N
N

N

HAL

open science

Specification of side-effect management techniques for
semantic graph sanitization
Jacques Chabin, Cédric Eichler, Mirian Halfeld-Ferrari, Nicolas Hiot

» To cite this version:

Jacques Chabin, Cédric Eichler, Mirian Halfeld-Ferrari, Nicolas Hiot. Specification of side-effect man-
agement techniques for semantic graph sanitization. [Research Report] LIFO, Université d’Orléans,

INSA Centre Val de Loire. 2020. hal-02957974

HAL Id: hal-02957974
https://hal.science/hal-02957974
Submitted on 5 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02957974
https://hal.archives-ouvertes.fr

Specification of side-effect
management techniques for
semantic graph sanitization

DELIVERABLE D6

Related task Task 2
Partner LIFO
Redactor Cédric Eichler

Contributors Jacques Chabin, Cédric Eichler,
Mirian Halfeld-Ferrari, Nicolas Hiot
Versioning 24/09/2020, V2: formatting
27/08/2020, V1: initial report

Presentation of this deliverable

The goal of the SENDUP project is to propose anonymisation mechanisms for
data organized as graphs with an underlying semantic. Such mechanisms trig-
gers updates on the database. This deliverable presents the update approach
and side-effect management techniques defined in SENDUP.

We focus on updates -instance or schema changes- on RDF/S databases
which are expected to satisfy RDF intrinsic semantic constraints. We model
RDF/S databases as type graphs and use graph rewriting rules to formalize
updates. Such rules define both the effect of a graph transformation and its
applicability conditions. We propose 19 rules modelling atomic updates and
prove that their application necessarily preserves the database’s consistency.

If an update has to be applied when the application conditions of the corre-
sponding rule do not hold, side-effects are generated: they engender new updates
in order to ensure the rule applicability. These techniques are implemented in
a dedicated software module S1 called SetUp. This deliverable also presents a
preliminary experimental validation and evaluation of SetUp.

Contents

5

.................... 6

I1.2 Report Organization| 7
2__RDF databases and updates| 8
2.1 Logical representation of RDF/S databases| 8

2.2 RDF/S databases as a typed graph|. 8
|2.3 Examplelo o oo 10
2.4 Considered constraintsl 11
2.5 Updates: definition and objectives| 12

13 Preliminaries: graph rewriting| 13
3.1 The SPO approach| 13
3.1.1 Specitying rewriting rules| 13

3.1.2 Application of SPO rewriting rules| 14

3.2 xtensions to restrict applicability] 14
3.2.1 egative and Positive Application Conditions| 14

13.2.2 Nested Application Conditions, General Application Con- |

| ditiondl 15
4 Graph rewriting rules for consistency maintenance| 17
M1 Insertionofa Class 17
4.2 Deletionofa Clasg 18
4.3 Insertion of a Class Instancel. 19
4.4 Deletion of a class instancel 20
(A5 Tnsertion of an individuall L. 21
(4.6 Deletion of an individuall 22
4.7 Insertion of a literall 22
(A8 Deletion of aliterall 23
4.9 Insertion of a property] 24
4.9.1 Insertion of a property having a class as its range|. 24

4.9.2 Insertion of a property having a literal as its range] 25

4.10 Deletion of a property|o 26
[4.11 Insertion of a property instance| 26

4.11.1 Insertion of a property instance for a property having a

| classasitsrange| oL 27
4.11.2 Insertion of a property instance for a property having a |

| Literal asitsrangel Lo Lo 28
4.12 Deletion of a property instance| 29
[£12.T Deletion of a property instance for a property having a |

| classasitsrange|o 29
4.12.2 Deletion of a property instance for a property having a |

| Literal asitsrangel Lo Lo 30
4.13 Insertion of a subclass relationl 31
4.14 Deletion of a subclass relationl 33
4.15 Insertion of a sub-property relation| 34
4.16 Deletion of a subproperty relation| 38
4.17 Concluding remarks on consistent updates| 38

B Side=clT [Consi Datal Fvolution 40
................................. 41
b.1.1 Generating pre-condition| 41

[5.1.2 Enforcing pre-conditions and updates| 44

(.2 Handling non-deferminism|. 45
5.2.1 rder of updates|o 45

5.2.2 Multiple acceptable set of updates| 46

5.3 SetUp correction and termination|. 47

|6 Experimental evaluation| 55
6.1 Methodologyl 55
6.2 Experimental results|00 o o000 57
6.2.1 Sideeffects| oL 57

[6.22 Execution timel 57
[r__Related workl 61
[7.1 _Graph rewriting for database updates| 61
............................ 62

7.3 Updating approaches| 62

|8 Concluding Remarks| 64
3.1 xpected usage| Lo o 64
8.2 Appropriateness w.r.t. SENDUP scenarios|. 64

Chapter 1

Introduction

One of the objectives of SENDUP is to introduce techniques for the manage-
ment of graph database updates to support their sanitization. Graph rewriting
concerns the technique of transforming a graph. It is thus natural to conceive
its application in the evolution of graph databases. This report leverage this
formal tool within a framework that ensures the consistent evolution of RDF
(Resource Description Framework) databases.

Initially just a part of the semantic web stack, RDF is currently largely
used for representing high-quality connected data. “Representing data in RDF,
in an integrated way, allows information to be identified, disambiguated and
interconnected by software agents and various systems to read, analyze and act
upon” [I]. Data should above all else be usable and therefore satisfy the various
semantics and constraints requirement applications may have.

In the last decade, ontology-based systems have addressed knowledge rep-
resentation by following the Open World Assumption (OWA) semantics where
a statement cannot be inferred as false on the basis of failures to prove it. In
SENDUP, we consider databases satisfying integrity constraints (IC) and the
Closed World Assumption (CWA) semantics. Indeed, the OWA is not adapted
to data-centric applications needing complete and valid knowledge [36]. On the
contrary, the CWA allows a finer comprehension of the curated information and
the released data, a crucial point in data sanitization. For example, a database
where we want to ensure that every drug is associated to a molecule should be
considered inconsistent if the drug d has not its associated molecule.

The following example illustrates our motivation and the challenges that
pose the update of such databases.

Example 1 (Motivating Example.) Fig.[2.9 shows a complete RDF/S graph
database consistent w.r.t. to the RDF/S constraints. We are concerned by the
problem of updating this database, keeping it conmsistent. Firstly, suppose an
instance update: the insertion of ASA (acide amino-salicylique) as a class in-
stance of Molecule. How can we guarantee that ASA will be also an instance
of all the super-classes of Molecule? Then, consider a schema evolution: the

insertion of provokeReaction as sub-property of HasConsequence. How can we
perform this change ensuring that provokeReaction will have its domain and
range as sub-classes of those of HasConsequence? O

This report proposes SetUp (Schema Evolution Through UPdates), a main-
tenance tool based on graph rewriting rules for RDF data graph enriched with
integrity constraints. Consistency is established according to the CWA seman-
tics and ensures data quality for querying systems requiring reliable information
and mastering released information. Constraints considered in this paper are
those defining RDF /S semantics, but the approach adapts to other constraints,
in particular user-defined ones. SetUp ensures sustainability since it offers the
capability of dealing with evolution of data instance and structure without vi-
olating the semantics of the RDF model.

1.1 Characteristics of our solution

SetUp summarized in two main steps

(1) Firstly we formalize updates as graph rewriting rules encompassing integrity
constraints. An Update is a general term and can be classified through two dif-
ferent aspects: on one hand, as insertions or deletions and, on the other hand
as instance or schema changes. Each atomic type of update is formalized by a
graph rewriting rule whose application necessarily preserves the databases va-
lidity. To perform an update, the applicability conditions of the corresponding
rule are automatically checked. When all conditions of a rule hold, the rule is
activated to produce a new graph which takes into account the required update
and is necessarily valid if the graph was valid prior to the update. Graph rewrit-
ing rules ensure consistency preservation in design time — no further verification
is needed in runtime.

(2) Secondly, if the applicability condition of a rule does not hold, the update is
rejected. SetUp provides the possibility to force its (valid) application by per-
forming side-effects. Indeed, in our method, side-effects are new updates that
should be performed to allow the satisfaction of a rule’s condition. Side-effects
are implemented by procedures associated to an update type, and thus, to some
rewriting rule. When an evolution is mandatory (for example when demanded
by the anonymization process), we enforce database evolution by performing
side-effects (i.e., triggering other updates or schema modifications which will
render possible rule application).

SetUp’s main characteristics.

e SetUp main goal is to ensure validity when dealing with the evolution of an
RDF/S data graph which represents a set of RDF (the instance) and RDFS
(the schema) triples respecting semantic constraints as defined in [g].

e SetUp deals with complete instances, i.e., constraint satisfaction is obtained
only when the required data is effectively stored in the database.

e SetUp implements deterministic rules. Arbitrary choices have been made
when non-deterministic options are available. A dedicated section discuss future

methods of handling non-determinism.
e SetUp takes into account the user level. Only database administrators may
require updates provoking schema changes.

1.2 Report Organization

The next chapter of this report sets up the work context. It introduce the
notations, vocabulary and representations related to databases and updates
used throughout the report.

Chapter [3]introduces the background on graph rewriting theory, focusing on
the rewriting formalisms and approaches adopted in this report. This serve as
a basis for chapter [d] where consistency-preserving rewriting rules formalizing
atomic updates are specified. Such rules may not be applied if their application
would lead to the introduction of inconsistencies.

In these cases, rather than refusing the update, we propose in Chapter [5] the
generation of side-effects to force its application.

The rewriting rules formalizing graph updates and the techniques for the
generation of side-effects have been implemented, resulting in a module called
SetUpWhile inherently part of the SENDUP software suite, SetUp can be used
on its own through a dedicated API or TUIL Its experimental evaluation and
validation is presented in Chapter [6]

Related work and the originality of our solution is discussed in Chapter [7]
Chapter [8] offers concluding remarks, summarizing the proposed framework, its
anticipated usage and its appropriateness with regard to SENDUP scenarios.

Chapter 2

RDF databases and updates

A collection of RDF statements intrinsically represents a typed attributed di-
rected multi-graph, making the RDF model suited to certain kinds of knowledge
representation [2]. Constraints on RDF facts can be expressed in RDFS (Re-
source Description Framework Schema), the schema language of RDF. RDF/S
databases are formalized in two ways in this paper: as classical triple-based RDF
statements and as a typed graph. This chapter introduces these representations,
as well as the considered constraints.

2.1 Logical representation of RDF /S databases

In [8] we find a set of logical rules expressing the semantics of RDF/S (rules
concerning RDF or RDFS) models. Let A¢g and Ay be disjoint countably
infinite sets of constants and variables, respectively. A term is a constant or a
variable. Predicates are classified into two sets: (i) SCHPRED = {C'L, Pr, C'Sub,
Psub,Dom, Rng}, used to define the database schema, standing respectively for
classes, properties, sub-classes, sub-properties, property domain and range, and
(#4) INSTPRED = {C1I, PI, Ind}, used to define the database instance, standing
respectively for class and property instances and individuals. An atom has the
form P(u), where P is a predicate, and w is a list of terms. When all the terms
of an atom are in A, we have a fact.

2.2 RDF/S databases as a typed graph

RDF/S type graphs comprise 4 node types (Class, Individual, Literal, and Prop)
and 6 edge types (CI, PI, domain, range, subclass, and subproperty). Each
nodes have one attribute representing an URI, an URI, a value, and a name,
respectively. PI-typed edges are the only ones with an attribute which represent
the name of the property the edge is an instance of.

Fig describes how each RDF triples are formalized and represented in
the typed graph model.

Individual

customURI="4"

(a) CI(A) (b) Ind(A) (c) Pr(A) (d)
Class Pro
URI="B" customURI="B
subclass | subproperty
URI customURI="4A"
(e) CI(A,B) (f) CSub(A,B) (g) PSub(A,B)
domain range
Pro : Fro =, |class
customURI= customURI="4" u
(h) Dom(A,B) (i) Rng(A,B)

(j) PI(A,B,C)

Individual

customURI="B"

Figure 2.1: RDF triples in the type graph model

/N
[Lteral
\\‘ X s\ubc\ass “Ja\‘.\?=“\'i\f5:Ut%\'i\““

\

1Y~ pron Nonan

customURl="Produces”

customURl="Fever-'

Figure 2.2: RDF schema and instance.

2.3 Example

Definition 1 (Database) An RDF database 9 is a set of facts composed by
two subsets: the database instance D1 (facts with predicates in INSTPRED)
and the database schema Pg (facts with predicates in SCHPRED). We note
G = (V,E) the typed graph that represents the same database. V are nodes with
type in {CL, Pr,Ind, Lit} and E are edges having type in {Dom, Rng, PSub,
CSub,CI, PI}. The notation 2/G designates these two formats of a database. O

Fig. 2.2 shows an RDF instance and schema as a typed graph. The schema
specifies that Has Consequence is a property having class Drug as its domain
and the class Effect as its range. Property Produces is a sub-property of Has
Consequence while PosEffect is a sub-class of Effect. Class “rdfs:Resource”
symbolizes the root of an RDF class hierarchy. The instance is represented
by individuals which are elements of a class (e.g. , APAP is an instance of
class Mollecule) and their relationships (e.g. , the property instance Produces,
between APAP and Fever™).

The logical representation of this database is a set of facts. For instance
facts such as CL(Drug) or CSub(Drug, rdfs:Resource) are for the schema de-
scription and Ind(Saccharose) or CI(Saccharose, Excipient) are for the instance
description.

10

e Typing Constraints:
CL(x) = URI(x)
Ind(xz) = URI(x)

(CL(z) AN Ind(z)) = L

(2.1) Pr(z) = URI(x) (2.2)

(

(
CSub(z,y) = CL(z) NCL(y

(2.7

(

2.

