-noise ratios (SNRs) (SE-EPI

without diffusion weighting, TR = 5000 ms, TE = 57 ms, matrix = 160 × 160, voxel size = 3 × 3 × 6 mm3, number of slices = 31, SENSE = 1.9, SPI-

R/SPAIR/SSGR), as well as a multi-turbo spin-echo sequence for quantitative water T2 mapping and a fat-suppressed T2-weighted scan to assess

acute muscle damage. For the purpose of this study, the diffusion-weighted spin-echo EPI, noise and Dixon acquisitions were considered.

2.3 | DTI parameter estimations

MR images were analyzed using QMRITools for Wolfram Mathematica (https://mfroeling.github.io/QMRITools). Diffusion data were de-noised

using a principal component analysis (PCA) noise algorithm, and corrected for motion and eddy currents using affine registration (elastix: http://

elastix.isi.uu.nl). Second, the diffusion data were registered to the anatomical space using sequential rigid and B-spline registration to correct for

EPI distortions. The diffusion tensor was calculated using an intra-voxel incoherent motion (IVIM)-based iterative weighted linear least squares

algorithm (iWLLS).27 By using IVIM correction, an anisotropic pseudo-diffusion component was modeled in addition to the standard diffusion ten-

sor, to remove the perfusion biases in the diffusivity estimation,28 as explained in the study by Hooijmans et al.10 The third eigenvalue (λ3), mean

diffusivity (MD) and fractional anisotropy (FA) were used as outcome parameters and shown as mean values over the full muscle volume. Previous

studies10 have shown that λ3 is the most sensitive DTI parameter to training, whereas MD and FA show the highest and the lowest repeatability

respectively.29 SNR was defined as the mean of the signal in a muscle region of interest divided by the standard deviation of the noise (σ). Muscles

with an SNR value below 15 were excluded from the Bland-Altman and linear regression analyses.

2.4 | Manual segmentation

Manual segmentation was considered the ground truth for the comparisons with the results of the supervised automatic segmentations. Manual

segmentations of 10 muscles in both upper legs, ie biceps femoris short head (BFS), biceps femoris long head (BFL), semitendinosus (ST),

semimembranosus (SM), gracilis (G), sartorius (S), vastus medialis (VM), vastus lateralis (VL), vastus intermedius (VI) and rectus femoris

(RF) muscles were performed by two experts in muscle anatomy (MH, JM) on the out-of-phase Dixon images in ITK-SNAP (www.itksnap.org).

These segmentations were done for all subjects at baseline and the two post-marathon time points. Delineation of the muscles was done avoiding

fascia and subcutaneous fat tissue. Additionally, they were eroded by one pixel to avoid partial volume effects due to fat tissue. The segmenta-

tions were subsequently registered (elastix: http://elastix.isi.uu.nl) to the DTI acquisitions to correct for misalignments between the Dixon and the

lower-resolution diffusion scans. The time required for the manual segmentation of one dataset including the whole set of muscles in two legs for

a single time point was on average 420 min.

2.5 | Supervised segmentation

Segmentation of the muscles was performed on the out-of-phase Dixon images, as schematically illustrated in Figure 1. The first step of the super-

vised segmentation started with a manual segmentation of the muscles in a limited number of slices within the full muscle volume, whereas in the

study by Ogier et al21 muscles were delineated in the muscle belly in two slices 10 cm above the knee and 10 cm below the hip, respectively. Addi-

tional manual segmentations were performed in slices for which the muscle changes drastically in size by more than 30 pixels, and at the muscle's ori-

gin and insertion. Subsequently, an N4 bias correction algorithm30 was used on all data sets. After this, the segmentation was automatically

completed based on a propagation algorithm, named transversal propagation, which uses both shape information from the initial manual segmenta-

tions and grayscale anatomical information to follow the anatomical variations of muscles along the leg, as described by Ogier et al.21 Because of the

differences in size and shape between the 10 upper-leg muscles and between subjects, the number of manually segmented slices differed between

muscles and subjects (see Section 3). We refer to the segmentation of the muscles in a single subject as the transversal propagation step. For the

post-marathon and follow-up time points, the manual segmentation of selected slices could be omitted. Instead, both post-marathon and follow-up

