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Abstract: Identified in 1973, somatostatin (SST) is a cyclic hormone peptide with a short biological
half-life. Somatostatin receptors (SSTRs) are widely expressed in the whole body, with five subtypes
described. The interaction between SST and its receptors leads to the internalization of the ligand–receptor
complex and triggers different cellular signaling pathways. Interestingly, the expression of SSTRs is
significantly enhanced in many solid tumors, especially gastro-entero-pancreatic neuroendocrine
tumors (GEP-NET). Thus, somatostatin analogs (SSAs) have been developed to improve the
stability of the endogenous ligand and so extend its half-life. Radiolabeled analogs have been
developed with several radioelements such as indium-111, technetium-99 m, and recently gallium-68,
fluorine-18, and copper-64, to visualize the distribution of receptor overexpression in tumors.
Internal metabolic radiotherapy is also used as a therapeutic strategy (e.g., using yttrium-90,
lutetium-177, and actinium-225). With some radiopharmaceuticals now used in clinical practice,
somatostatin analogs developed for imaging and therapy are an example of the concept of personalized
medicine with a theranostic approach. Here, we review the development of these analogs, from the
well-established and authorized ones to the most recently developed radiotracers, which have better
pharmacokinetic properties and demonstrate increased efficacy and safety, as well as the search for
new clinical indications.

Keywords: somatostatin analogs; radiolabeling; radiopharmaceuticals; radionuclide therapy; imaging

1. Introduction

Somatostatin (SST), also called somatotropin release inhibiting factor (SRIF), is a cyclic peptide
hormone, first isolated in 1968 from an ovine hypothalamus, and actually identified in 1973 [1]. It was
originally discovered as a growth hormone inhibitor, but is now known to be involved in the inhibition
of numerous metabolic processes relating to neurotransmitters, endocrine secretions (e.g., growth
hormone, insulin, glucagon, and gastrin) but also modulating exocrine secretions (e.g., gastric acid
and pancreatic enzymes). In the body, its synthesis takes place in the form of an inactive precursor of
116 amino acids (AA), preprosomatostatin, which is then converted by the action of proteases into
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prosomatostatin (96 AA). Depending on where it is produced in the body, enzymes do not cleave the
pro-peptide on the same amino acid motif, resulting in two distinct active forms, SRIF-28 and SRIF-14.
Although SRIF-14 is predominant in the central nervous system and SRIF-28 in the digestive tract, the
distribution of these two biologically active forms is similar.

In the early 1990s, concomitantly to studies on the binding properties and mechanisms of action
of somatostatin, five receptor subtypes were discovered (SSTR1 to SSTR5) [2]. These subtypes belong
to the family of receptors coupled to G-proteins, and their length varies from 364 to 418 AA. They all
exhibit seven α helices with transmembrane domains and most of the differences between subtypes
are found in the extracellular (N-terminal) and intracellular (C-terminal) ends. SSTR-1, -3, -4, and -5
have a single subtype, while two variants exist for SSTR2, called SSTR2A and SSTR2B. SSTR1 to 4 link
SRIF-14 and -28 with a very high affinity (in the nanomolar order), whereas SSTR5 shows an affinity 5
to 10 times higher, but for SRIF-28 only.

Somatostatin receptors are widely distributed in healthy tissues, with distinct expression
throughout the body (Figure 1). It is quite possible to find several subtypes in the same tissue.
Each of the SSTRs is involved in the regulation of the various processes: (i) SSTR1 is involved in
the antisecretory effects of growth hormone, prolactin (a peptide hormone involved in lactation,
reproduction, growth, and immunity) and calcitonin (regulation of calcemia); (ii) SSTR2 also inhibits
the secretion of growth hormone and adrenocorticotropin (hormone that stimulates the adrenal glands),
glucagon, insulin, interferon-γ (protein produced by immune cells), and stomach acid; (iii) SSTR5
has the same inhibiting effect on growth hormone, adrenocorticotropin, insulin, and inhibits the
secretion of amylase (digestive enzyme constituting saliva and pancreatic juice); (iv) SSTR3 reduces
cell proliferation and causes cell apoptosis; (v) the functions of SSTR4 are not yet well defined [3].
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Figure 1. Somatostatin receptors (SSTRs) biodistribution in the body (from The Human Protein Atlas
https://www.proteinatlas.org/).