2.1

2.3) (CL(z) A Pr(z)) = L (2.4)
2.5) (Pr(z) ANnd(z)) =L (2.6)
% PSub(x,y) = Pr(z) APr(y) (2.8)

Dom(z,y) = Pr(z) NCL(y) (2.9) Rng(xz,y) = Pr(z)ACL(y) (2.10)

Cl(@,y) = Ind(z) ACL(y) (211) CL(x) = CSub(x, rdfs:Resource)

(2.12)
Ind(x) = CI(z, rdfs:Resource) PI(x,y,z) = Ind(x) A Ind(y) A Pr(z)
(2.13) (2.14)
e Schema Constraints:
Pr(z) = (3y, 2)(Dom(z,y) A Rng(x,y)) (2.15)
Pr(z) = ADom(x,y) = ((y # z) A Dom(z,2)) = L (2.16)
Pr(z) = ARng(z,y) = ((y # 2) A Rng(z,2)) = L (2.17)
CSub(z,y) AN CSub(y, z) = CSub(z, 2) (2.18)
CSub(z,y) AN CSub(y,z) = L (2.19)
PSub(z,y) A PSub(y, z) = PSub(z, z) (2.20)
Psub(z,y) AN Dom(z,z) A Dom(y, w) A (z # w) = CSub(z,w) (2.21)
PSub(z,y) AN PSub(y,z) = L (2.22)
Psub(z,y) A Rng(x, z) A Rng(y, w) A (z # w) = CSub(z,w)
(2.23)
e Instance Constraints:
Dom(z,w) = (PI(z,y,z) = Cl(z,w)) (2.24)
Rng(z,w) = (PI(z,y,z) = CI(z,w)) (2.25)
CSub(y, z) = (CI(z,y) = Cl(x,2)) (2.26)
PSub(z,w) = (PI(x,y,z) = PI(z,y,w)) (2.27)

Figure 2.3: Simplified and compacted form of RDF/S constraints

2.4 Considered constraints

Constraints presented in [§] are those in Fig.[2.3|which is borrowed from [I5]. We
recall from [8] that these constraints capture the RDF/S semantics and the re-
strictions imposed by [30] whose model’s goal is to provide sound and complete
algorithm for RDF/S query containment and minimization. That model im-
poses a semantics having characteristics such as: role distinction between types
(classes, properties and individuals), unique domains and ranges for properties
and no cycles in subsumptions. These constraints (that we denote by %) are

the basis of our RDF semantics. For instance, the schema constraint (2.20)) es-
2.27)

tablishes transitivity between sub-properties and the instance constraint (2.27]

11

ensures this transitivity on instances of a property (if z is a sub-property of w,
all 2’s instances are property instances of w). We are interested in database that
satisfy all constraints in €. Indeed, in accordance to the closed world assump-
tion (CWA), constraints are not just inferences - they impose data restrictions.

Definition 2 (Consistent database (2,%)) A database 9 is consistent if it
satisfies all constraints in € (i.e., in this paper, those in Fig. . O

2.5 Updates: definition and objectives

We define updates as follows:

Definition 3 (Update) Let 2/G be a database. An update U on 2 is either
(i) the insertion of a fact F in 2 (an insertion is denoted by F) or (ii) the
removal of a fact F from 2 (a deletion is denoted by —F). To each update U
corresponds a graph rewriting rule r.

Note that some updates may contain a contradiction, in which case they are
intrinsically inconsistent.

Definition 4 (Intrinsically inconsistent update) An intrinsically inconsis-
tent update U related to a fact F' is such that, VP, F € 9 — —(2,6).

Updates can be classified according to the predicate of F', i.e., the insertion
(or the deletion) of a class, a class instance, a property, etc, qualifying a set of
atomic update type. Each update type, can be formalized by a rewriting rule r
describing when and how to transform a graph database.

This paper aims at proposing a set of graph rewriting rules, denoted by R,
which ensures consistent transformations on G due to any atomic update U.
The set R is defined on the basis of ¥ as illustrated in Fig. on the logical
level, (2,%) expresses consistent databases; on the data graph level, (G,R)
expresses graph evolution with rules in R encompassing constraints from €.

2 satisfy constraints €
|
G evolution guided by R

Figure 2.4: Rewriting rules R and constraints % .

The idea is: given 2/G for (2,€) and update U corresponding to rule
r € R, if G’ is the result of applying r on G then (2',%) for 9'/G’.

12

Chapter 3

Preliminaries: graph
rewriting

We briefly introduce the theoretical background on the formal graph rewriting
approach adopted in this report: the Single Push Out (SPO) [22] approach.

Graph rewriting is a well-studied field for the formal specification of graph
transformations [26]. It relies on the definition of graph rewriting rules which
specify both the effect of a graph transformation and the context in which it may
be applied. In SENDUP, we adopt the SPO formalism [22] to specify rewriting
rule as well as several extensions of its extension to specify additional applica-
tion conditions and restrict rule applicability: Negative Application Conditions
(NACGCs) [12], Positive Application Conditions (PACs), and General Application
Conditions (GACs) [21].

3.1 The SPO approach

3.1.1 Specifying rewriting rules

The SPO approach is an algebraic approach based on category theory. A rule
is defined by two graphs — the Left and Right Hand Side of the rule, denoted
by L and R or LHS and RHS — and a partial morphism m from L to R (i.e.,
an edge-preserving morphism m from an induced subgraph of L to R). E]

An example of an SPO rule is specified in Fig. The LHS of the rule
is composed by a single node of type Class whose Type attribute is set to
“rdfs:Resource”. The RHS of the rule is composed by two Class nodes with
attribute values “rdfs:Resource” and A and an edge of type Subclass from the
latter to the former. By convention, an attribute value within quotation mark
(e.g. “rdfs:Resource”) is a fixed constant, while a value noted without quotation

ITo avoid multiplying notation, we use notation L and R for every rule, even those in the
logical formalism, sometimes with an index indicating the rule name.

13

mark (e.g. A) is a variable whose value may be given as an input or assigned
according to the context.
The partial morphism from L to R is

specified in the figure by tagging graph 3
. . . E
elements - nodes or edges - in its domain e —
and range with a numerical value. An Lclass | || [ype'rdisiResource’
type="rdfs;Resource” E

element with value 7 in L is part of the
domain of m and its image by m is the

graph element in R with the same value 1.
In the example, the notation 1: before the Figure 3.1: An SPO rewriting rule
node type of the two nodes symbolizing

the root of the class hierarchy in L and R indicates that they are mapped
through m.

3.1.2 Application of SPO rewriting rules

A graph rewriting rule r = (L, R, m) is applicable to a graph G iff there exists a
total morphism m from L to G. The two morphisms m: L - Rand m: L — G
are shown in black in Fig. The object of its push-out, G’, depicted in red,
is the result of the application of r to G with regard to m.

Informally, the application of r to G with re- . > o
gard to m consists in modifying elements of G by
(1) removing the image by m of all elements of L " T T
that are not in the domain of m (i.e., removing L =——> R
m(L\Dom(m))); (2) removing all dangling edges ™

(i.e., deleting all edges that were incident to a
node that has been suppressed in step (1)); (3)
adding an isomorphic copy of all elements of R
that are not in the domain of m. Going back to
the example rule depicted in Fig. this means that the rule is applicable to
any graph G containing a class node n with attribute “rdfs:Resource”. Its appli-
cation consists in adding a class node with attribute A and a subclass edge from
this node to n. Assuming that A is given as input, this rule is thus a first way
of formalizing the addition of a class node to the database. It is however naive
since the class node could already be present in the graph, creating a duplicate.
To avoid this situation, the applicability of the rule must be further restricted.

Figure 3.2: Push-Out, ap-
plication of SPO rules

3.2 Extensions to restrict applicability

3.2.1 Negative and Positive Application Conditions

NACs and PACs are well-studied extensions that forbid or require certain pat-
terns to be present in the graph for a rule to be applicable, respectively. A NAC
or a PAC is defined as a constraint graph which is a super-graph of the LHS
of the rule they are associated to. An SPO rule r = (L, R, m) with NACs and

14

e

1:Class
URl=res

cl ;
UF?IS:A TiCiass LiClass Class
URI="rdfsResource” URI=A URI=A

(a) (b) (c) (d)

Figure 3.3: Less naive rewriting rule for the insertion of a class

PACs is applicable to a graph iff: (i) there exists a total morphism m : L — G
(this is the classical SPO application condition); (i¢) for all PACs P (resp. NACs
N) associated with r, there exists a total morphism (resp. there exists no to-
tal morphism) m : P — G (resp. N — G) whose restriction to L is m. By
convention and to avoid redundancy, since NACs and PACs are super-graphs of
L, when illustrating a NAC or a PAC, L will not be depicted. This convention
has two major implications. Firstly, it is necessary to explicitly identify graph
elements that are common to L and the depicted part of the NAC. This is
done similarly to the identification of graph elements matched by the morphism
from L to R, by adding numerical value to relevant graph elements in L and
NAC/PAC. Secondly, it is important to note that /m and /m are not necessarily
injective. However, it is forbidden for an element of the depicted part of the
NAC and an element of L to have the same image by m in G if they are not
explicitly identified as common.

Fig. [3.3] shows an enrichment of the rule depicted in Fig. [3:1] In the SPO
core of the rule, the attribute “rdfs : Resource” is simply replaced by a variable
res. The PAC specified in Fig. [3:3D] imposes that res = “rdfs:Resource”, i.e.,
the node in L should be the root of the class hierarchy. So far, the rule has the
same behaviour as the one in Fig. In addition, it (¢) avoids the addition of
duplicate class node, thanks to the NAC of Fig. defined as the juxtaposi-
tion of L and a Class attributed URI=A; (ii) forbids the addition of a second
rdfs:Resource class node thanks to the NAC presented in Fig. stating that
the input A may not be equal to the res.

3.2.2 Nested Application Conditions, General Application
Conditions

The more classical application conditions, be it NACs or PACs, are defined
as a constraint graph C' and an injective partial morphism (in that case, the
identity function) from C' to L. That observation lead to the introduction of
nested application conditions [10, [13] that allow to define conditions on the
constraint graphs. A condition over a graph G is of the form true or 3(a,c)
where a : G — C is a graph morphism from G to a condition graph C, and c is

15

2:Class 1:Individual 2:Class|“ € Aiindwidual
URI=E customURI=A) |- URI=B customURI=A

(a)

NestCond 1| =- GacTransCl
4
5:"2;8 2:Class
URI=B
4:subclass
| | 4:subclass

Cl

)

Figure 3.4: SPO rule for the insertion of a class instance with a GAC

a condition over C. With this definition, a PAC P over a rule (L, R, m) can be
seen as a condition (a, true), with a being the identity morphism from L to P.
Application conditions can be negated, so that a NAC N can be defined as a
condition —(a, true), with a similar definition of a. GACs [27] are a combination
of nested application condition allowing the definition of complex applications
conditions for SPO rules. A GAC of a rule (L, R, m) is a condition over L that
may be quantified by V and combined using A and V. The rule (L, R,m) with
GAC (a,c) is applicable to a graph G with regard to a morphism m if there is
an injective graph morphism m : G — C such that m oa = m and m satisfies c.

Fig. shows an example of a rule with a nested GAC of the form V(a,c).
The morphism a from L to GacTransCI is depicted in the right part of Fig.
GacTransCI contains L plus a subclass edge from the class node of L to a
new class node n. The condition c¢ is 3(b, true), with b the morphism from
GacTransCI to NestCond (left part of Fig. |3.4b|): NestCond is itself a super-
graph of GacTransCI and comports one more CI edge from the individual
node to n. Due to this GAC, the rule is applicable to a graph G with regard
to a morphism m only if for all morphism m from GacTransCI to G whose
restriction to L is m, there also exists at least a morphism from NestCond to G
which restriction to GacT'ransCI is m. In other word, this GAC ensures that
if the rule is applicable, then VC,CI(C) A CSub(B,C) = CI(A,C). Indeed,
if there is a mapping from L to the database graph, the rule is applicable only
if, for each matching of GacTransC1I (i.e., for all class C that is a super-class
of B) there is a matching of NestCond (i.e., there must be an edge of type CI
from Ind(A) to CI(C)).

16

Chapter 4

Graph rewriting rules for
consistency maintenance

In our proposal, rewriting rules formalize both graph transformations and the
context in which they may be applied. These rules may be fully specified graph-
ically, enabling an easy-to-understand graphical view of the graph transforma-
tion that remains formal. To prevent the introduction of inconsistencies during
updates, we 1) formally specify rules of R formalizing G evolution and 2) prove
that every rule in R ensures the preservation of every constraints in .

Recall from Chapter [2]the relationships between 2 and G and between ¢ and
R. In this context, we have designed the set R: eighteen graph rewriting rules
which formalize atomic updates on G ensuring database consistent evolution
w.r.t. . The kernel of R’s construction lies on the detection of constraints in
% impacted by an update: an insertion F' (respectively, a deletion —F") impacts
constraints having the predicate of F' in their body (respectively, in their head).
Consider for instance constraint ([2.11)): if CI(A, B) is in 2 then it should also
contain a class B and an individual A. Hence, the graph rewriting rule concerned
by the insertion of CI(A, B) can be applied only on a database respecting these
conditions.

In our approach each update type corresponds to a rule in R. Notice however
that two different rules describe the insertion (or the deletion) of a property,
depending whether its range is a class or a literal. This section presents rules of
R, together with proof of consistency preservation. Their presentation follows
a standard basic form filled by the main explanations of the rule.

4.1 Insertion of a Class

Update category: Schema evolution

User level: Only authorized users such as database administrators or the anonymi-
sation module

Rule semantics: This rule has been partially presented in Section [3| (Fig. .

17

Fro
customURI=4

(b)
Figure 4.1: Additional NACs for addCI(A)

1) SPO specification: (Fig. @‘
LHS: there exists a class with URI res in the database;

RHS: LHS plus a class with the URI A as a sub-class of Cl(res). The application
of the rule will lead to their addition.

2) PAC specification: (Fig. variable res is assigned to “rdfs:Resource”;
this PAC corresponds to constraint (2.12)).

3)NAC,., and NAC,;: (Fig. @ a respectively) these NACs are non-
redundancy guarantee (ie, two classes may not have the same URI). A class
Cl(A) may be inserted in the graph when: (i) A is not rdfs:Resource and (i)
another class with URI A does not already exist.

4) NAC,,q and NAC,,, (Fig.s and respectively): guarantee that the
sets of classes, properties, and individuals are disjoint (constraints and .

Proof of consistency preservation: It is clear from Fig. that the addition of
a class may activate constraints and (i.e., those having an atom
with predicate Cl in their bodies). Thanks to the specification of NAC;,,4 and
NAC,,, constraints and [2.5|are ensured. The PAC and SPO core of the rule
in Fig. [3.3bland impose the new class to be a subclass of rdfs: Resource, as
constraint

4.2 Deletion of a Class

e b

1:Class i I domain TG Ca
URI=A i URI="rdfs:Resource” L:Class| L18SS |y
URI=A URI=A
(©)

(a) (b)

Figure 4.2: In (4.2a)) the SPO rule for the deletion of a class, denoted delCI(A).

It has 3 NAC, namely (4.2b) NAC,s : A # “rdfs : Resource”; (4.2c)) NACzom :
VP such that Pr(P) , Dom(P, A) is false; (4.2d) NAC,.,4: VP such that Pr(P)
, Rng(P, A) is false.

Update category: Schema evolution
User level: Only authorized users such as database administrators or the anonymi-

18

sation module

Rule semantics:

1) SPO specification: (Fig.

LHS: there exist a class with URI A in the database;

RHS: empty, rule’s application leads to the deletion of the class with the URI A.
2) NAC,.s : (Fig. @ states that the rule cannot be applied when A is
rdfs:Resource — indeed the root of RDF class hierarchy cannot be deleted.

3)NACyom and NAC,gpnge: (Fig. and respectively) impose that the
class being deleted is neither the domain nor the range of any property.