SECONDULFO ET AL. 3 of 12

https://mfroeling.github.io/QMRITools
http://elastix.isi.uu.nl
http://elastix.isi.uu.nl
http://www.itksnap.org
http://elastix.isi.uu.nl


segmentations were obtained by automatic propagation of the baseline segmentation. This so-called longitudinal propagation step, implemented with

the ANTs library,21 as described by Ogier et al,22 consisted of a robust registration process with rigid and affine optimized transformations, followed

by a diffeomorphic multi-level registration with B-spline regularization ρ. The registration parameters were: multi-resolution levels = 4, gradient

step = 0.1, shrink-factors = 6 × 4 × 2 × 1, smoothing sigmas = 3 × 2 × 1 × 0 vox, number of iterations per level = 100 × 70 × 50 × 10, convergence

threshold = 10−6, window size = 10 iterations. The knot spacing for the B-spline smoothing was set at 26 mm at the base resolution level of the

update displacement field and it was reduced by a factor of two for each succeeding multi-resolution level. The described regularization ρ was applied

at all dataset time points in order to correct for muscle shape deformations between two acquisition sessions, typically caused by difference in posi-

tioning and eddy currents. After the registration was completed, nearest-neighbor interpolation was applied to restore the original integer values of

the segmentation labels. All the computations were performed by means of an Intel Xeon E5-2620 v4 processor.

2.6 | Validation

To rate the quality of the supervised segmentation for the extraction of DTI indices, we considered several metrics. The volume similarity was

assessed for each muscle in each dataset via the DSC31 for the propagated regions only, thus excluding the manually segmented slices used for

input. To assess differences between manual and supervised automatic segmentations on the quantification of DTI indices, we focused on MD,

FA and λ3. These DTI indices were calculated for all upper leg muscles using (i) the manual segmentations, (ii) the supervised automatic segmenta-

tions excluding the manually delineated slices and (iii) the full supervised automatic segmentations. The latter two were used to evaluate both the

impact of the automatic propagation on DTI parameter estimations, as well as to consider the final complete supervised segmentation in compari-

son to the manual gold-standard segmentation. Differences between manual and automatic segmentations were assessed by Bland-Altman analy-

sis and linear regression of the DTI indices.

2.7 | Segmentation time

Individual muscles differ in their anatomical shape, aponeurosis locations, amounts of connective tissue and intra- and inter-muscular fat. The

muscle delineation complexity therefore varied between different muscles and between different subjects. In the transversal propagation, the

F IGURE 1 Schematic of the study set-up. DTI measurements were performed at 3 time points, i.e. at baseline, 24-48 hrs. post-marathon and
at a 2 weeks follow-up. Manual segmentations were performed for 10 muscles in both upper legs at all 3 time points. At baseline, a supervised
semi-automatic segmentation was performed based on a selected set of manually segmented slices (transversal propagation). For the post-
marathon and the follo-up time points the segmentation was automatically propagated without further manual input (longitudinal propagation)
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operator performed the manual segmentations in a selected number of slices, as described above. Consequently, the time required for segmenta-

tion differed between muscles and was calculated from the number of slices that were manually delineated compared with the total number of

slices in a given muscle. The mean values and the standard error of the time saved as a percentage are reported for each muscle.

3 | RESULTS

The transversal and longitudinal supervised segmentations were successfully executed for all 11 subjects. A transversal and longitudinal propaga-

tion of the segmentations of a representative subject are visualized in Figure 2, also indicating the manually segmented slices used as input for

the transversal propagation. Figure 3 shows the comparison of the changes of the DTI indices between manual and supervised segmentations of

three muscles for a representative subject at baseline, post-marathon and follow-up time points. Visual assessment of the graphs showed excel-

lent correspondence for the DTI indices between manual and supervised automatic segmentations.

3.1 | DSC values

DSC values calculated for the comparison between manual segmentation and the supervised segmentations of all analyzed muscles, excluding the

manually segmented slices, for the three time points are shown in Figure 4. For the transversal propagation step, the DSC values for different