The effects of somatostatin are expressed through different signaling pathways [4,5]. After a cascade of
reactions, this leads on the one hand to the inhibition of tumor growth (action on the secretion
of hormones) and blocking proliferation via the activation of different tyrosine phosphatases
(anti-proliferative and pro-apoptotic action), but also to the inhibition of the secretion of growth
factors such as growth hormone or IGF-1 having a major role in the inhibition of tumor growth
(anti-angiogenic) (Figure 2) [6,7].

https://www.proteinatlas.org/
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Over the past 20 years, our understanding of the phenomena due to the activation of SSTRs
has increased thanks to numerous translational and clinical studies, leading to the development
of new therapeutic options [3]. The use of SST analogs has demonstrated real effectiveness in the
treatment of various pathologies: acromegaly (production of an excess of growth hormone), pancreatitis,
complications linked to diabetes and obesity (e.g., retinopathy or nephropathy), action on inflammation
and pain in some cases [5,9]. However, SSTRs and SST analogs are mainly known for their presence
and role in the detection and treatment of some solid tumors. Tumor cells and peritumoral vessels
express receptor subtypes whose density depends on the type of tumors (Table 1) [10–13]. For those
overexpressing SSTRs, such as pituitary adenomas, gastroentero-pancreatic neuroendocrine tumors
(GEP-NET), or other cancers (e.g., lymphomas, small cell lung cancers, etc.), targeting with SST analogs
becomes possible [14]. Many therapeutic protocols based on these analogs (classic octreotide or with a
longer release time (octreotide LAR), Lanreotide, Vapreotide, Pasireotide, etc.) have been the subject of
phase II and III clinical trials. The majority of results were generally disappointing and did not provide
clear evidence of a significant antitumor effect on solid tumors, probably due to the existence of other
pathways of tumor progression [15,16].

Table 1. SSTRs expression in different tumor types.

Tumor Type SSTR Expression Ref

Astrocytoma + [17]
Breast carcinoma + (SSTR2) [11]
Cholangiocarcinoma + (SSTR2) [18]
Colorectal carcinoma - [17]
Endometrial carcinoma - [17]
Ependymoma + (SSTR1, SSTR5) [11]
Esophageal carcinoma - [17]
Ewing sarcoma - [17]
Exocrine pancreatic tumor - [17]
Gastric carcinoma + (SSTR1 > SSTR2, SSTR5) [11]
Gastrinoma + (SSTR2) [17]
Glioblastoma - [17]



Molecules 2020, 25, 4012 4 of 35

Table 1. Cont.

Tumor Type SSTR Expression Ref

Growth hormone-producing pituitary adenoma + (SSTR2, SSTR5) [17]
Gut carcinoid + (SSTR2 > SSTR1, SSTR5) [17]
Hepatocellular carcinoma + (SSTR2, SSTR5) [19]
Insulinoma + (SSTR1, SSTR2, SSTR3) [20]
Leiomyoma + [17]
Lymphoma + (SSTR2) [11]
Medullary thyroid carcinoma + (SSTR2) [11]
Medulloblastoma + (SSTR2) [17]
Meningioma + (SSTR2) [17]
Neuroblastoma + (SSTR2) [17]
Non-functioning pituitary adenoma + (SSTR3 > SSTR2) [17]
Non-small cell lung cancer - [17]
Ovarian carcinoma + [17]
Paraganglioma + (SSTR2) [17]
Pheochromocytoma + (SSTR1, SSTR2) [17]
Prostate carcinoma + (SSTR1) [17]
Renal cell carcinoma + (SSTR2) [11]
Small cell lung cancer + (SSTR2) [17]
Urinary bladder carcinoma - [17]

Bold +, receptors with particularly high density and incidence. Subtypes preferentially expressed are listed in
parentheses, only when compelling evidence is available (immunohistochemistry or autoradiography). Adapted
from [11] and [17].

For example, regarding liver tumors, such as hepatocellular carcinoma (HCC), in vitro studies
clearly demonstrated (i) the lack of SSTRs expression in healthy liver cells; (ii) overexpression in tumors
and metastases of HCC, even though their density is less than in neuroendocrine tumors [21,22]. On the
other hand, the results show a heterogeneous expression and strong inter-individual differences. In fact,
according to studies, HCCs express high levels of SSTR2 [21,23,24] or SSTR5 [13,19], or even SSTR1 [22] or
SSTR3 [25]. In general, around 40% of HCCs studied express somatostatin receptors. These differences
could be due to the different methodologies used during the measurements, by studying different stages
of the disease or even by heterogeneous behaviors of HCC. Further studies have also found a correlation
between the density of SSTRs expression, disease aggressiveness [26], and the rate of tumor recurrence
after treatment with octreotide LAR [27]. In a study by Nguyen-Khac et al. [23], 41.2% of extrahepatic
metastases express SSTR2. Preclinical tests on HCC cell lines have shown an antiproliferative effect
of SST analogs [25,28]. In addition, a real decrease in invasion and cell migration of HCC cells after
stimulation of SSTR1 by a specific agonist has also been demonstrated [22]. This action has also been
confirmed in vivo [29], with the demonstration of a similar effect on metastatic dissemination [23,30].
These initial results paved the way for clinical trials on patients with HCC, but their conclusions are
quite contradictory, [31] showing rather positive effects in the advanced stages [32,33] and others quite
negative [34,35]. These outcome discrepancies could come from heterogeneity in the choice of patients,
but available data are still insufficient to truly conclude on the effectiveness of analogs of SST alone in
the control of HCC tumors [6,31,36]. Cholangiocarcinoma, the other main primary liver tumor, might
also be a potential target [18,37].