Proof of consistency preservation: From Fig. the deletion of a class may
impact constraints[2.7] (those having CI(A) on the RHS) together
with constraints [2.12 (as consequences of possible deletion politics).
Constraints [2.7 and [2:11]are preserved because C'Sub and CT relations involving
CI(A) are represented as edge incident to the node modelling CI(A). As in the
SPO approach dangling edges are deleted, all C'Sub and C1T relations involving
Cl(A) are suppressed when this rule is applied. Constraint (respect.
forbids the deletion of A as the domain (respect. as a range) of an existing
property (which would also impact rule . Thanks to NAC 4o, and NAC,.,4,
our graph rewriting rule is applicable only if the class to be deleted is neither the
domain nor the range of any property. Finally as NAC,..; forbids the deletion of
class rdfs: Resource, constraints and are never violated by the deletion
of a class.

4.3 Insertion of a Class Instance

2:Class cl

URI=E

F

Figure 4.3: Additional NAC for addCI(A,B)

Update category: Instance evolution

User level: Any user

Rule semantics: This rule has been partially presented in Sec. [3| (Fig. [3.4).

1) SPO specification: (Fig.

LHS: There exists a class with URI B and an individual A in the database;
RHS: an edge from Ind(A) to Cl(B) is introduced in the graph.

2) NAC,¢q : (Fig. forbids the application of the rule if CI(A, B) already
exists in the database.

3)GAC: (Fig. ensures that the instance A of class B (being inserted) will
also be an instance of all super-classes of B.

Proof of consistency preservation: From Fig. constraints and

19

(having atoms with CT on their body) are impacted. Our graph rewriting rule
ensures that the insertion of a class instance is performed only when the indi-
vidual and its type already exist in the database (constraint . According
to GacTrans, if there existss some super-class C of B and A is not an instance
of C, then the class instance relation CI(A, B) cannot be added (ensuring con-

straint [2.26]).

4.4 Deletion of a class instance

-

2iindividual
customURI=indivUR)

2individual

customURI=indivURI

(b)

Prop
customURI=p

1:Class e
URI=clsURI

2iindividual
customURI=indivURI

(d)

__[prop |

Liclass | _|Prof
|customURI=p|

|URI=clsURI|

2individual
customURI=indivURI

1:Class Fangs Prop

|ORI=clsURI[" ~ ~~ |customURI=p

el

2:Individual
customURI=indivURI

(®)

1:Class
URI="rdfs:Resource”

()

2individual
customURI=indivURI

()

Figure 4.4: Rule concerning the deletion of a class instance.

Update category: Instance evolution
User level: Any user

Rule semantics:

20

1) SPO specification: (Fig.

LHS: An individual is linked to a class by an edge typed C1, i.e., in the database,
the individual is an instance of this given class.

RHS: The C1I edge is removed (the individual still exists but is not an instance
of the given class anymore).

2) NACs: The individual considered here is an instance of the given class. The
NAC in Fig. [£45] forbids the application of the rule when this individual is
also connected to another individual by a property (i.e., as part of a property
instance) whose domain is the given class. The NACs in Figs. and are
similar to the previous one, treating the cases where the individual is connected
to a literal or to itself, respectively. The NACs in Figs. and impose
similar prohibition when the given class is the range of the property. The NAC
in Fig[f.4g] ensures that no instance of resource is removed — since an individual
is always an instance of class Resource. The NAC in Fig [{.41] disallows the rule
application when the individual is an instance of a subclass of the given class.

Proof of consistency preservation: From Fig. we remark that constraints
P13] .24, 2.25] and [.26] are concerned by the deletion of a class instance
since an atom with predicate C'I appear in their right-hand sides. The NAC in
Fig [{.4g] ensures the satisfaction of constraint 2.13] The NACs in Figs. [{.-4b}-
ensures the satisfaction of constraints and Finally the NAC in
Fig [4.4h] guarantees that constraint is not violated.

4.5 Insertion of an individual

A

1:Class
URI="rdfs:Resource"

1:Class
URI="rdfs:Resource"

Class [Prop | Class
|URI=A] |customURI=A| URI=A

(a) () (© (@)

Figure 4.5: Rewriting rule for the insertion of an individual

Update category: Instance evolution

User level: Any user

Rule semantics:

1) SPO specification: (Fig. |4.5a)

LHS: The class Resource;

RHS: LHS plus an individual with the URI A and a CT edge from the from the
former to the latter. The application of the rule inserts the individual as an
instance of class Resource.

21

2)NACs: The NACs defined in Fig. and guarantee that the sets
of classes, properties, and individuals are disjoint (constraints and in
Fig. [2.3). The Nac from Fig. forbids the addition of the individual if an
individual with the same URI already exists.

Proof of consistency preservation: The addition of an individual triggers con-
straints (Fig. requiring an URL (given as a rule parameter) and con-
straints and which are guaranteed by the two NACs. and
Unicity is guaranteed by NAC [.5h] .

4.6 Deletion of an individual

Figure 4.6: Rewriting rule for the deletion of an individual

Update category: Instance evolution

User level: Any user

Rule semantics:

1) SPO specification:

LHS: An individual with URI A4;

RHS: the empty graph: rule’s application leads to the deletion of the individual
with the URI A (and all edge incident to it).

Proof of consistency preservation: From Fig. the deletion of an individual
may impact constraints and These constraints are still preserved
because CI and PI relations involving an individual A are represented as an
edge incident to the node modelling Ind(A). In the SPO approach, dangling
edges are deleted, thus all CI and PI relations involving Ind(A) are suppressed
when this rule is applied.

4.7 Insertion of a literal

Update category: Instance evolution

User level: Any user

Rule semantics:

1) SPO specification: (Fig. [4.7a)

LHS: Empty

RHS: The application of the rule inserts a node corresponding to the literal and

22

o~

(Literal

Figure 4.7: Rewriting rule for the insertion of a literal

its associated value in the graph.

2)NACs: (Fig. the NAC guarantees that such a literal does not exist yet.
Proof of consistency preservation: Property or class values such as textual
strings are examples of RDF literals. The addition of a literal does not trigger
any constraint (Fig. , just allowing its future use —as a value for property
for instance—. The NAC avoids literal redundancy.

4.8 Deletion of a literal

M:Literal

N

(b)

\value="rdfs:Literal"|

/

Figure 4.8: Rewriting rule for the deletion of a literal

Update category: Instance evolution

User level: Any user

Rule semantics:

1) SPO specification: (Fig.

LHS: The node corresponding to the literal.

RHS: Empty.

2)NACs: (Fig. the NAC guarantees that the literal rdfs:Literal node is
not the one been deleted; this node is a modelling artefact used as range when
the range of a property is a literal and should not be deleted.

Proof of consistency preservation: From Fig. the deletion of a literal is
only concerned by constraint when it is the value of a PI. In the SPO
approach, dangling edges are deleted, thus all PI relations involving the literal
are suppressed when this rule is applied.

23

4.9 Insertion of a property

Two rules formalize the insertion of a property depending on the nature of its
range.

4
3
[1:class ik
v 1:Class
|URI=domainClassName| |)
= domain
P : .
. / \, | [Prop |
p [¢| |customURI=customURI|
i 2:Literal \ :
2iClass i | : l:Class \value="rdfs:Literal"/ i range
URI=doma|nCIassName| 0 =na / 2
| range \\\. // '____1___--.
= — | ~ N
URI=rangeclasshame| | domain i ﬁ|
Y va ue="rdfs:Litera
'- |\ /
() (b)

Figure 4.9: Rewriting rules for inserting properties come in two versions accord-
ing to the the type of the property’s range.

2:Class |F'rop Class 1:Class
URI=A |customURI=customURI| URI=A URI=A
(a) (b) (c) (d) (e)

Figure 4.10: NACs for the insertion of a property.

4.9.1 Insertion of a property having a class as its range

Update category: Schema evolution

User level: Only authorized users such as database administrators or the anonymi-
sation module

Rule semantics:

1) SPO specification: (Fig. |4.9a)

LHS: the LHS is composed of two classes with URI domain (denoted by domain
class) and range (denoted by range class);

RHS: LHS plus a node representing a property, whose URI is A, which is con-
nected to the domain class by a domain-typed edge and to the range class by a

24

range-typed edge. Thus, the application of this rule inserts a property between
existing classes which are specified as the domain and range of that property.
2)NACs: NACs of Figs. [4.10a} [4.10c| and [4.10d| guarantee that there exist no
class with URI A (Fig. [4.10¢)), including the range (Fig. and the domain
(Fig classes. NAC of Fig prohibits the existence of an individual
whose URI is A. Again, the NACs ensure that classes, properties, and individ-
uals are disjoint sets (constraints and in Fig. . Finally, NAC
guarantees that a property with the same URI does not already exists, guaran-
teeing unicity.

Proof of consistency preservation: The addition of a property concerns con-
straints and of Fig. The NACs in Figs. [£.10al [£.10c and [£.10d]
of our rewriting rule ensure that these three constraints are respected. Notice
that classes on LHS of our rule are not required to be distinguishable. Con-
straint [2.15] in Fig. 23] is also concerned by the insertion of a property. It
requires the existence of a domain and a range for every property. On the LHS,
our rewriting rule imposes the existence of two classes, while in its RHS, it es-
tablishes these classes as the property’s domain and range. Constraint is
respected even when the same class is defined as the domain and the range of a
given property.

4.9.2 Insertion of a property having a literal as its range

Update category: Schema evolution

User level: Only authorized users such as database administrators or the anonymi-
sation module

Rule semantics:

1) SPO specification: (Fig. [4.9b))

LHS: The LHS is composed of a class and a literal node attributed ”rdfs:Literal”.
The latter is a special node used solely to specify that the range of a property
is a literal ;

RHS: LHS plus a node representing a property, whose URI is A, which is con-
nected to the class by a domain-typed edge and to "rdfs:Literal” by a range-
typed edge. Thus, the application of the rule inserts a property between a class
and "rdfs:Literal” which are specified, respectively, as the domain and range of
that property.

2)NACs: This rule is concerned only by the four NACs defined in Fig.[4.10dl [4.10¢} [4.10¢]
and These two first NACs guarantee that there exist no class with URI A
(Fig. [4.10d), including the domain (Fig[{.10d)) class. NAC of Fig[4.10¢| prohibits
the existence of an individual whose URI is A. Again, the NACs ensure that
classes, properties, and individuals are disjoint sets (constraints and in
Fig. . Finally, NAC guarantees that a property with the same URI
does not already exists, guaranteeing unicity.

Proof of consistency preservation: The proof is similar to the previous one, the
only difference is that the range is not a class, but a literal.

25

4.10 Deletion of a property

r/-- T

(©) (d)

Prop
customURI=A

(a) (

=z

Figure 4.11: Rule concerning the deletion of a property (with associated NACs).

Update category: Schema evolution

User level: Only authorized users such as database administrators or the anonymi-
sation module

Rule semantics:

1) SPO specification: (Fig. [4.11al)

LHS: a property with URI A;

RHS: the empty graph. Rule’s application leads to the deletion of the property
with the URI A.

2) NACs: NACs ensure that a property having instances cannot be deleted.
Indeed, a property instance is a PI-typed edge between individuals (Fig. [4.11b|
where the instances of the property are individuals), between an individual and

a literal (Fig.[4.11¢) or an atomic loop (Fig. [4.11d).

Proof of consistency preservation: From Fig. we can remark that con-
straints and are concerned by the deletion of a property. Con-
straints are still respected after the application of the rule because,
when the node corresponding to the property is deleted, all dangling edges are
deleted. Here these edges indicate sub-property relationship (constraint [2.8)),
property domain (constraint [2.9) or property range (constraint . Con-
straint[2.14)is preserved because NACs prohibit the deletion of a property having
instances.

4.11 Insertion of a property instance

We have two rules for the insertion of properties, we similarly have to consider
different situations for the insertion of property instances.

26

o

8:domain Sirange

1:Prop
customURI=propURI

8:domain g:range

L:Prop
6:Cl customURI=proplURI

»

3tindividual
customURI=indivRng

2:Individual
“|\customURI=indivDom

3iindividual
customURI=indivRng

()

MNestCond 1| <= GacTransPI
4

4Prop : 4:Prop
customURI=supPr H customURI=sUpPT Zindvidual
) H customURI=indivDom,

Sisubproperty ‘S:E-ubproperty

customURI=propURI B customURI=propURI

sindividual

e — Z:individual
ustomURI=indivDom

customURI=indivRng 3individual

3iIndividual ALl L
customURI=indivRng

customURI=indivRng

(b)

Figure 4.12: Rewriting rule for the insertion of a property instance when the
property range is a class.

4.11.1 Insertion of a property instance for a property hav-
ing a class as its range

Update category: Instance evolution

User level: Any user

Rule semantics:

1) SPO specification: (Fig. [4.12al)

LHS: the LHS is composed of a property (identified by propURI) having two
classes as its domain and range. Two individuals are declared as instances of
each of these classes.

RHS: LHS plus an ”property instance” edge attributed with prop URI connect-
ing the individuals. The edge represents manifests the presence of an instance
of the property having the individuals as subject and object.

2)GAC: (Fig. In the schema of the graph database, if the property prop-
URI is a sub-property of property supPr (for all pattern GacTransPl), then the
two individuals should be already instances of supPr (NestCond), i.e., the rule
is applied only if the individuals involved in the property instance been inserted
are already related by instances of all its super-properties.

27

3)NACs: (Fig.[4.12¢) The NAC guarantees that the individuals are not already

instances of the property propURI

Proof of consistency preservation: The addition of a property instance concerns

constraints and of Fig. which are ensured by the SPO
specification. Let us denote by source (respectively, target) of a PI edge the

node (individual) being the start point

(respectively, the ending point) of the

PI edge. The LHS guarantees: (i) the existence of two individuals and the

property in the graph (constraint |2.14'

, (ii) that the source of the PI is an

instance of its class domain (constraint @ and (iii) that the target of the PI
is an instance of its class range (constraint . Constraint is ensured
by the GAC. An instance of P can be inserted between two individuals only if
their is between the two an instance of all the super-properties of P.

4.11.2 Insertion of a property instance for a property hav-
ing a literal as its range

e

(3:Literal

:domain G:range

2:Individual

customURI=indivDom, (4:Literal

—_—
\walue=litvalue/

8:Cl E "l-\'-.-'E1|LIe ="rdfs:Literal"
customURI=propURI
Prep N /

Girange //

(3:Literal

7:domain
|
|

2:Individual (4iliteral

customURI=indivDom

(a)

—_——]
\alue=Ilitvalue/

:1:%9 - —»{ialue="rdfs:Literar
customURI=propURI f
A /

NestCond

<- GacTransPl

2:Individual

customURI=indivDom

L

2:Prop
customURI=supPr

Vs
‘-'4:L\te|'al)
\value=litValue

A

(b)

2:Prop
customURI=supPr

| S:subproperty

SN
2Individual (4:Literal)
S

©

| S:subproperty

3:Individual

N
4:Literal)
NS

Figure 4.13: Rewriting rule for the insertion of a property instance when the

property range is a literal.