F IGURE 2 Anterior view of upper leg muscle segmentations, where knees are at the bottom and hips at the top of the image. (A) Transversal
slice, approximately halfway between knee and hip, showing segmentations of the 10 muscles considered in this study in both legs, for example,
21 slices for the BFLH muscle in this subject. (B) Longitudinal views of the upper legs with an example of input segmentations at baseline.
Adjacent slices were selected as input when muscle shape changed. (C) Propagations resulting from the transversal propagation step. (D) The full
volumes obtained with the transversal propagation step
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subjects and muscles ranged between 0.62 and 0.95 (Figure 4 left), with 70% of the DSC values above 0.90. The DSC values for the volumes

obtained through the longitudinal registration process ranged between 0.48 and 0.98 (with 68% above 0.90) for the post-marathon time point

and between 0.59 and 0.99 (with 76% above 0.90) at follow-up (Figure 4 middle, right). In the transversal propagation the muscles that scored the

highest and lowest DSC values were VI (0.94 ± 0.01) and G (0.87 ± 0.07) respectively. Similarly, in the longitudinal propagations the muscles with

the highest and lowest DSC values were VI (post-marathon 0.95 ± 0.03, follow-up 0.96 ± 0.03) and G (post-marathon 0.82 ± 0.16, follow-up

0.88 ± 0.11).

3.2 | Linear regression analysis

The G and S muscles were excluded from this part of the analysis because of low SNR (<15) in the diffusion images. The linear regression of mean

λ3, MD and FA in the 16 muscle volumes (two legs, eight muscles each) obtained with supervised automatic segmentation versus the values

obtained with manual segmentation, excluding the S and G muscles, resulted in r2 values of 0.99 and p < 0.0001 for all indices at all time points

(Figure 6 top, baseline; Figure 7 top, post-marathon; Figure 8 top, follow-up). By including the muscles with low SNR (S and G muscles) r2 values

were lower, 0.98 (λ3), 0.91 (MD) and 0.99 (FA) at baseline, respectively (p < 0.0001), whereas at post-marathon r2 values were 0.96 (λ3), 0.91

(MD) and 0.94 (p < 0.0001) and at follow-up r2 values were 0.95 (λ3), 0.95 (MD) and 0.99 (FA) (p < 0.0001).

3.3 | Bland-Altman analysis

Bland-Altman analysis were carried out for the three different time points separately by considering the mean values of MD, FA and λ3 of each

segmented muscle with sufficient SNR of each participant. The derived 95% limits of agreement (LoAs) are reported in <TAB 1>Table 1. At base-

line, the 95% LoA ranged between 0.5% and 1.5% in the full volumes and between 0.7% and 3% excluding manual segmentations (Figure 6 bot-

tom). The bias ranged between −0.0008 and 0.0010. At post-marathon and follow-up, the LoA ranged between 0.7% and 3.1% (Figure 7 bottom

and Figure 8 bottom) with the bias between −0.0005 and 0.0016. The best agreement was presented by λ3. At baseline, some distinct outliers

were observed in the Bland-Altman plots (Figure 7). Outliers in λ3 corresponded to the BFLH right leg. Some outliers in MD were generated by

the right and left SM and the left RF. When including the manually segmented slices no outliers were observed.

F IGURE 4 DSCs for the supervised segmentations compared with the manual segmentations for the baseline (4A in blue), post-marathon
(4B in red) and follow-up (4C in yellow) time points for all the segmented muscles. The numbers correspond to the muscles listed in Figure 2. Each dot
reflects an individual subject and the group mean and standard deviation are shown in black

F IGURE 3 Comparison of the manual and semi-automatic segmentations of the mean values of λ3, MD and FA for the BFLH, RF and VL
muscles of a representative subject at baseline, post-marathon and follow-up time points
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3.4 | Input slices and segmentation time

The percentage of slices for which manual segmentation was required at baseline, prior to transversal and longitudinal propagation, is shown in

Figure 5. On average only 30% of the slices needed to be manually segmented at baseline, thus resulting in more than three times faster segmen-

tations at baseline and 10 times faster for the three time points. The BFSH of the right leg required the most manual segmented slices, the BFLH

of the left leg the fewest. Figure 5 shows that the numbers of manually segmented slices of the same muscle in the right and left legs are in the

same range. Furthermore, for the longitudinal segmentation the reduction in time is even greater, as these required no additional manual

segmentations.