On the other hand, in certain cases, and in particular for neuroendocrine tumors (a category of
tumors where SSTRs are the most expressed), a benefit has been proven via two Phase III studies,
which have greatly contributed to the fact that SST analogs are now used in clinical routine [38,39].

2. Somatostatin Analogs

Somatostatin has a short half-life in the body (between one and three minutes), because it is
rapidly degraded by peptidases found in plasma and tissues [40]. Therefore, the amount present in
the bloodstream is extremely low (between 14 and 32.5 pg/mL). This very short half-life has been
considered a limiting factor for possible clinical applications, thus many analogs with better metabolic
properties (longer half-life between 1.5 h and 12 h) have been rapidly developed [2,5,9]. These are
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most often hexapeptide or octapeptide molecules which incorporate the biologically active core of native
somatostatin (see some examples in Figure 3). Indeed, studies on the structure–activity correlation have
shown that the Phe7, Trp8, Lys9, and Thr10 sequence in the form of a β-sheet is necessary for biological
activity. The residues Trp8 and Lys9 are essential for this activity, whereas Phe7 and Thr10 may undergo
some substitutions. Among somatostatin analogs, there are two main categories: the agonists (substances
capable of activating somatostatin receptors) and the antagonists (molecules that interact with somatostatin
receptors and block or reduce the physiological effect of an agonist). It is also important to note that
somatostatin analogs have different affinities for the different receptor subtypes [2].Molecules 2020, 25, x FOR PEER REVIEW 6 of 37 
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The first agonist peptide analog to be approved by the FDA was octreotide (SMS 201-995),
marketed under the name Sandostatin®. From a structural point of view, it has a d-Trp and a
d-Phe, to stabilize the β-sheet and a disulfide bridge closer to the active core, for a better metabolic
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stability. Its pharmacodynamics is highly similar to native SST, which has made it widely used in
clinical trials for the treatment of GEP (gastro-entero-pancreatic) tumors [41,42]. Next, Lanreotide
(BIM 23014, tradename Somatuline®), whose structure is similar to that of octreotide (Phe and Thr
having been replaced by Tyr and Val respectively), showed comparable characteristics and is also
widely used in the treatment of neuroendocrine tumors [43]. In 2005, another analog, Vapreotide
(RC160), was marketed under the name Sanvar®, with properties close to those of the two previous
analogs, and is also used for the treatment of esophageal varices. More recently, Pasireotide (SOM-230
or Signifor®) was one of the first analogs to show a strong affinity for most of the somatostatin
receptor subtypes (pansomatostatin analog). Marketed by Novartis, it is used for the treatment
of Cushing’s disease [44]. Many other analogs have been developed, from “ultra-short” peptides,
such as SDZ 222-100 (an adamantine cyclopeptide), to longer ones, such as KE-108 or CH-275 [5].
Regarding antagonist peptide analogs, the wide variety of compounds that the octapeptide model can
offer has allowed the discovery of several structures that can block this kind of receptors. The first
antagonist that has been described in the literature is CYN-154806, followed by PRL-2970, sst3-ODN-8
or even non-cyclic models such as BIM-23056 and BIM-23627. New non-peptide compounds have also
emerged [45]. These agonists and antagonists (selective or not) constitute a very promising field in the
chemistry of somatostatin analogs, in particular because of their pharmacological, pharmacokinetic,
and physicochemical properties. This type of compound may have a stronger affinity and/or selectivity
for certain subtypes of somatostatin receptors than the majority of peptide analogs. They can thus
provide additional information on the exact role of each of these subtypes [5,9].

3. Targeting of Somatostatin Receptors with Radiopharmaceuticals

In the field of medicine, much research is focused on finding methods to achieve earlier detection
of pathologies to allow treatment at early stages of the disease, to increase the chances of total recovery.
For this purpose, nuclear medicine, through the use of radiopharmaceuticals, is a very powerful
tool. Its application can have two different aims: imaging, with the visualization of a radioactive
element’s distribution in the body, or therapy, with specific irradiation of abnormal cells, thereby
reducing damages to nearby healthy tissue. Having a broad range of potential biological targets and
desirable pharmacokinetic characteristics—such as high uptake in target tissue and fast blood and
non-target tissue clearance—peptides can also be easily chemically modified for incorporation into a
radiopharmaceutical, making them a very potent targeting vector for nuclear medicine. Research in
that domain has thus gained widespread interest [46–49]. These compounds can be directly labeled
with a radionuclide, such as a halogen radioisotope, but they are generally based on a triple structure
involving: (i) a radiometal, the radiation of which allows either the localization (γ and β+ emitters)
or the destruction (β−, α or Auger electron emitters) of the targeted cells; (ii) a bifunctional chelating
agent (BFCA), the dual role of which is not only to bind the radiometal in a very stable manner to
minimize its dissociation in vivo, but also to allow its conjugation with targeting moiety (or vector) via
a functionalized arm; (iii) a targeting moiety (the peptide analog), which aims to convey this set in a
specific way to a well-defined target. To limit the influence of the chelating moiety, a linker (or spacer)
is usually inserted between the BFCA and the biomolecule (Figure 4).