Update category: Instance evolution

28

User level: Any user

Rule semantics:

1) SPO specification: (Fig.

LHS: the LHS is composed of a property (identified by prop URI) having a class
as its domain and the literal class as its range, one individual (instance of the
domain) and a literal.

RHS: LHS plus an edge from the individual to the literal. The edge represents
the property instance, indicating that the individual and the literal are related
to each other by the property propURL

2)GAC: (Fig. In the graph database schema, if the property propURI is a
sub-property of property supPr (GacTransPl), then the individual and the literal
should be already instances of supPr (NestCond), i.e., the rule is applied only
if the individual and the literal involved in the property instance been inserted
are already involved in instances of all its super-properties.

3)NACs: (Fig. The NAC guarantees that the individual and the literal
are not already linked as an instance of the property prop URL

Proof of consistency preservation: Similar to the proof in the previous item.

4.12 Deletion of a property instance

Similarly, we have to consider two different situations for the deletion of property
instances.

4.12.1 Deletion of a property instance for a property hav-
ing a class as its range

Update category: Instance evolution

User level: Any user

Rule semantics:

1) SPO specification: (Fig. [4.14

LHS: the LHS is composed of two individuals denoted by indivDom and in-
divRng linked by a Pl-typed edge attributed with propURI, i.e., there is an
instance of property propURI whose object is indivDom and value indivRng.
RHS: LHS minus the edge, the rule application leads to the removal of the prop-
erty instance.

2)NACs: (Fig. If property propURI has at least one sub-property the
individuals are also instances of the NAC forbids the rule application.

Proof of consistency preservation: The deletion of a property instance concerns
constraint [2.27]of Fig. The NAC ensures this constraint since the rule cannot
be triggered if there exist sub-property instance links between the individuals.

29

o T

3:Prop i customURI=propURI
customURI=propURI

| {Laindividual Zindividual
customURI=indivDom customURI=indivRng

2:Individual 1:individual

customURI=indivRng customURI=indivDom

(a)

subproperty

3:Prop _ __ _ |Prop
customURI=propURI customURI=subProp

2:Individual L:Individual

customURI=indivRng customURI=indivDom

(b)

Figure 4.14: Rewriting rule for the deletion of a property instance when the
property range is a class.

4.12.2 Deletion of a property instance for a property hav-
ing a literal as its range

Update category: Instance evolution

User level: Any user

Rule semantics:

1) SPO specification: (Fig. [4.15al)

LHS: the LHS is composed of an individuals denoted by indivDom and a literal
linked by a PI-typed edge with attribute propURI, i.e., they are instances of
property propURIL.

RHS: LHS minus the edge, the rule application leads to the removal of the edge
linking the individual to the literal.

2)NACs: (Fig. If property prop URI has a sub-property with an instance
involving indivDom and the literal, then the NAC forbids the rule application.

Proof of consistency preservation: Similar to the proof in the previous item.

30

3:Prop
customURI=propURI

o

customURI=indivDom

3:Prop
customURI=propURI

aral |
ue=litvalue

L:Individual

1:Individual

customURI=indivDom

1:Individual teral \ /
P e)
customURI=indivDom value=litvalue o
N~ S
(a)
subproperty

3Prop g
customURI=propURI

(®)

Prop
customURI=subProp

Figure 4.15: Rewriting rule for the deletion of a property instance when the

property range is a literal.

Class
u

1:Class
1:Class URI=A
URI=A subclass
subclass

(b)

subclass
2:Class
URI=B

(©)

(d)

Figure 4.16: Rule concerning the insertion of a subclass relation (with associated

NACs).

4.13 Insertion of a subclass relation

Update category: Schema evolution

User level: Only authorized users such as database administrators or the anonymi-

sation module
Rule semantics:
1) SPO specification: Fig

31

GacTransCl
NestCondl

|GacTransCsub | | GacTransCsubz |

[vestcond| [estcond2]
(a)
NestCondl _:|<- GacTransCl NestCond ; <- GacTransCsub NestCond2 : <- GacTransCsub2

/ : / 2:Class
i |2:Class URI=B 3
.: .: URI=g

| &:subclass |

:
fisubclass | subclass g
m 1:Class l:gass j bﬁf}is
(b) (c) (d)

4:subclass

Figure 4.17: GAGs concerning the insertion of a sub-class property.

LHS: Two class-typed nodes with URI A and B;

RHS: An edge of type ”"subclass” from class B to class A is added, indicating
that B is a subclass of A.

2) NACs: The NAC in Fig ensures that class B is not a subclass of class
A yet, while the NAC in Fig prohibits the construction of cyclic subclass
relationships — if A is already a subclass of B, the insertion of a subclass rela-
tionship from B to A is not possible. The NAC in Fig forbids reflexive
subclass relationship.

3) GACs: Fig.

The tree in Fig[4.17a]shows the entire logical combination of conditions imposed
to the graph for the application of the rule. The right branch of the tree refers
to GAC in Fig. In the graph database, all individuals which are instances
of class B (GacTransCI) should also be instances of class A (NestCond1) for the
rule to be applicable, i.e., the rule is applicable only if all instance of B are al-
ready instances of A. The left sub-tree in Fig. gathers two conditions. The
leftmost one corresponds to Fig Each superclass of A (GacTransCsub) is
a superclass of B (NestCond), i.e., the application of the rule is possible only
if there exists a subclass relationship between B and all superclass of A. The
last condition is the one in Figll17d] It states that all subclass of class B
(GacTransCsub?2) is a subclass of A (NestCond?2).

32

Proof of consistency preservation: From Fig. we remark that constraints[2.7]
218, 2.19]and 2.26] are concerned by the insertion of a subclass. Constraint
is not violated since the LHS of the SPO specification (Fig. imposes
the existence of two classes before the addition of the edge representing the
subclass relationship. GACs in Figs. and ensures the satisfaction
of constraint of Fig. since they guarantee the application of the rule
only if the class hierarchy stays consistent. Constraint is implemented
by the NACs which ensure that a cyclic subclass hierarchy is not possible.
Constraint [2:26] is ensured by GAC in Fig. [£.17D] which imposes the application
of the rule only if all instances of class B are already instances of class A.

4.14 Deletion of a subclass relation

)
¥

URI=SuperClass URI=SuperClass

3:isubclass |
2:Class i 1:Class
L i |2:Class Lilass
URI=subClass URI=subClass URI="rdfs:Resource"

(a) (b)

URI=SuperClass
1:Class lClass Prop B ! subclass
URI=SuperClass Prop URI=SuperClass - .
A
subclass

|
[. 3:subglass -
] 3:subcl subpnoperty : -Class
3 subdroperty | Sisubciass !

72 cl I 72 cl I ’SUbdaSS
Class :Llass URI=subClass
URI=subClass Prop URI=subClass

(c) (d) (e)

Figure 4.18: Rule concerning the deletion of a subclass relation (with associated

NACs).

Update category: Schema evolution

User level: Only authorized users such as database administrators or the anonymi-
sation module

Rule semantics:

1) SPO specification: Fig[4.184]

LHS: Two class-typed nodes with URI subClass and SuperClass with a subclass-
typed edge from the former to the latter;

RHS: LHS minus the edge, indicating its deletion.

2) NACs: The NAC in Figensures that class SuperClass is not "rdfs:Resource”,
since all classes are subclasses of the root. The NAC in Fig[4.18((resp. Fig[4.18d)

33

ensures that SuperClass is not the domain (resp. the range) of a property which
has a sub-property whose domain (resp. range) is subClass. If such properties
exist, the rule is not applicable. The NAC in Fig [£:18¢ forbids the existence
of a class that is both a subclass of SuperClass and a superclass of subClass,
ensuring consistency with regard to transitivity.

Proof of consistency preservation: From Fig. we remark that only con-
straints 2.12] .18 [2.21] and [2.23] are concerned by the deletion of a subclass
relation. Constraint is preserved thanks to the NAC defined in Fig.
that forbids the suppression of the sub-class relation to the root of the class
hierarchy. The NAC of Fig. ensures that the transitivity of the sub-class
relation is respected, guaranteeing the respect of constraint Finally, con-
straints [2.21] and [2.23] are ensured by NACs depicted in Figs. and
respectively. The sub-class relationship can not be deleted if it is required for
the subsumption between two properties to reflect in their domains and ranges.

4.15 Insertion of a sub-property relation

ey

| [2:Prop
[2:Prop | ¢| |custemURI=superProp |
|customURI=superProp| g y Y

lsubproper‘ty

L:Prop || [Prop
customURI=subProp customURI=subProp

(a)

|2:Prc-p |
customURI=superPro
- P P

[2:Prop
customURI=superProp
T

|subproperty ysubproperty

: 1:Fro
2,1:Prop cUstomURI=sUBProp customURI=subProp

(b) (c) (d)

Figure 4.19: Rule concerning the insertion of a subproperty relation subclass
(with associated NACs).

Update category: Schema evolution

User level: Only authorized users such as database administrators or the anonymi-
sation module

Rule semantics:

1) SPO specification: Fig

34

LHS: Two property-typed nodes with URI super Prop and subProp;

RHS: LHS plus a subproperty-typed edge from the node with URI subProp to
the one with URI super Prop, indicating its addition.

2) NACs: The NACs in Fig [4.19b| and [4.19d| ensure that the sub-property re-
lation is neither reflexive nor symmetric, respectively. The NAC formalized in
Fig. forbids the insertion of the relation if it already exists.

3) GAGs: The logical formula for the GACs is presented in Fig while the
GACs are formalized in Fig. and The logical formula states that all
of the following conditions must be fulfilled for the rule to be applicable:

e SameDomV SubDom (Fig. and|4.21b)); the properties have the same
domain or the domain of super Prop is a super-class of subProp’s domain;

o SameRng vV SameRngLit V SubRng (Fig. [4.21d| [4.21d} and [4.21¢)); the
properties have the same range or the range of super Prop is a super-class
of subProp’s domain;

e for all patterns GacT'ransPI, NestCond is true (Fig. |4.22a)); all couple of
individual linked with an instance of superProp also have an instance of
subProp.

e for all patterns GacTransPISelf, NCselfPI is true (Fig. [4.22d); all
individual with a reflexive instance of superProp also has an instance of
subProp.

e for all patterns GacTransPILit, NCtransPIlit is true (Fig. |4.22b]); all
couple of individual and literal with an instance of superProp also have
an instance of subProp.

e for all patterns of GacTransPsub, NCtransPsub is true (Fig (resp.
GacTransPsub2, NCtransub2); all super-property of superProp is also
a super-property of subProp (resp. all sub-property of subProp is also a
sub-property of super Prop).

Proof of consistency preservation: From Fig. we remark that only con-
straints [2-20] 2.22] [2.27], [2.21] and [2.23] are concerned by the deletion of a
subproperty relation.

The typing of the relation (constraint [2.8)) are guaranteed by the SPO part
of the rule that may match only property-typed nodes.

Constraints [2.22] is preserved thanks to the NACs defined in Fig.
and that forbid the introduction of a cycle in the sub-property relation.
The GACs of Fig. and ensure the preservation of the relation tran-
sitivity (constraint [2.20)).

The preservation of property instance propagation (constraint [2.27) is en-
sured by the GACs represented in Fig. [4.22d] [4.22a] and [4.22a]

Finally, constraints[2.21]and [2.23|are ensured by GACs depicted in Figs.

and [£.210] and .21, [£.21d], and [£.21¢| respectively. The sub-property relation-
ship may be added only if the two properties have the same domain (resp. same

35

GacTransPsub
SameRng

[or]
glit

ﬂ NCtransPsub
SubRng

NCtransPIlit
GacTransPI

Figure 4.20: Logical relations for GACs regarding the insertion of a subproperty

relation subclass.

SameDom

[2:Prop |
|customURI=superProp |

domain

domain

SubDom

domain

|subclass
|

[2:Prop
|customURI=superProp |

domain
1:Prop -‘ _ o _|uProp
customURI=subProp Class customURI=subProp
(2) ()
SameRng .
SameRngLit SubRng
A 2:Pro [2:Prop | range
range S "~ |2:Pro |
- = range |customURI=superFro Class|< - | p
Tt customURI=superProp /_“ll; | P P| 7y |customURI=superProp)|
: S \Literal |
range Ay range |subclass
= ! range
1:Prop 1:Prop ' L:Pro
customURI=subProp customURI=sUBPTOp ~ |customURI=subProp
(c) (d) (¢)

Figure 4.21: GACs for the insertion of a subproperty relation subclass.

36

NestCond

=- GacTransPIl

[LiProp | [2:Prap

\I:Prup |

|customURI=subProp| |customURI=superProp |

2:Prop
customURI=superFrop

|customURI=subProp |

4:individual

3:individual

()

NCtransPIlit

2:Prop
customURI=superProp

1:Prop
custornURI=subProp

(| =- GacTransPllit
4

4 Literal 2:Prop
customURI=superProp
L:Prop
JIndividual] |customURI=subProp

NCselfP1

(| <=- GacTransPlself
4

[LProp Iz

[1:Prop | [2

|custormURI=subProp| |

:Prop
ustomURI=superfrop

:Prop |
| customURI=subProp| |customURI=superProp

1

1:Prop
customURI=subProp

3iindividual
(c)
NCtransPsub ; <- GaclransPsub
disubproperty
[2:Pro| I‘“Subpruperty
3prruper‘[y4‘ customURI=superProp

2:Prop

customURI=superProp
L:Prop
custornURI=subProp

NCtransPsub2

|| <- GacTransPsub2

2:Prop
customURI=superProp

1:Prop

ubProp
- ““4:subproperty

(¢)

customURI=subProp

4:subprqperty

37

Figure 4.22: GACs for the insertion of a subproperty relation subclass (cont’).

range) or if their respective domains (resp. ranges) are related with an adequate
sub-class relationship.

4.16 Deletion of a subproperty relation

1:Pro
customURI=superProp
subproperty.- v A

A

1:Pro

: |1:Prop I
customURI=superProp

i |customURI=superProp | - |3:subproperty
5 Prop

- |
=

%:subproper‘t}-‘

i subproperty =~
[z:Prop | | [2:Prop | Z:Prop
|customURI=subProp | “|[customURI=subProp | customURI=subProp

(a) (b)

Figure 4.23: Rule concerning the deletion of a subproperty relation (with asso-
ciated NAC).

Update category: Schema evolution

User level: Only authorized users such as database administrators

Rule semantics:

1) SPO specification: Fig[4.234]

LHS: Two property-typed nodes with URI superProp and subProp with a

subproperty-typed edge from the former to the latter;

RHS: LHS minus the edge, indicating its deletion.