F IGURE 5 Percentage of segmented slices used for transversal
propagation at baseline for the individual muscles. The BFSH of the
right leg (blue) required the most manual segmented slices; the BFLH
of the left leg (red) the fewest. Each point represents the mean and the
range of the segmentation acceleration. The dotted line represents the
average acceleration time

F IGURE 6 Linear regression analysis (top) and Bland-Altman plot (bottom) at baseline of diffusion indices λ3 (10−3 mm2/s), MD (10−3 mm2/s)
and FA (—) comparing manual segmentation with those resulting from the transversal propagations
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F IGURE 7 Linear regression analysis (top) and Bland-Altman plot (bottom) post-marathon of diffusion indices λ3 (10−3 mm2/s), MD
(10−3 mm2/s) and FA (—) comparing manual segmentation with those resulting from the longitudinal propagations

F IGURE 8 Linear regression analysis (top) and Bland-Altman plot (bottom) at follow-up of diffusion indices λ3 (10−3 mm2/s), MD (10−3 mm2/s)
and FA (—) comparing manual segmentation with those resulting from two longitudinal propagation steps
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4 | DISCUSSION

DTI is becoming increasingly popular to study muscle injury and disease, as the diffusion indices provide a direct window into muscle fiber integ-

rity and architectural organization.4,5 For quantitative analysis of changes in diffusion values, segmentation of individual muscles is required. Such

segmentations are often performed manually,12 which is a time-consuming, laborious and an operator-dependent process. This study aimed to

evaluate the impact of a supervised semi-automatic segmentation framework on the quantification of DTI indices in the upper leg muscles. Com-

pared with the conventional manual segmentation approach, similar DTI indices were found using this supervised semi-automatic segmentation

framework, as represented by high LoAs and r2 values. Furthermore, this study showed that the segmentation time of the entire muscle volume

can be three times faster for a single time point without significant impact on the quantification of DTI indices, which we believe is an important

step to more widespread application of DTI to study muscle injury and disease. In addition, the time saving for multiple time points is even larger

(10-fold for three time points), given that no further manual delineations are needed.

The Dice similarity coefficient was, with a few outliers, consistently high when comparing manual and supervised segmentations. These

results agree with the previous results that were obtained by Ogier et al,22 who reported a DSC of 0.91 for the transversal propagation and 0.88

for the longitudinal propagation. Interestingly, for most of our muscles, with the exception of the smaller muscles with a more changeable cross-

sectional area in the proximal-distal direction (S and G muscles), even better similarity indexes were found. We have not yet characterized with

certainty the reasons why some muscles are less well propagated at post-marathon and follow-up in comparison with baseline, but the factors

that might have influenced the results are the differences in the semi-automatic and automatic segmentation methods applied, the muscle shape

deformation between two acquisition sessions and the muscle size, because both G and S, the two smallest muscles in the upper leg, showed the

lowest Dice coefficient. However, more importantly, in this longitudinal study we also evaluated the impact of automatic segmentation on the

quantification of the muscle DTI indices. The Bland-Altman analysis resulted in excellent LoA values (maximum of 3% for FA) and low bias (maxi-

mum of 0.4% for FA in the transversally propagated volumes). These ranges can be compared with the changes in muscle DTI parameters that are

normally expected in muscle injury and disease. For example, changes in DTI indices reported after physical activity, such as a triathlon8 or a

marathon,9 are generally larger than the 95% LoAs reported above. Also, the changes in DTI indices observed in the presence of musculoskeletal

diseases, as shown in the study by Maggi et al7 in patients with muscular dystrophy (FA varies by 8.4%), are larger than the 95% LoA found in our

work. In the study by Sigmund et al6 in dermatomyositis patients, MD in the quadriceps muscles varied by 1.7%, which is smaller than the 95%

LoA we found over all analyzed muscles. However, in our work the quadriceps muscles showed the best correspondence with manual segmenta-

tion. Consequently, when considering our LoA for quadriceps muscles only, even these changes could be quantified. However, this would not be

the case for the other muscle groups. This indicates that by using the proposed semi-automatic segmentation method the changes in DTI indices

that are due to physical activity and certain diseases, such as muscular dystrophy, remain detectable, whereas smaller changes due to other

pathologies, such as dermatomyositis, cannot be detected in all muscle groups.