The choice of the radiometal is crucial, since it deeply influences the design of the chelating
structure [50–53]. Several criteria govern the choice of radionuclide: (i) the nature of the radiation
emitted, depending on the intended application (diagnosis or therapy); (ii) the half-life, which must be
long enough to allow effective fixation of the radiotracer on the target cells, but relatively short to avoid
irradiation of the organism (neighboring healthy tissues) and more specifically non-targeted organs;
(iii) the isotope decay profile. By emitting its radiation, the nuclide disintegrates into a daughter nuclide,
which must be non-radioactive to avoid any additional harmfulness to the organism; (iv) the means of
production. Most of the radioelements used in nuclear medicine are artificial. They can be produced
in three different ways: from a nuclear reactor, a cyclotron or via a generator. Generator production
remains the most convenient way for clinical application, as it can provide in-house radionuclides
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when a cyclotron is not available nearby, but cyclotron production still remains the cheapest and most
used. As an example, Table 2 shows some of the characteristics of radioactive nuclides among the most
used today for the radiolabeling of peptides.
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Table 2. Some of the main radionuclides studied for imaging and therapy (SPECT—Single-Photon
Emission Computed Tomography; PET—Positron Emission Tomography).

Radionuclide Half-Life
(h)

Type of
Emission

Energy of Emitted
Radiation (keV) Source Application

99mTc 6.01 γ 140 Generator SPECT imaging
111In 67.4 γ 172, 245 Cyclotron SPECT imaging
18F 1.83 β+ 634 Cyclotron PET imaging

64Cu 12.7 β+/γ/β- 653 Cyclotron PET imaging
68Ga 1.1 β+ 1190 Generator/Cyclotron PET imaging
90Y 64.1 β− 2284 Generator Therapy

177Lu 160.8 β−/γ 497 Cyclotron Therapy
188Re 17 β−/γ 2118 Generator Therapy
211At 7.2 α 5870 Cyclotron Therapy
225Ac 238 α 5830 Generator Therapy

From a structural point of view, each radiometal has its own properties such as polarizability,
degree of oxidation, or coordination number. These features have a direct impact on the choice of
the bifunctional chelating agent, in particular in terms of denticity and nature of the donor atoms
(most often O-, N-, or S-donors) [54,55]. The BFCA makes it possible to link the biomolecule and the
radiometal; its choice is a crucial step in the construction of a radiopharmaceutical. As indicated above,
this structure plays a double role: the first is to complex the radioelement in a very stable manner.
Several criteria can be evaluated to truly attest to the stability of the complex formed. First of all, the
formed radiocomplex must be thermodynamically stable, i.e., the metal-ligand affinity must be as
strong as possible. Then it must be kinetically inert. Many metalation reactions take place in the body
and the complex formed must be stable enough to avoid any in vivo degradation (e.g., demetallation
or transchelation). In addition, radiolabeling conditions with low concentrations are required, ideally
with efficient complexation kinetics (high labeling yield) and fast and mild reaction conditions. Beside
chemistry considerations, the radiotracer must have: (i) a strong affinity for the target receptor; (ii) a
high accumulation for the target and low for the non-target organs; (iii) relatively rapid clearance in
the organism; (iv) preferably a mainly renal route of excretion.

Chelating ligands used for the design of radiotracers are usually classified into two categories:
macrocyclic and acyclic compounds (Figure 5). Generally, acyclic ligands are less kinetically inert
than macrocycles, although some may have shown very good characteristics. On the other hand,
these ligands generally have faster metal-chelate binding kinetics compared to macrocyclic analogs,
which represents a huge advantage for working with isotopes that have a short lifespan. Despite the
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coordination properties specific to each metal, some chelating agents—such as polyaminopolycarboxylic
acids—are considered to be ‘universal’ because they can complex different radiometals.
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Among acyclic ligands, the first BFCAs developed were EDTA (ethylenediaminetetraacetic
acid) and DTPA (diethylenetriaminepentaacetic acid). They have been widely used in the
chemistry of radiopharmaceuticals, in particular with radioelements such as 111In, 90Y or 177Lu,
and even 99mTc [54]. Later on, DTPA derivatives such as CHX-A′′-DTPA with a cyclohexyl
moiety bringing more rigidity to the DTPA backbone (allowing a pre-organization of the
system) showed better kinetic inertia [56]. Regarding cyclic compounds, cyclen derivatives
such as DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) and triaza analogs—NOTA
(1,4,7-triazacyclononane-1,4,7-triacetic acid)—are among the most studied ligands. NOTA has the
smaller chelating cavity of the two, and is generally used for Ga (III) or Cu (II) because it has a
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particular attraction for these metals, which results in mild radiolabeling conditions and good in vivo
stability of the complexes formed. DOTA (which is considered as the gold standard chelator) and its
derivatives play an important role in clinical applications because they form very stable complexes
with a wide range of trivalent radiometals such as Ga (III), Y (III), In (III), Lu (III), or even divalent
such as Cu (II) [57,58]. For DOTA or NOTA, the introduction of a functionalized arm offers the
possibility of coupling a biomolecule (NODASA/NODAGA and DOTASA/DOTAGA). Similarly, TETA
(1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid), has mainly been studied with Cu (II) and
have shown a stability similar to DOTA [59].