2) NAC: The NAC in Fig ensures that there exists no third property

which is both a super-property of subProp and a sub-property of super Prop.
Proof of consistency preservation: From Fig. [2.3] we remark that only con-

straint is concerned by the deletion of a suproperty relation. Its conserva-

tion is ensured by the NAC of Fig. that forbids deletion of the relation if

it has to exist due to transitivity.

4.17 Concluding remarks on consistent updates

In this chapter, we formalized 19 graph rewriting rules modelling atomic updates
on RDF/S instance and schema. We demonstrated that each rule preserve
RDF/S intrinsic constraints, i.e.if a rule is applicable to a consistent database,
its application necessarily produce a consistent database. From each individual
proof, we can derive the following lemma:

Lemma 1 (Correction of rewriting rules) Let U be an update, F' the fact
being inserted (resp. deleted) and r € R the corresponding rewriting rule. Let
G/2 be a consistent database, G’ be the result of the application of r on G

38

(we write G' = r(G)), and 2’ the database defined by G’/2°. Then (1) G’ is
consistent, i.e., (2°,€) and (2) F € 9" (resp. F ¢ 9'). O

Proof 1 Individual proofs have been provided above for each rule of R . It is
shown that each rule preserve the data-base consistency and does indeed add or
remove the fact it is related to.

In conclusion, rules of R allows consistent updates of RDF/S databases.
However, when the application of a rule would introduce an inconsistency (e.g.
suppressing a property which has instances), the rule cannot be applied. When
updates are triggered by the anonymisation module, refusing an update is un-
acceptable. The following chapter presents our approach for the generation of
compensation action guaranteeing that any rule may be forcefully applied (while
still maintaining consistency).

39

Chapter 5

Side-effects and Consistent
Database Evolution

Traditionally, whenever a database is updated, if constraint violations are de-
tected, either the update is refused or compensation actions, which we call
side-effects, must be executed in order to guarantee their satisfaction. In our
approach, each update U is formalized by a rewriting rule iy € R and the ap-
plication of ry relies on whether G satisfies the premisses of ry. The graph
transformation takes place only when G respects all the conditions expressed in
ry. If such conditions are not respected, our algorithm generates new updates
capable of changing G into a new graph G™ on which ry can be applied to pro-
duce G’. These new updates are called side-effects of U. The following example
illustrates this approach.

Example 2 Let 2/G be the database as the one in Fig. but without the
sub-graph concerning NegEffect. In this context, consider that U is the insertion
CI(Allergy, NegE f fect). Let rcr € R be the graph rewriting rule concerning
the insertion of a class instance (Sec . Rule rcy cannot be applied on G
since it requires the existence of both the class and the individual which we want
to “link together” as class instance. Thus, in this situation, two new updates
are generated as side-effects:

o Ul the insertion of an individual Allergy and
o U? the insertion of class NegEffect.

Both updates conditions are checked and, since they are valid, the corresponding
rules are triggered, adding the individual and class and connecting them to class
rdfs:Resource. Once we have the new graph resulting from the application of vy
and ryz2, rule roy is applied. The result will be a graph as the one in Fig.
except for a missing sub-class edge between Effect and NegEffect and a missing
class instance edge from Allergy to Effect. O

40

This chapter introduces our technique for side-effect management includ-
ing the side-effects triggered by each update and the corresponding algorithm,
SetUp.

5.1 SetUp

Roughly, SetUp is an algorithm allowing the interaction between a graph rewriter
and a side-effect generator. The latter, producing new updates to be treated by
the former, can follow different politics in ordering and in authorizing the treat-
ment of these new updates. Indeed, in our approach, different levels of users are
considered: those authorized to trigger side-effects or provoke schema changes
and those for whom only instance updates respecting R are allowed. Algorithm![]]
summarizes our approach for authorized users such as the anonymization mod-
ule.

Algorithm 1: SetUp (G,R,U)
Input: Graph database G, set of rewriting rules R, update U
Output: New graph database G
1: PreConditons := FindPredCond2ApplyUpd(G,R,U)
2: for all condition ¢ in PreConditons do
3 if ¢ is not satisfied in G then
4 U’ :=Planner2FitGraphInCond (G, c)
5: for all update v’ in U’ do
6
7
8

: G := SetUp (G, R, /)
: G := GraphRewriter(G,R,U)
: return G

Given a database 2/G and an update U, Algorithm [1] transforms G by
applying rules in R. Denote by ry € R the rewriting rule associated to U.
When ry cannot be applied on G, SetUp computes, recursively, all updates
necessary to change G into a new graph where ry is applicable.

5.1.1 Generating pre-condition

On line [1] of Algorithm [I} each condition ¢, necessary for applying ry on G,
is added to PreConditions. Function FindPredCond2ApplyUpd works on table
UprDCOND indexed by the update type. Tables[5.2] and [5.1] show UPDCOND for
deletion and insertion, respectively. For example, from the penultimate row of
Table we know that the insertion of CI(A, B), depends on the existence of
A as an individual, B as a class and the respect of hierarchical constraints (B
is a sub-class of the root hierarchy, and A is an instance of all super-classes of
B).
Roughly, to design UPDCOND for an insertion P, we consider all constraints
¢ € € having atoms with the predicate of P in body(c) and we build updates

41

Update Side effects on graph schema Rule

CI(A) —Pr(A)

—Indiv(A) 2.5

CSub(A, Resource) 2. 12)

Uri(A) 2.1

Pr(P) —CI(P)

—Indiv(P) 2.6

Dom(P, Resource) 2. 15)

Rng(P, Resource) 2. 15)

Uri(P) 2.3

Indiv(I) -CI(I)

=Pr(I) 2.6

CI(I, Resource) 2. 13|

Uri(I) 53

CSub(XC,YC) CI(XC)

CI(YC) Vv (YC= Ressource) 2.7

V ZC such that CSub(YC,ZC) then CSub(XC,ZC) 2. 18]

V ZC such that CSub(ZC,XC) then CSub(ZC,YC) 2.18|

—CSub(YC,XC) % Error message contradiction, i.e. Csub(XC,XC) 2.19

VZi such that CI(Zi, XC) then CI(Zi,YC) 5.20)

PSub(Xp,Yp) Pr(Xp) .

Pr(Yp)

V Zp such that PSub(Yp,Zp) then PSub(Xp,Zp)
V Zp such that PSub(Zp,Xp) then PSub(Zp,Yp)
—PSub(Yp,Xp) % Error message, i.e. Psub(Xp,Xp)
V Zil, Zi2 such that PI(Zil, Zi2, Xp) then PI(Zil, Zi2 ,Yp)
Let Dom(Xp,ZD1) and Dom(Yp, ZD2) then ZD1=ZD2 or CSub(ZD1, ZD2)
Let Rng(Xp,ZD1) and Rng(Yp, ZD2) then ZD1=ZD2 or CSub(ZD1, ZD2)

Dom(Xp, XD) Pr(Xp)
Cl(XD) V (XD= Ressource)
¥V YD # XD , = Dom (Xp,YD)
V Xpl, XD1 such that PSub (Xp, Xpl) and Dom(Xpl, XD1)
then CSub(XD, XD1) V (XD = XD1)
V Xpl, XD1 such that PSub (Xpl, Xp) and Dom(Xpl, XD1)

then CSub(XD1, XD) V (XD = XD1)
V Xi, Yi such that PI(Xi, Yi, Xp) then CL(Xi, XD) >z
Rng(Xp, XR) Pr(Xp) 2.10)

CI(XR) V (XR= Ressource) V (XR is litteral)
¥ YR # XR , - Dom (Xp,YR)
V Xpl, XR1 such that PSub (Xp, Xpl) and Dom(Xpl, XR1)
then CSub(XR, XR1) V (XR = XR1)
V Xpl, XR1 such that PSub (Xp1, Xp) and Dom(Xpl, XR1)
then CSub(XR1, XR) V (XR = XR1)
V¥ Xi, Yi such that PI(Xi, Yi, Xp) then CI(Yi, XR) V (Lit(Yi) A XR is literal)

CI(XL,XC) Indiv (X))
Cl (XC) V (XC = Ressource)
¥ YC CSub (XC, YC) then CI(Xi, YC)

PI(Xi, Y1, Xp) Tndiv (Xi)
Indiv (Yi) V Lit(Yi)
Pr(Xp)
V Yp PSub (Xp, Yp) then PI(Xi, Yi, Yp)
Let Dom (Xp, XD) then CI(Xi, XD)
Let Rng (Xp, XR) then CI(Yi, XR) V (Lit(Yi) A XR is literal)

Table 5.1: UpDCOND table for insertions.

42

Update

Side effects on graph schema

= CI(A)

V Xsc CSub(Xsc, A) then = CSub(Xsc, A)
V XC CSub(A, XC) then = CSub(A, XC)
¥V XD Dom(XD, A) then = Dom(XD, A)
Vv XR Rng(XR, A) then - Rng(XR, A)
v Xi CI(Xi, A) then - CI(Xi, A)

- Pr(P)

V Xsp PSub(Xsp, P) then = PSub(Xsp, P)
V XP PSub(P, XP) then — PSub(P, XP)
VvV XD Dom(P, XD) then = Dom(P, XD)

¥ XR Rng(P, XR) then — Rng(P, XR)

v Xi, Yi PI(Xi, Yi, P) then - PI(Xi, Yi, P)

= Indiv(1)

¥V XC CI(I, XC) then — CI(I, XC)
¥ Xi, XP PI(I, Xi, XP) then - PI(I, Xi, XP)
v Xi, XP PI(Xi,I, XP) then - PI(Xi,I, XP)

— CSub(Xsc,XC)

if XC = Resource then — Cl(Xsc)
NON deterministic SITUATIONS:

1) V Y such that CSub(Xsc, Y) and CSub(Y,XC) then
Choice (= CSub(Xsc,Y), = CSub(Y, XC), both) or exception

2) V XP1, XP2 such that PSub(XP1, XP2) and Dom(XP1,Xsc) and Dom (XP2,XC) then
Choice (= PSub(XP1, XP2), - Dom(XP1,Xsc), - Dom (XP2,XC), all them) or exception

3) V XP1, XP2 such that PSub(XP1, XP2) and Rng(XP1,Xsc) and Rng (XP2,XC) then
Choice (= PSub(XP1, XP2), - Rng(XP1,Xsc) = Rng (XP2,XC), all them) or exception

il

PSub(Xsp,XP)

NON deterministic SITUATION:

V Y such that PSub(Xsp, Y) and PSub(Y,XP) then

Choice (- PSub(Xsp,Y), = PSub(Y, XP), both) or exception 2.20]
— Dom(Xp, XD) - Pr(Xp) 2.15]
- Rng(Xp, XR) - Pr(Xp) 2.15]
- CI(Xi,XC) if XC = resource then — Indiv(Xi) 2.13]

NON deterministic SITUATIONS:

1) V YC such that CI(Xi, YC) and CSub(YC,XC) then
Choice (- CI(Xi,YC), = CSub(YC, XC), both) or exception

2) V Yi, Zp such that PI(Xi, Yi, Zp) and Dom(Zp,XC) then
Choice (- PI(Xi, Yi, Zp), - Dom(Zp,XC), both) or exception

3) V Yi, Zp such that PI(Xi, Yi, Zp) and Rng(Zp,XC) then
Choice (- PI(Xi, Yi, Zp), - Rng(Zp,XC), both) or exception

= PI(Xi,Yi, Xp)

NON deterministic SITUATIONS:

V Yp such that PI(Xi,Yi, Yp) and PSub(Yp,Xp) then
Choice (= PI(Xi,Yi, Yp), = PSub(Yp,Xp), both) or exception

Table 5.2: UrPDCOND table for deletions.

43

corresponding to the atoms in head(c). Deletions are treated in a reciprocal
way: we look from the predicate of P on the head of constraints and define the
new updates based on the atoms in their bodies.

Unfortunately, a deletion may engender non-deterministic side-effects. Con-
sider for instance the deletion of a class instance CI(A, B). Constraint
in ¢ (Fig. indicates two possible side effects in this case: deleting A as a
class instance of all super-classes of B or breaking the class hierarchy. Non-
deterministic situations are identified in blue in Table Their management
is further discussed in Sec.

5.1.2 Enforcing pre-conditions and updates

On line [2| of Algorithm [1} each condition ¢ is considered. The order in which
each c¢ is treated impacts the order in which new updates are applied to the
database and gives rise to different approaches. This is discussed further in the
next section.

Once a condition ¢ is chosen, function Planner2FitGraphinCond (line {)
generates a new update U’ (i.e., a side effect of U). Recursive calls (line [6)
ensure that each side effect U’ is treated in the same way. When conditions
for a rewriting rule ry- hold, function GraphRewriter applies ry- and the graph
evolves. Eventually, if U is not intrinsically inconsistent, we obtain a new graph
on which ry is applicable.

Intrinsically inconsistent updates could be problematic depending on the
method chose to deal with side effects. Let’s consider the following example.

Example 3 Let U be an intrinsically inconsistent update requiring the insertion

of a class instance C1(Excipient, Excipient) in G of Fig (rule rcr). Follow-

ing Algorithm/[1], conditions c1 : Ind(Excipient) and 2 : Cl(Exzcipient) are ob-

tained by FindPredCond2ApplyUpd. However, these two conditions are contra-

dictory since they engender inconsistent update requests, namely: Ind(Excipient)
and —~Ind(Ezcipient) and also Cl(Excipient) and —~Cl(Excipient).

Obviously, according to the method chosen for dealing and ordering side-
effects on line [2] of Algorithm [1] inconsistent updates may result in cycles. The
current version of SetUp performs updnglingates according to a pre-established
order, without any backtracking. Therefore, once a rule is activated for side
effect e; of update u; it will not be activated again for the same update u;.
Being simple it avoids loops in the treatment of intrinsically inconsistent updates
and we can derive the following lemma:

Lemma 2 (SetUp Correction and termination) Let G be a consistent graph
and R our set of graph rewriting rules. Let U be an update, F the fact being
inserted or deleted. Let 9'/G' be the database such that G' = SetUp(G,R,U).
Then,

e SetUp terminates and

o if U is not intrinsically inconsistent,

44

— if U is an insertion F € 9’
— if U is a deletion F ¢ 9.

O

Proof 2 The proof is provided in Sec. by considering all possible atomic
updates.

In conclusion, the goal of side-effects is to adapt the knowledge graph to the
application of rule r corresponding to a given update U. If r is not applicable
to G then we have: (I) G' = r1(G), G* = ro(G"), ... G" = r,(G"™') where
r1,72,...T, are the rewriting rules associated to updates recursively generated
by Algorithm || and (IT) G" = r(G") is the new updated graph.

5.2 Handling non-determinism

As previously discussed, different ways of enforcing an update could lead to
different databases due to:

1. the considered set of side-effects when several are acceptable (see situations
identified in blue in Table. |5.2]).

2. the order in which updates are applied.