It is furthermore interesting to review some of the input requirements and time savings using this supervised semi-automatic segmentation

framework. At baseline, only 30% of the slices were required as input for the supervised segmentation compared with the full manual segmenta-

tion, reducing the time spent for manual delineation of muscle outlines for a full segmentation of 10 muscles in both upper legs from 840 min to

140 min. Furthermore, the segmentations of the post-marathon and follow-up time points were obtained directly from the baseline, without addi-

tional need of manual delineation of the muscles. This makes the segmentation process in larger cohort studies much more manageable, especially

in longitudinal studies. However, for this comparison, we did not include the computer processing time for the transversal and longitudinal propa-

gation steps that can be executed without further user interaction in the background. These steps do require time, which strongly depends on the

computer processor (ie of the order of 120 min for the transversal propagation and 300 min for the longitudinal propagation using an Intel Xeon

E5-2620 v4 processor). For the transversal propagation at baseline it was important that a sufficient number of slices were manually segmented

in those regions with large changes in muscle cross-section, typically at the muscle origin and insertion. The selection of these slices based on

muscle shape variations is a subjective factor in the transversal segmentation process that could lead to user-dependent performance. In fact, in

comparison with the study by Ogier et al,22 for the sake of robustness we segmented a higher percentage of slices manually than strictly neces-

sary, leading to less reduction in segmentation time (70% in our study as compared with 85% by Ogier et al). This difference is mainly due to the

fact that in this study the semi-automatic segmentation framework was applied to segment the full muscle volume, while in the study by Ogier

et al the most distal muscle regions (10 cm above the knees) were not segmented.

Over the past years, some other semi-automatic and fully automated segmentation methods for skeletal muscle have been proposed. These

methods use non-rigid multi-atlas registration or convolutional neural networks (CNNs) and have primarily focused on specific locations in the

upper leg muscles13–15 rather than full volumetric analysis.16 Furthermore, these methods have also been used to determine muscle volume and

to extract fat fractions. One of these previous studies, by Kemnitz et al,14 compared active shape model (ASM) and active contour model (ACM)

approaches at mid-thigh level and showed that the precision of the technique was higher for the quadriceps muscles (DSC values of 0.93 and

0.94) than for the hamstring muscles (DSC values of 0.87 and 0.89) and lowest for the S muscle (DSC values of 0.74 and 0.82). These findings are

in agreement with our results, where we found high DSC values for the quadriceps and hamstring muscles and lowest for the G and S muscles.

The CNN approach proposed by Kemnitz et al13,15 proved to be the fastest approach, less than 1 s per slice, and was also very precise (average
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DSC value 0.98). However, it is important to note that both methods described above have been trained only for a particular anatomical location

rather than for the segmentation of the full volume of individual muscles; moreover, no volumetric analysis was reported. Another approach that

has been used is the AMRA automatic segmentation technique developed at Linkoping University. This approach is based on non-rigid multi-atlas

registration on water fat Dixon images18 and was used to evaluate automatic quantification of fat fraction and volume increases in the quadriceps

muscle group.16 This study18 showed very good correlation with the manual segmentation of the estimated volumes of the quadriceps muscles,

with r = 0.98 and p < 0.0001. These values are in the same range as what we found for the DTI indices determined in individual muscles rather

than in a muscle group. Unfortunately, no information is given concerning other muscle groups or individual muscles.

This study has some limitations. First, the manual segmentation of the input slices was performed only once, by two albeit expert observers,

because the manual segmentation is very time consuming and laborious, and requires quite some experience and anatomical knowledge. There-

fore, the intra-observer reproducibility was not tested at this point. Second, thus far, we have only focused on the impact of supervised segmenta-

tion on DTI quantification using whole muscle segmentations. The impact of semi-automatic segmentation on quantification could vary along the

proximo-distal muscle axis and therefore affect more localized assessments in a different manner. Additionally, in this work only healthy muscle

tissue has been evaluated. Pathophysiological changes due to injury or disease alter image contrast and could impact the performance of the

supervised semi-automatic segmentation framework. Future studies will include localized muscle damage to evaluate how well the propagation

algorithms perform under these circumstances.

5 | CONCLUSIONS

The purpose of the present study was to evaluate a supervised muscle segmentation framework developed by Ogier et al,21,22 for the quantifica-

tion of DTI indices in individual muscles of the thighs. Using this tool, we assessed the accuracy, feasibility and impact on the quantification of

DTI indices in comparison with manual segmentation as well as the reduction in work load compared with manual segmentation. Linear regression

and the Bland-Altman analysis of the DTI indices showed good agreement between the results obtained with manual segmentation and the

results obtained with the supervised muscle segmentation framework. The work load and segmentation time were reduced threefold at baseline

compared with manual segmentation and the segmentation of post-marathon and follow-up time points was completely automated. The pro-

posed semi-automatic segmentation method for the detection of changes in DTI indices that are due to physical activity and diseases proved fast,

feasible, accurate, reproducible and less operator dependent.
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