Whether on the side of macrocyclic ligands, derivatives or variations of DOTA (e.g.,
p-SCN-Bn-DOTA, DOTAGA, CB-DO2A, TCMC . . . ), NOTA (e.g., p-SCN-Bn-NOTA, NETA . . . ),
or TETA (e.g., CB-TE2A, p-NH2-Bn-TE3A . . . ), or on the side of acyclic ligands, derivatives or
variations of DTPA (e.g., CHX-A′′-DTPA . . . ), a large number of ligands have been developed so far.
A wide choice of ligands is available for the design of new agents, and numerous journals have described
and carefully classified all the structures that can be used in the design of a radiopharmaceutical,
whatever the intended application [46,51,53,54,57,60].

BFCA’s second role is to allow the conjugation of the complex with a biomolecule. The nature of
this link is very important, because it is essential for it to be stable, and above all, for it to not interfere
in any way with the binding to the receiver. The slightest structural modification of the ligand and/or of
the biomolecule can have a very marked effect on the affinity to the targeted receptors. To minimize this
impact as much as possible, that sometimes a ‘spacer’ or ‘linker’ can be used between these two entities.
Biomolecules are often functionalized through a primary amine, which provides an ideal conjugation
site for a coupling reaction, most often with peptide or thiourea type links. Other links based on
thioether, triazole, oxime, or more recently via a copper-free click-chemistry with tetrazine/cyclooctyne
may prove to be interesting, in particular, because they have very good stability in vivo [51,54,61].

Many somatostatin analogs have already been labeled with various radioelements, whether for
imaging, with probes used today in clinical applications, or for therapy, with many compounds in
clinical studies [17,61–63]. These analogs were obtained from modifications in the sequence of amino
acids that make up the peptide. For example, replacing Phe3 in octreotide (OC) with Tyr3 (TOC)
improves the affinity for SSTRs (in particular SSTR2) and introduction of a Thr (TATE) instead of Thr(ol)
(TOC) further improves this. By following this procedure, many analogs have been developed and
studied, often with the same chelating cavity to be able to compare their properties (Table 3) [64,65].

Table 3. Peptidic sequences of the main somatostatin agonist analogs. Differences towards Octreotide
(OC) are highlighted in red.

Peptide Peptidic Sequence

OC
Octreotide d-Phe1-cyclo(Cys2-Phe3-d-Trp4-Lys5-Thr6-Cys7)Thr(ol)8

LAN
Lanreotide β-d-Nal1-cyclo(Cys2-Tyr3-d-Trp4-Lys5-Val6-Cys7)Thr8-NH2

VAP
Vapreotide d-Phe1-cyclo(Cys2-Phe3-d-Trp4-Lys5-Val6-Cys7)Trp8-NH2

TOC
[Tyr3]-Octreotide d-Phe1-cyclo(Cys2-Tyr3-d-Trp4-Lys5-Thr6-Cys7)Thr(ol)8

TATE
[Tyr3]-Octreotate d-Phe1-cyclo(Cys2-Tyr3-d-Trp4-Lys5-Thr6-Cys7)Thr8

NOC
[1-Nal3]-Octreotide d-Phe1-cyclo(Cys2-1-Nal3-d-Trp4-Lys5-Thr6-Cys7)Thr(ol)8

NOC-ATE
[1-Nal3, Thr8]-Octreotide d-Phe1-cyclo(Cys2-1-Nal3-d-Trp4-Lys5-Thr6-Cys7)Thr8

BOC
[BzThi3]-Octreotide d-Phe1-cyclo(Cys2-BzThi3-d-Trp4-Lys5-Thr6-Cys7)Thr(ol)8

BOC-ATE
[BzThi3, Thr8]-Octreotide d-Phe1-cyclo(Cys2-BzThi3-d-Trp4-Lys5-Thr6-Cys7)Thr8
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3.1. Radiolabeled Somatostatin Analogs for Imaging