In our current implementation, non-determinism is solved through arbitrary
choices. A future version will integrate more advanced mechanisms as discussed
bellow.

5.2.1 Order of updates

PreConditions can be seen as a set (updates treated on any order) or as a
list ordered according to a particular method. The current implementation of
SetUp uses an arbitrarily pre-defined order. Indeed, on line [I] of Algorithm
each condition ¢, necessary for applying ry on G, is added to PreCoditions.
Function FindPredCond2ApplyUpd works on table UPDCOND indexed by the
update type. Considering the Example [3] SetUp behaves as follows.

Example 4 Following Algorithm (1| and the order established in table UPD-
CoND, conditions cl : Ind(Excipient) and ¢2 : Cl(Excipient) are obtained by
FindPredCond2ApplyUpd. They engender inconsistent update requests, namely:
Ind(Excipient) and —Ind(Excipient) and also Cl(Excipient) and ~Cl(Excipient).

1. As condition cl is not satisfied by G, insertion Ind(Excipient) is required
(rule rina). Rule Ting imposes the deletion —~Cl(Excipient) (since Excip-
ient, as an indvidual, cannot be a class). The deletion is performed with
success, ring applies and Ind(Ezcipient) is inserted in G.

45

2. Condition co is then checked. As Excipient is no more a class, the inser-
tion of Cl(Excipient) is triggered (rule rcy). To apply rei, the deletion
—Ind(Excipient) is executed. Class node Cl(Excipient) is added to G.

3. Conditions ¢1 and co having been handled, rcy is invoked but it cannot be
applied: there is no individual node Ezcipient; the algorithm stops.

g

At the end, Gtherefore contains Cl(Ezcipient). Swapping the order of con-
ditions ¢l and ¢2 would have resulted in a graph containing Ind(Excipient).

Order of updates is particularly problematic when considering intrinsically
inconsistent updates. One first solution would therefore to detect such updates
and reject them without generating side-effects. However, this order also impact
the consistent updates. Consider for example the suppression of a property P
which as a sub-property P’ both having an instance from A to B. This update
will trigger the suppression of 1) all of P’'s instances as well as 2) all the sub-
property relations it is involved in. If 1) is handled before 2), the instance of P’
from A to B will be suppressed as side-effect since P’ is a sub-property of P.
Said instance is not suppressed if 2) is handled before 1).

Two ordered list of updates generating different databases can be seen as
two different set of updates and can therefore be handled similarly, as discussed
in the next subsection.

5.2.2 Multiple acceptable set of updates

When considering certain type of fact suppression, several set of side-effects
could be acceptable, as identified in blue in Table. For example, when
suppressing an instance of a property P between two individuals A and B, for
any sub-property P’ of P, we could:

1. suppress PSub(P’, P)
2. suppress PI(A, B, P')
3. suppress both

In the current version of the implementation, we deal with non-determinism
in an arbitrary way: when a choice is needed, the priority is given to updates on
the instance, leaving the schema unchanged. When non-determinism is over two
side-effects implying changes on the schema, the priority is to break the high-
est hierarchical link. In the aforementioned example, SetUp therefore suppress
PI(A,B,P").

While these criterion seem reasonable, arbitrary choices are seldom the best
solution. A better solution would be to evaluate the impact each set of updates
has on data quality and pick the most suitable depending on the context. Per-
forming such evaluations is the role of the the quality module of the SENDUP
software suite. The current implementation of SetUp rely on arbitrary choices

46

as the quality module is not currently available. Interfacing SetUp with such
a module is investigated in a dedicated report [B], a proof of concept being
provided. Integration will be done within Task 4.

5.3 SetUp correction and termination

Let study different possible updates. In the columns of the following tables,
we present the side effects obtained with each recursive call from SetUp. The
side effects with red background are not tested because, in the SPO approach
dangling edges are automaticaly deleted, if we delete node with Uri = A, all
edges (A, X) or (X, A) no longer exist. If a side effect does not produce any other
side effect, it is either that the conditions for producing a new side effect are all
false or that it is done in the rewrite rule. Side effects with green background
are done in a recursively call of SetUp, those with yellow background are done
by GraphRewriter line [7] of Algorithm [I] where U is the first column of the
following tables.

e For SetUp(G,R,CI(A)). (Insertion of a Class)

Cl(A) Nothing to do

Nothing to do

Nothing to do

Nothing to do

No more side effects

Nothing to do

Nothing to do

Nothing to do

C'Sub(A, Resource) | Nothing to do, it’s added by the rewwrite rule.

Uri(A) Nothing to do, it’s added by the rewwrite rule.

With this table we conclude that SetUp(G,R,Ci(A)) ends and the result
contains CI(A).
Cl(A):

L -Pr(A) - VX, Y-Pi(X,Y,A)

L —Indiv(A)
L CSub(A, Resource)
L Uri(4)

Proof ok for this case.
e For SetUp(G,R,—Cl(Resource)). (Deletion of class Resource). We do
nothing because a graph without the node Cl(Resource)) is inconsistent.
—Cl(Resource)) : nothing
e For SetUp(G,R,—CI(A)). (Deletion of a class distinct of Resource).

47

Nothing to do
Nothing to do
Nothing to do

No more s-e
No more s-e
In this previous table, we introduce "*’ in some cells when side effect is done
for all X find in the previous cell. The number of these side effects is finite
because the graph is finite.

—Cl(A) A # Resource :

L vX-Dom(X,A) — -Pr(X)(*) — VY,Z-PI(Y,Z X)(*

L VX-Rng(X,A) — -Pr(X)(*) — VY, Z-PI(Y,Z X)(*)

Proof ok for this case.
e For SetUp(G,R,CI(A, B)). (Insertion of a class instance).
CI(A,B):

L ciuB)

L —Indiv(B)
L -Pr(B) — VX,Y-Pi(X,Y,B)
L Indiv(A)

L —cia)
L vX-Dom(X,4) — =Pr(X)(*) — VY,Z-PI(Y,Z X)(*)
L VX-Rng(X,A) — -Pr(X)(*) — VY,Z-PI(Y,Z X)(*)

L -Pr(4) —» VX, Y-Pi(X,Y,A)

L CI(Resource, A)

L VX s.t. CSub(B,X) CI(A, X)

It always terminates because VX s.t. CSub(B, X) CI(A, X) does’t produce
other side effects, indeed if it exists X, X is a node of a consistent graph so
CI(X,A) just puts an edge between X and Indiv(A) (Indiv(A) is added in the
graph just before, nothing to check here). The case where we can’t apply the
rewrite rule is explain previously so if A! = B, SetUp(G,R,CI(A, B)) adds in
the graph CI(A, B) and all side effects to keep it consistent.

Proof ok for this case.

e For SetUp(G,R,—~CI(A, Resource)). (Deletion of a Resource instance).
~CI(A, Resource)

L —Indiv (A)

L —Literal(A) except if A =' Literal’

48

It terminates of course. It’s correct, if we don’t have Indiv(A) or Literal(A),
the edge CI(A, Resource) is dangling and so automaticaly deleted. If A is
' Litteral” we do nothing because a graph without the node Literal(Literal)) is
inconsistent.

Proof ok for this case.

e For SetUp(G,R,—-CI(A, B)). (Deletion of a class instance class is distinct
of Resource).
-CI(A,B):

L VXs.t.Dom(X,B) then VY —PI(A,Y, X)
L VXs.t.Rng(X, B) then VY ~PI(Y, A, X)
L VX s.t.CSub(X, B) then ~CI(A, X)

L VYs.t.Dom(X,Y) then VZ-PI(A, Z,Y)
L vYs.t.Rng(X,Y) then VZ-PI(Z, A,Y)

There are no other recusive calls due to transitivity of C'Sub. It terminates
because graph is finite.

Proof ok for this case.
e For SetUp(G,R,Indiv(A)). (Insertion of an individual).
Indiv(A):

L —ci4)

L VX-Dom(X,A) — -Pr(X)(*) — VY,Z-PI(Y,Z X)(*)
L VX-Rng(X,A) — -Pr(X)(*) — VY,Z-PI(Y,Z X)(*)

L -Pr(4) — VX,Y-Pi(X,Y,A)
L CI(A, Resource)

It terminates and Indiv(A) is in the graph.
Proof ok for this case.
e For SetUp(G,R,—Indiv(A)). (Deletion of an individual).
—Indiv(A) : no side effects is produce all dangling edges are deleted. Termi-
nates and Indiv(A) is no more in the result graph.
Proof ok for this case.
e For SetUp(G,R, Literal(A)). (Insertion of a literal).
Literal(A) : just added in the graph.
Proof ok for this case.
e For SetUp(G,R,-Literal(A)). (Deletion of a literal).
Literal(A) : just removed from the graph, all dangling edge are removed.
Proof ok for this case.
e For SectUp(G,R, Pr(A, B,C)). (Insertion of a property A with it’s domain
B and it’s range C which is Literal here.)
Pr(A,B,C):if Pr(A),Dom(A, B), Rng(A,C) are all in G do nothing else :

49

L =Pr(A) — VX, Y-Pi(X,Y, A)
L -ci(A)

L vX-Dom(X,A) — -Pr(X)(*) — VY,Z-PI(Y,Z X)(*
L VX-Rng(X,A) — -Pr(X)(*) — VY,Z-PI(Y,Z X)(*
L —Indiv(A)
L cum)
L -Pr(B) — VX,Y-Pi(X,Y,B)
L —Indiv(B)
L CSub(B, Resource)
L Uri(B)
L, if © = Literal do nothing
clse CI(C) :
L -Pr(C) —» VX,Y-Pi(X,Y,C)
L —Indiv(C)
L CSub(C, Resource)
L Uri(C)
L Pr(a)
L Dom(A, B)
L Rng(4,0C)

Proof ok for this case.
e For SetUp(G,R,—Pr(A)). (Deletion of a property.)
-Pr(A):

L vX,Y-Pi(X,Y, A)
Proof ok for this case.

e For SetUp(G,R, Pi(A, B,C)). (Insertion of a property instance.)
Pi(A,B,C):

L if3DC, RC s.t. {Pr(C), Dom(C, DC), Rng(C, RC)} C G then do nothing
else (do the update Pr(C, Resource, Resource)):
L —ci(0)
L VX-Dom(X,0) — -Pr(X)(*) — VY,Z-PI(Y,Z, X)(*)
L VX-Rng(X,C) — -Pr(X)(*) — VY,Z-PI(Y,Z X)(*)

50

L —Indiv(C)
L Pr(c)
L Dom/(C, Resource), (note DC = Resource)
L if Literal(B) then Rng(C, Literal), (note RC' = Literal)
else Rng(C, Resource), (note RC' = Resource)
L ci(A,DC)

L Indiv(A)
L —ciA)
L VX=Dom(X,A) — —Pr(X)(*) — VY, Z-PI(Y,Z,X)(*)
L VX-Rng(X,A) — —Pr(X)(*) — VY,Z-PI(Y,Z X)(*¥)
L -Pr(4) — VX,Y-Pi(X,Y,A)
L CI(Resource, A)
L VX st. CSub(DC, X) CI(A, X)
L if RC = Literal then Literal(B)
else Ci(B, RC)
L Indiv(B)
L -ci(B)
L VX-Dom(X,B) — —Pr(X)(*) — VY,Z-PI(Y,Z,X)(*)
L VX-Rng(X,B) — -Pr(X)(*) — VY,Z-PI(Y,Z, X)(*¥)
L -Pr(B) — VX,Y-Pi(X,Y,B)
L CI(Resource, B)
L VX s.t. CSub(RC,X) CI(B, X)

Proof ok for this case.

e For SetUp(G,R,—Pi(A, B,C)). (Deletion of a property instance.)
—|P’L(A, B, C) :

L VX s.t. PSub(X,C) —Pi(A, B, X)

Proof ok for this case.

e For SetUp(G,R,CSub(A, B)). (Insertion of a sub-class relation.) A # B and
A # Resource else we do nothing since C'Sub(A, A) and C'Sub(Resource, B) are

inconsistents.
CSub(A,B):

L —~CSub(B, A)

L VX,Y s.t. Dom(X,B) and Dom(Y,A) : —PSub(X,Y) —
VYU s.t. PSub(X,U) and PSub(U,Y) : —PSub(U,Y)
(*)

o1

L VX,Y s.t. Rng(X,B) and Rng(Y, A) : —PSub(X,Y) —
VU s.t. PSub(X,U) and PSub(U,Y) : —PSub(U,Y)
(*)

L VX s.t. CSub(B, X) and CSub(X, A) : ~CSub(X,A) —
VY, Z s.t. Dom(Y, X) and Dom(Z, A) : —-PSub(Y,Z) (*) —
VU s.t. PSub(Y,U) and PSub(U,Z) : —-PSub(U,2Z)
(**)
L VX s.t. CSub(B, X) and CSub(X, A) : ~CSub(X,A) —
VY, Z s.t. Rng(Y,X) and Rng(Z, A) : —PSub(Y,Z) (*) —
VU s.t. PSub(Y,U) and PSub(U,Z) : —PSub(U,Z)
(**)
L ci4)
L -Pr(A) — VX,Y-Pi(X,Y,A)
L —Indiv(A)
L CSub(A, Resource)
L Uri(4)
L cum)
L -Pr(B) — VX,Y-Pi(X,Y,B)
L —Indiv(B)
L CSub(B, Resource)
L Uri(B)
L vz st. Ci(Z,A): Ci(Z, B)
L VX st. CSub(B,X): CSub(A,X) — VZst. Ci(Z,A) : Ci(Z,X) (¥)
L VX st. CSub(X,A): CSub(X,B) — YZs.t. Ci(Z,X): Ci(Z,B) (¥)

L VX,V st. CSub(B, X) and CSub(Y, A) : CSub(Y,X) —
VZ st. Ci(Z,Y): Ci(Z,Y) (*)

Proof ok for this case.
e For SetUp(G,R,-CSub(A, B)). (Deletion of a sub-class relation.) If B =
Resource or A = B we do nothing.
—CSub(A, B) (A # B and B # Resource) :
L VX,V st. Dom(X, A) and Dom(Y,B) : —PSub(X,Y) —
YU s.t. PSub(X,U) and PSub(U,Y): —PSub(U,Y)
()

92

L VX,V st. Rng(X,A) and Rng(Y,B) : —~PSub(X,Y) —
YU s.t. PSub(X,U) and PSub(U,Y) : —~PSub(U,Y)
*)

L VX s.t. CSub(A, X) and CSub(X, B) : —~CSub(X, B) —
VY, Z st. Dom(Y,X) and Dom(Z,B) : —PSub(Y,Z) (*)
_>

(**)

L VX s.t. CSub(A, X) and CSub(X,B) : —~CSub(X,B) —
VY, Z s.t. Rng(Y,X) and Rng(Z,B) : —PSub(Y,Z) (*) —
YU s.t. PSub(Y,U) and PSub(U, Z) : —~PSub(U, Z)

YU s.t. PSub(Y,U) and PSub(U,Z) : —PSub(U, Z)

(**)
Proof ok for this case.
e For SetUp(G,R, PSub(A, B)). (Insertion of a sub-property relation.)
PSub(A,B):
L if 3DB, RB s.t. {Pr(B), Dom(B, DB), Rng(B, RB)} C G then do noth-
ing
else (do the update Pr(B, Resource, Resource)):
L —cuB)
L VX-Dom(X,B) — -Pr(X)(*) — VY,Z-PI(Y,Z, X)(*)
L VX-Rng(X,B) — -Pr(X)(*) — VY,Z-PI(Y,Z X)(*)
L —~Indiv(B)
L Pr(B)
L Dom(B, Resource), (note DB = Resource)
L, Rng(B, Resource), (note RB = Resource)
L if IDA, RA s.t. {Pr(A), Dom(A, DA), Rng(A, RA)} then
ls if DA = DB or CSub(DA, DB) then do nothing
else if DA = Resource then
L -Pr(A) — VX,Y-Pi(X,Y,A)
L Pr(4)
L Dom(A, DB)
L. Rng(A, RB)
else

L ¢ Sub(DA, DB) we insert here the tree corresponding to insert
a sub class given above.

L, if RA = RB or CSub(RA, RB) then do nothing
else if RA = Resource or RA = Literal then

93

L —=Pr(4) — VX,Y-Pi(X,Y,A)
L Pr(4)
L Dom(A, DB)
L Rng(A, RB)
else

L ¢ Sub(RA, RB) we insert here the tree corresponding to insert a
sub class given above.

L if ADA, RA s.t. {Pr(A), Dom(A, DA), Rng(A, RA)} C G then

L —ci(A)
L vX-Dom(X,4) — -Pr(X)(*) — VY,Z-PI(Y,Z X)(*)
L VX-Rng(X,A) — -Pr(X)(*) — VY,Z-PIY,Z X)*)
L —Indiv(A)
L Pr(4)
L Dom(A, DB)
L Rng(A,RB)

Proof ok for this case.
e For SetUp(G,R,—PSub(A, B)). (Deletion of a sub-property relation.)
- PSub(A, B) :

L VX s.t. PSub(A, X) and PSub(X,B) : —~PSub(X, B)

Proof ok for this case.

o4

Chapter 6

Experimental evaluation

SetUp is implemented using Java and AGG (The Attributed Graph Grammar
System) [35]. AGG is one of the most mature and cited development environ-
ment supporting the definition of typed graph rewriting systems [29]. It supports
the SPO approach as well as its main extension: PAC, NAC, and GAC. The cur-
rent version of SetUp provides a textual interface and offers different updating
modes, according to the user level. The complexity of GraphRewriter essentially
determines SetUp’s complexity. This chapter experimentally investigates SetUp
in various update scenarios, evaluating their execution time and the number of
generated side-effects. SetUp [B] and a report detailing its implementation are
available online.

6.1 Methodology

Figure 6.1: Experimental graph with I =1 and S = 2

Datasets. The impact of the schema complexity (particularly, the complexity
of the hierarchy set up in a schema) on the performance of our method is non-
negligible. Thus, although there are many open RDF datasets available, our

99

Table 6.1: Experiment scenarios (C is a class, P a property and I an individual.)

Scenario Update type
=] [8] e < RS
~ | =R Y|~ S| & % ~ || A~ 2|5
)) VDO |[QO[RRA|K| RO~ R~
Notation | Explanation r r r rpr r r
down Update at the bottom of the hierarchy VIVIVIVIVIVI V]V Vv v
e.g. CI(Nausea, NegEf fect)
top Update at the top of the hierarchy V|V V|V V|V Vv v
e.g. —CL(Effect)
down Update on top of the hierarchy’s bottom v v
reverse e.g. CSub(NegEf fect, HealthT hreat)
top Update on top of hierarchy’s top v v
reverse e.g. PSub(HasConsequence, AssociatedWith)
-3C C is absent from the database v vV v
Elel C exists outside any hierarchy v v
ACinm C'is at the bottom of the hierarchy v v
(is at the top for deletion)
JCuspom | C is the domain of some property v v
3Cioppom | C is the domain of the property and v v
it is at the top of the hierarchy
37 the individual is already in the database v
-7 the individual is not in the database v
dP_¢ there exists P with the URI of C'
P is outside an hierarchy v
AP_cinmg | there exists P with the URI of C'
P is at the top of a hierarchy v

experiments are conducted on synthesised RDF/S graphs, allowing us to analyse
results according to changes on the schema hierarchy. A simplified example is
provided in Fig. with the aforementioned graphical representation for typed
edges and nodes. Experimental graphs are composed of: (A) Schema: (i) a
minimal schema with no hierarchy (a property with two dom/rng classes and a
class, illustrated in red and black in the upper right part of Fig. plus (ii)
a simple hierarchy of S classes and properties (illustrated in the bottom part
of the figure). (B) Instances of all these classes and properties (in blue and
yellow in the figure). Concepts outside or at the bottom of the hierarchy have
I instances, the next has 2 * I instances, etc (so that the top of the hierarchy
has S*I instances). The values of (I,S) used in experiments are (1,1), (1,5),
(5,1), and (5,5) which correspond to graphs with (|V],|E|) equal to (16,24),
(44,152), (40,80), and (116,480), respectively.

Experimental scenarios. Experiments consist in facts insertions and dele-
tions as summarized in Table They are categorized according to the update
type and the database configurations, since the impact of an update is intrinsi-
cally related to these two factors. Every case having a check-mark indicates a
scenario taken into account in our experiments, for the referenced update. As
an example, consider the insertion of an instance of class C'. If C' is not yet in
the base but a property P with the same URI is, then P (and all its instances)
are deleted to allow C’s insertion. Different scenarios are defined according to
the position of P in the hierarchy (lines with 3P_¢ and IP—_cinp).

96

Measurements. The time is measured with JMH [32] on 3 forks of 10 warmups
and 50 measure iterations with a mean of 150 op./iteration.

6.2 Experimental results

Figs. [6.2] and [6.3] show the results of our experiments with regard to the number
of generated side-effects and execution time, respectively.

6.2.1 Side-effects

Side-effects tackled by the GraphRewriter are not taken into account: for in-
stance, the deletion of a class at the top of the hierarchy is reported with 0 side-
effect since deletion of relevant C'I and C'Sub are handled by the GraphRewriter
through the removal of dangling edges. On the contrary, those generated by
SetUp are counted even if they do not need to be applied due to the database con-
figuration. For instance the insertion C'L(A) has two side-effects (=Pr(A) and
—Ind(A)) that are included even if the original database does contain neither
such a property nor such an individual. The number of generated side-effects
varies according to the update type and the scenario. For instance, CL(A) al-
ways generates the 2 aforementioned side-effects. As C'Sub and C1I relationships
are suppressed by the GraphRewriter, update ~CL(C) generates 0 side-effects
in scenarios —3C, 3C, and 3C;, . However, in the scenario ~Dom/Rng top,
2, 46, 6, and 226 are generated with (I,5) = (1,1), (1,5), (5,1), and (5,5), re-
spectively. The first generated side-effect is —Pr(P) with P the property whose
domain or range is suppressed. It itself generates S+ I =PI (one per instance of
P) that need to be enforced beforehand. In turn, each —PT triggers the suppres-
sion of instances of P’s sub-properties with the same owner and value. Hence,
the number of generated side-effects increases linearly with .S and quadratically
with 1.

6.2.2 Execution time

Ezecution time grows with the size of the knowledge graph, as it impacts the
pattern matching and the verification of rule applicability phases. The scale of
this impact varies depending on the complexity of the applied graph rewriting
rules. CL(A), for example, triggers the same number of side-effects by both
SetUp and the GraphRewriter (which is CSub(A, “rdfs : Resource”)) regard-
less of I and S. The applicability conditions of the corresponding rule are quite
simple (two NACs) and the impact is thus marginal: it takes 31,5s and 34, 4s
with S = 1, =1 and S = 5,1 = 5, respectively. This corresponds to a 9%
execution time increase for a graph containing roughly 7 times more vertices
and 20 times more edges. On the contrary, consider =C'I(top) whose rule con-
tains complex GACs. Side-effects depends solely on S and, with S = 5 and 10
side-effects, the execution time goes up by 79% from I = 1 (368,5s) to I =5

o7

(660, 5s). By roughly tripling the size of the graph, each update —C1T takes
almost 72% more time to be executed.

The second factor impacting time is the number of generated side-effects, as
they triggers calls to the pattern matching and graph rewriting algorithms. For
instance, configuration (I, .S) = (1, 5) is bigger than (5, 1) as it as almost as many
nodes but twice as many edges. Yet, ~Dom/Rng (top) is almost three times
longer on the second configuration (190, 5s and 538s, respectively). This is due
to the number of side-effects going from 6 to 46. Notably, side-effects handled by
the GraphRewriter mildly impact execution time. —Cl, for example, has almost
the same execution time with configurations 3C and 3C;,m (10,0 and 10, 3s
respectively with I = S = 5), even tough the latter implies the suppression of
S C'Sub relationships.

98

cI(=-31,~3c) ® I=1,5=1
ci(-31,3c) W I=1,8=5

CI (=31, ACinH) 1=5, 8=1
cl(-31,3P=C) B I=5,8=5
CI(~31, AP=CinH)

cl(3al,-~ac)
ci(al, acy
cI(31, ACinH)
cl(31,AP=C)
CI(31, AP=CinH)

CSub (down)
CSub (top)
CSub (down

CSub (top reverse)
CL(~3C)

Pl (down)

Pl (top)

PSub (down)
PSub (top)

PSub (down reverse)

PSub (top reverse)
Prop ("3 C)

@

10 50 100

(a) Fact addition

= ClI (down) 1,8

® I=1,8=5

1=5, $=1

7 CSub (down) W I=5,5=5
-CL(-3C)

= Cl(top)

aCL(3C)
< CL (3 CinH)

aCL(3CasDom) =

= CL (d CtopDom)

7 Dom/Rng (down) =

a2 Dom/Rng (top) =

=Pl (down)

=Pl (top)

1 PSub (down) m——

= Prop (down)

= Prop (top)

1 5 10 50 100

(b) Fact suppression

Figure 6.2: Number of side-effects.

99

Cl(~3dl,~3C) W I=1,8=1
Cl(~31,3cC) B I=1,5=5

Cl (=31, 3 CinH) =5, 8=1
Ci(=31, 3P=C) W |=5,8=5
Cl (=31, AP=CinH)
ci(31,-3c)
ci(3L, 3ac)

CI (31,3 CinH)
Cl(31,3P=C)

CI (31, AP=CinH)
CSub (down)
CSub (top)

CSub (down reverse)

CSub (top reverse)
CL(~3C)

Pl (down)

Pl (top)

PSub (down)
PSub (top)

PSub (down reverse)

PSub (top reverse)

Prop (-3C)

10,000 100,000 1000,000 10000,000
Time (ms)

(a) Time

B I=1,5=1
B I=1,5=5

=5, S=1
W I=5,5=5

= Cl(down)

= Cl (top)

= CSub (down)

~cL(-3¢)

aCL(3C)

= CL (3 CinH)

= CL (dCasDom)

= CL (dCtopDom)

< Dom/Rng (down)

= Dom/Rng (top)

=PI (down) e ——

Pl (fop)

< PSub (down)

1 Prop (down) S

= Prop (top)

1,000 10,000 100,000 1000,000
Time (ms)

(b) Side-effects

Figure 6.3: Experimental execution time.

60

Chapter 7

Related work

Consistent database updating has been considered in different contexts, always
with two main goals: database evolution (by allowing changes) and constraint
satisfaction (by keeping consistency w.r.t. the given rules). In this context, two
aspects of our proposal can be considered as particularly original: (i) the use of
graph rewriting techniques and (ii) the adoption of CWA with RDF data.

7.1 Graph rewriting for database updates

Concerning the first aspect, to generalize and abstract consistent updating meth-
ods, different works have used formalisms such as tree automata or grammars
for XML ([28, B7] as surveys) or first order logic for relational (such as [38])
and, currently, graph databases (e.g. , [0, [8, [14]).

In spite of the importance of graphs in RDF and ontology representation, the
use of formal graph rewriting techniques to model RDF evolutions is still mildly
studied in this context. Formal graph rewriting techniques are usually based on
category theory, an abstract way to deal with different algebraic mathematical
structures (here, the graphs) and the relationships between them.

Algebraic approaches of graph rewriting allow a formal yet visual specifica-
tion of rule-based systems characterizing both the effect of transformations and
the contexts in which they may be applied. Studying the use of graph rewriting
techniques to deal with graph models is the kernel of our motivation.

Few approaches relying on graph rewriting to formalize ontology evolutions
have already been proposed [7, BI],[24]. They usually focus on formalization but
do not provide an implementation.

To the best of our knowledge, only [23] proposes an implementation of an
approach where graph rewriting is used to model ontology updates. Its objec-
tive is to tackle the evolution, alignment, and merging of OWL ontologies (see
also [24]) with OWA under some consistency constraints. Nested and general
application conditions are not considered in [23], thus, constraints relative to
transitive properties are not tackled; their proposal cannot offer guarantees we

61

can (e.g. , the absence of cycles in subclass relationships).

7.2 CWA and OWA

Concerning the second aspect, since RDF data, in the web semantic world, is
usually associated to the OWA, having CWA as the basis of our RDF database
maintenance may be seen as atypical.

In SENDUP, the goal is to use RDF to represent connected data in a data-
centered application. Even though we intend to present a general method which
apply to any graph databases where consistency has to be preserved, our ulti-
mate goal is to support the anonymisation process. We believe that adopting the
CWA allows a better understanding and management of the published knowl-
edge, which is crucial for anonymisation.

In this context it is worth mentioning, that work such as [4, B3] [36] brings
back IC and CWA to the OWL world (sometimes through a hybrid approach),
stressing the importance of our proposal.

7.3 Updating approaches

Now, to position our work in regards to other updating approaches, the following
points deserve attention. Differences between update and revision are usually
considered (we refer to [I6] for an overview). These differences are the conse-
quence of different views of the problem and influence the semantic of changes
of each particular proposal. As in [6l [14], we consider updates as changes in the
world rather than as a revision in our knowledge of the world ([16, 17]). In such
update context, the chase procedure is usually associated to the generation of
side-effects imposing extra insertions or deletions (w.r.t. those required by the
user) to preserve consistency. Clearly, constraints are expected not only to be
inherently consistent (e.g. , a set of constraints generating contradictory side
effects for the same update u is not acceptable) but also to avoid contradicting
the original intention of the user’s update. The theory of consistency enforce-
ment in databases has been the subject of various work, for instance [20} 21]. In
our current approach, we only deal with RDF/S constraints whose consistency
is ensured, but it could be extended to deal with user-defined constraints.