The very first proof of concept for the visualization of tumors expressing SSTRs was carried
out with [123I-Tyr3]-octreotide, obtained from an iodination reaction (electrophilic substitution) of
tyrosine [66,67]. This compound demonstrated biological activity and an affinity for receptors similar
to those of native SST [68]. Despite the obvious interest of this probe, several factors such as the
difficult radiolabeling procedure, the significant cost, and particularly, the clearance via the liver
and the hepatobiliary system (which makes it difficult to interpret the obtained images) were the
main drawbacks of its application [67]. To overcome all of these disadvantages, iodine-123 has been
replaced with indium-111, which, through the chelating agent DTPA, has been coupled to octreotide
(Figure 6) [69]. In vivo studies of [111In-DTPA0]-octreotide ([111In]-pentetreotide) have shown that
it is possible to visualize tumors expressing SSTRs and their metastases, even 24 h after injection.
In comparison with the compounds coupled to antibodies, this reveals a relatively rapid clearance via the
kidneys, which represents a huge advantage compared to [123I-Tyr3]-octreotide [70,71]. This compound
was the first radiopharmaceutical targeting SSTRs to be approved by the FDA (Octreoscan® marketed
in 1994). It has been widely used, and has long been considered a ‘gold standard’ for the visualization
of neuroendocrine tumors. It still has a few limits: in fact, it requires a high tumor/noise intensity
ratio, shows low spatial resolution, has a moderate affinity for receptors and finally, and possesses
a high γ energy which results in a high dose of radioactivity received by the patient. For all these
reasons, research in the field of radiopharmaceuticals has focused on other radioelements such as
technetium-99m for SPECT and gallium-68 for PET. In addition to having excellent physical properties,
these two elements are available from a commercial clinical-grade generator, an important advantage
for clinical applications.
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3.1.1. Gallium-68 and Indium-111

DOTATOC analog was the first to be radiolabeled with indium-111, and its comparative study with
Octreoscan® showed similar diagnostic accuracy, but with better biodistribution and clearance [72].
Although DOTATATE alone showed better affinity for SSTRs, the two analogs [111In]-DOTATOC and
[111In]-DOTATATE showed relatively similar pharmacokinetic properties [73]. SSTR2 receptors—and
to a lesser extent, SSTR5—are most often overexpressed in tumors. Consequently, the majority of the
radiotracers described have a strong affinity for these two SSTRs subtypes. Systems such as DOTANOC
were designed to develop a probe capable of targeting all subtypes. Compared to DOTATOC and
DOTATATE, it has a similar affinity for SSTR2 and SSTR5 subtypes, but a much higher affinity towards
SSTR3. Their high internalization rate results in interesting biodistribution data, with a greater
accumulation of the probe in the tumor and in the organs or tissues expressing SSTRs (e.g., pancreas
and adrenal glands), ending with excretion mainly by kidneys [74].

These three systems, similarly labeled with gallium-68 (Figure 7), have proven to be very
good radiotracers, and are currently routinely used in clinical applications [75]. These three
radiopharmaceuticals have slightly different pharmacokinetic properties, but their diversity is mainly
due to the variation in affinity for certain subtypes. This feature is even more marked depending on
the radioelement chosen (68Ga or 111In). This can be explained by the differences in the geometry of the
complexes. [68Ga]-DOTATOC is very affine for SSTR2 and more moderate for SSTR5, [68Ga]-DOTATATE
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is specific to SSTR2 and finally, [68Ga]-DOTANOC binds with great affinity to SSTR2, SSTR3, and
SSTR5 [76–78].

Molecules 2020, 25, x FOR PEER REVIEW 12 of 37 

 

3.1.1. Gallium-68 and Indium-111 

DOTATOC analog was the first to be radiolabeled with indium-111, and its comparative study 

with Octreoscan®  showed similar diagnostic accuracy, but with better biodistribution and clearance 

[72]. Although DOTATATE alone showed better affinity for SSTRs, the two analogs [111In]-

DOTATOC and [111In]-DOTATATE showed relatively similar pharmacokinetic properties [73]. 

SSTR2 receptors—and to a lesser extent, SSTR5—are most often overexpressed in tumors. 

Consequently, the majority of the radiotracers described have a strong affinity for these two SSTRs 

subtypes. Systems such as DOTANOC were designed to develop a probe capable of targeting all 

subtypes. Compared to DOTATOC and DOTATATE, it has a similar affinity for SSTR2 and SSTR5 

subtypes, but a much higher affinity towards SSTR3. Their high internalization rate results in 

interesting biodistribution data, with a greater accumulation of the probe in the tumor and in the 

organs or tissues expressing SSTRs (e.g., pancreas and adrenal glands), ending with excretion mainly 

by kidneys [74]. 

These three systems, similarly labeled with gallium-68 (Figure 7), have proven to be very good 

radiotracers, and are currently routinely used in clinical applications [75]. These three 

radiopharmaceuticals have slightly different pharmacokinetic properties, but their diversity is 

mainly due to the variation in affinity for certain subtypes. This feature is even more marked 

depending on the radioelement chosen (68Ga or 111In). This can be explained by the differences in the 

geometry of the complexes. [68Ga]-DOTATOC is very affine for SSTR2 and more moderate for SSTR5, 

[68Ga]-DOTATATE is specific to SSTR2 and finally, [68Ga]-DOTANOC binds with great affinity to 

SSTR2, SSTR3, and SSTR5 [76–78]. 

 

Figure 7. Structures of the three main systems radiolabeled with gallium-68. 

A study with DOTANOC aimed at determining the impact of the introduction of a spacer on the 

pharmacokinetic properties of the formed radiotracer. The aim was to insert polyethyleneglycol 

(PEG) moieties or sugars between the chelating cavity (DOTA) and the biomolecule (NOC), which 

resulted in the modification of the lipophilicity or the charge of the final compound. As a result, the 

hydrophilicity of the system seems to be involved only in the affinity phenomenon towards the 

receptor, and the overall charge of the compound influences the excretion profile [79]. 

DOTA is not the only macrocycle to have been coupled to somatostatin analogs. Knowing the 

attraction of Ga (III) for NOTA, the latter has been the subject of comparative studies. Conjugated 

Figure 7. Structures of the three main systems radiolabeled with gallium-68.

A study with DOTANOC aimed at determining the impact of the introduction of a spacer on the
pharmacokinetic properties of the formed radiotracer. The aim was to insert polyethyleneglycol (PEG)
moieties or sugars between the chelating cavity (DOTA) and the biomolecule (NOC), which resulted in
the modification of the lipophilicity or the charge of the final compound. As a result, the hydrophilicity
of the system seems to be involved only in the affinity phenomenon towards the receptor, and the
overall charge of the compound influences the excretion profile [79].

DOTA is not the only macrocycle to have been coupled to somatostatin analogs. Knowing the
attraction of Ga (III) for NOTA, the latter has been the subject of comparative studies. Conjugated
with octreotide (NODAGATOC), the compound showed a strong affinity for SSTR2 (similar to that of
DOTATOC). Once marked with 111In, affinity was even stronger for SSTR2, with even a gain on SSTR3
and SSTR5 (compared to 68Ga-NODAGATOC), which confirms the influence that the geometry of the
complex can have on affinity. In terms of stability, as expected, that of [68Ga]-NODAGATOC was higher
than that of [111In]-NODAGATOC. The biodistribution of [68Ga]-NODAGATOC was similar to that
of [68Ga]-DOTATOC, but showed a better accumulation in the tumor than [111In]-DOTATOC. This is
probably due to the strong agonist character, and the high rate of internalization of the NODAGATOC
derivative [80].

A large variety of derivatives have also been investigated, such as DOTALAN, DOTABOC,
DOTAGA [81], DOTANOCATE or DOTABOCATE (all derivatives of DOTANOC) [82,83], or
THP-TATE (comparison of the overall behavior of the tris chelating system (hydroxypyridinone)
with DOTATATE) [84]. New generation analogs with broader affinity profiles or
pan-somatostatin analogs have been developed. For instance, AM3 (DOTA-Tyr-cyclo(DAB-Arg-
cyclo(Cys-Phe-d-Trp-Lys-Thr-Cys))), a bicyclic somatostatin analog demonstrated affinity to SSTR2,
3, and 5, when labeled with 68Ga. It showed a fast background clearance coupled with a high
tumor/non-tumor ratio. [85] KE108 was coupled with DOTA and labeled with 111In and 68Ga,
giving [111In/68Ga]-KE88 (DOTA-d-Dab-Arg-Phe-Phe-d-Trp-Lys-Thr-Phe), which bound to all five
SSTRs with high affinity. [86] However, in an in vitro study, it had a low SSTR2 uptake, but was
very effective for SSTR3-expressing tumors. More recently, a Pasireotide derivative, DOTA-PA1
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(DOTA-cyclo-[HyPro-Phe-d-Trp-Lys-Tyr(Bzl)-Phe]) was labeled with 68Ga and was investigated in three
human lung cancer models, where it demonstrated superiority compared to [68Ga]-DOTATATE [87].
In parallel, the group from Demokritos Institute, in Athens, developed pansomatostatin radiopeptides
based on native somatostatin (SRIF-14 and SRIF-28). Both were derivatized with DOTA chelator and
labeled with 111In. Subsequent radiotracers exhibited high affinity and internalization profiles. SRIF-14
derivatives unfortunately demonstrated low in vivo stability. [111In]-DOTA-LTT-SS28, on the contrary,
demonstrated a much higher stability and showed more promise [88,89].