Several recent updating works focus on consistent graph databases. The ap-
proach in [25] differs from ours, by proposing a semantic measure based on the
difference between original and updated RDF sub-graph. Both [6, @] consider
RDF updating methods, but the former goes deeper in the study of null values.
A parallel can be done between saturation in [9], the chase in [6 8 14] and
SetUp. Authors in [0 [8, O] [T4] offer home-made procedures to implement their
methods: [9] deals only with the RDF instance constraints (Fig. 2.3); in [6]],
constraints are user’s tuple-generating-dependencies. Incomplete information
and updates are the focus of [0 [I4]. Schema evolution is mentioned in [8] [9].

62

More expressive constraints represent a barrier to the update determinism. This
is tackled in [I5] due to simple rules and in [§] due to a total ordering (which
may be considered similar to the priority method in this paper).

Our RDF update strategy is different from proposals such as [3 1] where
constraints are just inference rules in OWA. Although some RDF technologies
such as ShEx [34], SPIN [I8], and SHACL [19] already take constraints into
account, the originality of SetUp is in relying on well-studied graph rewriting
techniques to ensure database consistent evolution, providing a useful and mod-
ern application for these formal tools. SetUp represents a test-bed for new
database applications on the basis of graph rewriting.

63

Chapter 8

Concluding Remarks

SetUp is a theoretical and applied framework for ensuring consistent evolution of
RDF graphs. The importance of SetUp is in its originality of using graph rewrit-
ing techniques under the closed world assumption to set an updating system.
We specified 19 graph rewriting rules formalizing atomic RDF /S updates whose
application necessarily preserves constraints. If an update cannot be applied,
SetUp may generate additional consistency preserving updates to ensure its ap-
plicability. Hence, any non-contradictory update may eventually be applied in
a consistency-preserving manner.

8.1 Expected usage

While its computation complexity makes SetUp unfit for on-the-fly automated
updates, it is satisfactory for interactive command line updates and can also
be used for offline modifications. Not only can SetUp be used as a test-bed for
updating approaches but also for further database applications.

In particular, SetUp can be used for the two target scenarios of SENDUP
where a separate entity triggers updates in SetUp to conform to a privacy model
such as k-anonymity or differential privacy.

e offline RDF graph anonymization, where a snapshot of a RDF graph is
anonymized and openly published. In this case, a transformation time of
several hours is inconsequential.

e the sanitization of query’s response. Since the response is the graph being
modified, its size should be small w.r.t. the database, and the execution
time should be acceptable.

8.2 Appropriateness w.r.t. SENDUP scenarios

The advantage of SetUp to conduct such operations is threefold.

64

Consistency and property preservation FEven though the produced graph
is ultimately perturbed and not a “real” database, constraint satisfaction and
property preservation is paramount. Indeed, any inconsistency may give in-
dication to potential attackers and therefore jeopardyze privacy. We believe
that graph rewriting rules are appropriate to guarantee constraint and property
preservation, as seen in this paper.

Update enforcement through the generation of side-effects Since re-
quested updates are required to conform to the chosen anonymity model, it is
important to eventually guarantee their applications. Hence, refusing an update
is not acceptable in this context, justifying they need of side-effect management
as handled by the proposed framework.

Closed World Assumpiton FEven if most works related to RDF updates
adopt the open world assumption, the closed world assumption adopted by
SetUp allows a better understanding and management of the published knowl-
edge, which is crucial for anonymisation. Note that this is not inconsistent with
the primary advantages of linked data; once published, the database can be
subject to inference rules or linked to other knowledge-bases. Indeed, privacy
models (e.g. , approaches based on differential privacy) do not necessarily make
hypothesis on the attackers’ auxiliary knowledge. Rather, they only focus on the
released data and privacy guarantees stand regardless of existing and accessible
data related to the published data base.

65

Bibliography

1]

https://www.ontotext.com/knowledgehub/fundamentals/
what-is-rdf/

Abiteboul, S., Manolescu, 1., Rigaux, P., Rousset, M.C., Senellart, P.: Web
data management. Cambridge University Press (2011)

Ahmeti, A., Calvanese, D., Polleres, A.: Updating RDFS ABoxes and
TBoxes in SPARQL. CoRR abs/1403.7248 (2014)

Cerans, K., Barzdins, G., Liepins, R., Ovcinnikova, J., Rikacovs, S., Spro-
gis, A.: Graphical schema editing for stardog OWL/RDF databases using
OWLGTrEd/S 849 (01 2012)

Chabin, J., Eichler, C., Halfed Ferrari, M., Hiot, N.: SetUp: a tool
for consistent updates of rdf knowledge graphs, {Online, }{https:
//www.univ-orleans.fr/lifo/evenements/sendup-project/index.
php/softwares/setup-schema-evolution-through-updates}

Chabin, J., Halfeld Ferrari, M., Laurent, D.: Consistent updating of
databases with marked nulls. Knowledge and Information Systems (2019)

De Leenheer, P., Mens, T.: Using graph transformation to support collab-
orative ontology evolution. In: Schiirr, A., Nagl, M., Ziindorf, A. (eds.)
Applications of Graph Transformations with Industrial Relevance. pp. 44—
58. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

Flouris, G., Konstantinidis, G., Antoniou, G., Christophides, V.: Formal
foundations for RDF/S KB evolution. Knowl. Inf. Syst. 35(1), 153-191
(2013)

Goasdoué, F., Manolescu, 1., Roatig, A.: Efficient query answering against
dynamic rdf databases. In: Proceedings of the 16th International Confer-
ence on Extending Database Technology. pp. 299-310. ACM (2013)

Golas, U., Biermann, E., Ehrig, H., Ermel, C.: A visual interpreter seman-
tics for statecharts based on amalgamated graph transformation. ECE-
ASST 39 (01 2011)

66

https://www.ontotext.com/knowledgehub/fundamentals/what-is-rdf/
https://www.ontotext.com/knowledgehub/fundamentals/what-is-rdf/
{Online,} {https://www.univ-orleans.fr/lifo/evenements/sendup-project/index.php/softwares/setup-schema-evolution-through-updates}
{Online,} {https://www.univ-orleans.fr/lifo/evenements/sendup-project/index.php/softwares/setup-schema-evolution-through-updates}
{Online,} {https://www.univ-orleans.fr/lifo/evenements/sendup-project/index.php/softwares/setup-schema-evolution-through-updates}

[11]

[16]

[17]

Gutierrez, C., Hurtado, C.A., Vaisman, A.A.: RDFS update: From the-
ory to practice. In: The Semanic Web: Research and Applications - 8th
Extended Semantic Web Conference, ESWC, Greece, Proceedings, Part II.
pp. 93-107 (2011)

Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative ap-
plication conditions. Fundam. Inf. 26(3,4), 287-313 (Dec 1996), http:
//dl.acm.org/citation.cfm?id=2379538.2379542

Habel, A., Pennemann, K.h.: Correctness of high-level transformation sys-
tems relative to nested conditions. Mathematical. Structures in Comp. Sci.
19(2), 245-296 (Apr 2009)

Halfeld Ferrari, M., Hara, C.S., Uber, F.R.: RDF updates with constraints.
In: Knowledge Engineering and Semantic Web - 8th International Confer-
ence, KESW, Szczecin, Poland, Proceedings. pp. 229-245 (2017)

Halfeld Ferrari, M., Laurent, D.: Updating RDF/S databases under con-
straints. In: Advances in Databases and Information Systems - 21st Euro-
pean Conference, ADBIS, Nicosia, Cyprus, Proceedings. pp. 357-371 (2017)

Hansson, S.O.: Logic of belief revision. In: Zalta, E.N. (ed.) The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford Univer-
sity, winter 2016 edn. (2016)

Katsuno, H., Mendelzon, A.O.: On the difference between updating a
knowledge base and revising it. In: Proc. of the 2nd Int. Conf. on Prin-
ciples of Knowledge Representation and Reasoning (KR’91). Cambridge,
MA, USA, April 22-25. pp. 387-394 (1991)

Knublauch, H., Hendler, J.A., Idehen, K.: SPIN - overview and motivation.
W3C member submission. http://www.w3.org/Submission/2011/SUBM-
spin-overview-20110222 (2011)

Knublauch, H., Ryman, A.: Shapes constraint language (SHACL). W3C
first public working draft, w3c. http://www.w3.org/TR/2015/WD-shacl-
20151008/. (2017)

Link, S.: Towards a tailored theory of consistency enforcement in databases.
In: Foundations of Information and Knowledge Systems, Second Interna-
tional Symposium, FoIKS, Germany, Proceedings. pp. 160-177 (2002)

Link, S., Schewe, K.: An arithmetic theory of consistency enforcement.
Acta Cybern. 15(3), 379-416 (2002)

Loe, M.: Algebraic approach to single-pushout graph transformation. The-
oretical Computer Science 109(12), 181 — 224 (1993)

67

http://dl.acm.org/citation.cfm?id=2379538.2379542
http://dl.acm.org/citation.cfm?id=2379538.2379542

[23]

[25]

28]

[29]

Mahfoudh, M.: Adaptation d’ontologies avec les grammaires de graphes
typés : évolution et fusion. (Ontologies adaptation with typed graph gram-
mars : evolution and merging). Ph.D. thesis, University of Upper Alsace,
Mulhouse, France (2015)

Mahfoudh, M., Forestier, G., Thiry, L., Hassenforder, M.: Alge-
braic graph transformations for formalizing ontology changes and
evolving ontologies. Knowledge-Based Systems 73, 212 — 226 (2015).
https://doi.org/https://doi.org/10.1016/j.knosys.2014.10.007, http:
//www.sciencedirect.com/science/article/pii/S0950705114003748

Maillot, P., Raimbault, T., Genest, D., Loiseau, S.: Consistency evaluation
of RDF data: How data and updates are relevant. In: Tenth International
Conference on Signal-Image Technology and Internet-Based Systems, SITIS
2014, Marrakech, Morocco, November 23-27, 2014. pp. 187-193 (2014)

Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by
Graph Transformation: Volume I. Foundations. World Scientific Publishing
Co., Inc., River Edge, NJ, USA (1997)

Runge, O., Ermel, C., Taentzer, G.: Agg 2.0 — new features for specifying
and analyzing algebraic graph transformations. In: Schiirr, A., Varré, D.,
Varr6, G. (eds.) Applications of Graph Transformations with Industrial
Relevance. pp. 81-88. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

Schwentick, T.: Automata for XML - A survey. J. Comput. Syst. Sci. 73(3),
289-315 (2007)

Segura, S., Benavides, D., Ruiz-Cortés, A., Trinidad, P.: Automated Merg-
ing of Feature Models Using Graph Transformations, pp. 489-505. Springer
Berlin Heidelberg, Berlin, Heidelberg (2008)

Serfiotis, G., Koffina, I., Christophides, V., Tannen, V.: Containment and
minimization of RDF/S query patterns. In: Gil, Y., Motta, E., Benjamins,
V.R., Musen, M.A. (eds.) The Semantic Web - ISWC 2005, 4th Interna-
tional Semantic Web Conference, ISWC 2005, Galway, Ireland, November
6-10, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3729, pp.
607-623. Springer (2005)

Shaban-Nejad, A., Haarslev, V.: Managing changes in distributed biomed-
ical ontologies using hierarchical distributed graph transformation. Inter-
national Journal of Data Mining and Bioinformatics 11(1), 53-83 (2015)

Shipilev, A., Kuksenko, S., Astrand, A., Friberg, S., Loef, H.: Open-
JDK Code Tools: JMH (2007), https://openjdk.java.net/projects/
code-tools/jmh/

Sirin, E., Smith, M., Wallace, E.: Opening, closing worlds - on integrity
constraints. In: Dolbear, C., Ruttenberg, A., Sattler, U. (eds.) Proceedings

68

http://www.sciencedirect.com/science/article/pii/S0950705114003748
http://www.sciencedirect.com/science/article/pii/S0950705114003748
https://openjdk.java.net/projects/code-tools/jmh/
https://openjdk.java.net/projects/code-tools/jmh/

[37]

[38]

of the Fifth OWLED Workshop on OWL: Experiences and Directions, col-
located with the 7th International Semantic Web Conference (ISWC-2008).
CEUR, Workshop Proceedings, vol. 432. CEUR-WS.org (2008)

Solbrig, H., hommeaux, E.P.: Shape expressions 1.0 definition. W3C mem-
ber submission. http://www.w3.org/Submission/2014/SUBM-shex-defn-
20140602 (2014)

Taentzer, G.: Agg: A graph transformation environment for modeling and
validation of software. In: AGTIVE (2003)

Tao, J., Sirin, E., Bao, J., McGuinness, D.L.: Integrity constraints in OWL.
In: Fox, M., Poole, D. (eds.) Proceedings of the Twenty-Fourth AAAT
Conference on Artificial Intelligence, AAAT 2010, , USA. AAAT Press (2010)

Tekli, J., Chbeir, R., Traina, A.J.M., Jr., C.T.. XML document-grammar
comparison: related problems and applications. Central Eur. J. Comput.
Sci. 1(1), 117-136 (2011)

Winslett, M.: Updating Logical Databases. Cambridge University Press,
New York, NY, USA (1990)

69

	Introduction
	Characteristics of our solution
	Report Organization

	RDF databases and updates
	Logical representation of RDF/S databases
	RDF/S databases as a typed graph
	Example
	Considered constraints
	Updates: definition and objectives

	Preliminaries: graph rewriting
	The SPO approach
	Specifying rewriting rules
	Application of SPO rewriting rules

	Extensions to restrict applicability
	Negative and Positive Application Conditions
	Nested Application Conditions, General Application Conditions

	Graph rewriting rules for consistency maintenance
	Insertion of a Class
	Deletion of a Class
	Insertion of a Class Instance
	Deletion of a class instance
	Insertion of an individual
	Deletion of an individual
	Insertion of a literal
	Deletion of a literal
	Insertion of a property
	Insertion of a property having a class as its range
	Insertion of a property having a literal as its range

	Deletion of a property
	Insertion of a property instance
	Insertion of a property instance for a property having a class as its range
	Insertion of a property instance for a property having a literal as its range

	Deletion of a property instance
	Deletion of a property instance for a property having a class as its range
	Deletion of a property instance for a property having a literal as its range

	Insertion of a subclass relation
	Deletion of a subclass relation
	Insertion of a sub-property relation
	Deletion of a subproperty relation
	Concluding remarks on consistent updates

	Side-effects and Consistent Database Evolution
	SetUp
	Generating pre-condition
	Enforcing pre-conditions and updates

	Handling non-determinism
	Order of updates
	Multiple acceptable set of updates

	SetUp correction and termination

	Experimental evaluation
	Methodology
	Experimental results
	Side-effects
	Execution time

	Related work
	Graph rewriting for database updates
	CWA and OWA
	Updating approaches

	Concluding Remarks
	Expected usage
	Appropriateness w.r.t. SENDUP scenarios