3.1.2. Technetium-99m

A wide range of chelating agents have been used to prepare somatostatin analogs labeled
with technetium-99m: peptide moieties [90,91], propyleneaminooxime [92], tetraamines [93,94] or a
cyclopentadienyl group [95]. Macrocyclic ligands have also been investigated [96]. Three systems
stand out for the radiolabeling of somatostatin analogs: HYNIC-TOC and Demotate scaffolds, and
P829 (Figure 8).
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Initially, the HYNIC core (hydrazinonicotinamide) was designed for the radiolabeling of
antibodies and proteins with technetium-99m [97], then this was transposed to peptides and
more specifically to octreotide. This ligand can complex the metal in a monodentate or bidentate
way, therefore, it is necessary to use one or more co-ligands to complete the coordination of the
[99mTc]-HYNIC core. Among the most commonly used co-ligands are tricin, nicotinic acid, or EDDA
(ethylenediaminodiacetic acid). Each co-ligand has its own influences on the properties of the complex
obtained (e.g., lipophilicity and biodistribution) [98]. The first studies were carried out using tricin as a
co-ligand ([99mTc]-HYNIC-TOC), but quickly EDDA demonstrated a very favorable influence on the
pharmacokinetics of the radiotracers [99]. Compared to Octreoscan®, [99mTc]-EDDA/HYNIC-TOC
showed better accumulation in the tumor and a weaker accumulation in the kidneys. The improved
spatial resolution, the reduction in the radiation dose received by the patient and the better availability of
99mTc made it a possible alternative to Octreoscan® [99,100]. Finally, its conjugation with the octreotate
analog ([99mTc]-EDDA/HYNIC-TATE) has shown significantly similar behavior to its octreotide
counterpart [101]. [99mTc]-EDDA/HYNIC-TOC (Tektrotyd®) was granted marketing authorization in
Europe in adult patients with gastro-enteropancreatic neuroendocrine tumors (GEP-NET) for localizing
primary tumors and their metastases.

The second radiotracer, based on the tetraamine motif 6-R-1,4,8,11-tetraazaundecane, is available
in a series with [99mTc]-Demotate 1 ([99mTc-N4

0, Tyr3]-octreotate) and 99mTc-Demotate 2 ([99mTc-N4
0–1,
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Asp0, Tyr3]-octreotate). The first version of this probe demonstrated excellent pharmacokinetic
properties, including faster accumulation in the tumor compared to Octreoscan® [102]. The objective of
the second version was to improve the qualities of [99mTc]-Demotate 1, by modifying the overall charge
of the complex and adding an Asp residue. In the end, [99mTc]-Demotate 2 showed overall behavior
similar to [111In]-DOTATATE, even if the latter has a faster clearance and a better retention time in the
tumor [103]. The last of the main analogs based on technetium-99m is [99mTc]-P829 (99mTc-Depreotide),
marketed in 2000 by the company CISBio International under the name of NeoSpect®, but recently
withdrawn from the market. The P829 peptide (directly radiolabeled with 99mTc) showed results
similar to the other SST analogs [104]. Its use for the detection of neuroendocrine tumors appeared to
be less precise than with Octreoscan® [105]. On the other hand, its affinity for SSTR3, subtype which
may be the origin of cross-competition from other types of receptors (notably VIP receptors), gave
it the ability to bind to a larger number of primary tumors [104]. In particular, it was used clinically
for the diagnosis of malignant lung tumors [106–108], for which it got its market authorization [109],
and also demonstrated some interest in breast cancer, but it was never confirmed in a larger series of
patients [110].

The question that now remains to be answered is that of the clinical interest of a SPECT tracer
among the wide choice of PET SSTRs imaging agents [111,112].

3.1.3. Copper-64

Due to the short half-life of 68Ga (T1/2 = 67.7 min.) each center willing to perform 68Ga PET
imaging must purchase a currently expensive 68Ge/68Ga generator and a specifically shielded hot-cell.
For this reason and despite the FDA and EMA market authorizations for [68Ga]-DOTATATE and
[68Ga]-DOTATOC and the better diagnostic performances for these two radiopharmaceuticals products,
the use of 68Ga appears to be under the dependence of an economic choice for many hospitals
and only a few large centers are making the financial investment to perform 68Ga-radiolabeling.
In this context, the use of a PET-emitter with a longer half-life such as copper-64 (T1/2 = 12.7 h)
appears to be an interesting alternative to remove the financial hindrance of gallium-68 [113].
This physical parameter allows for a centralized radiolabeling site with a large multicentric
supply of ready-to-use 64Cu-radiolabeled compounds. The chemistry of copper is also well
known, which is a real asset in the design of new radiotracers. Many systems already presented
before, such as DOTATOC/TATE or NODAGATOC/TATE, or others more copper-specific BFCAs,
such as TETA (1,4,8,11-tetraazacyclotetradecane-N,N′,N′′,N′′′-tetraacetic acid) [114], and its more
stable derivatives such as cross-bridge CB-TE2A (4,11-bis(carboxymethyl)-1,4,8,11-tetraazabicyclo
[6.6.2]hexadecane) [115], and CPTA (4-[(1,4,8,11-tetraazacyclotetradec-1-yl)methyl]benzoic acid]) [116]
or sarcophagine derivatives [117] have been studied. A review on the development of copper
radiolabeled somatostatin analogs was recently published by Marciniak et al. [118].

To validate the clinical interest of [64Cu]-somatostatin analogs, various clinical studies have been
conducted around the world. Among the different somatostatin analogs, [64Cu]-DOTATATE was one
of the first used. In 2015, [64Cu]-DOTATATE was compared head-to-head to [111In]-DTPA-octreotide
in 112 patients and showed that the PET 64Cu-compound was far superior to SPECT 111In compound
performances [119]. In 2017, [64Cu]-DOTATATE was challenged to [68Ga]-DOTATOC according to an
identical PET/CT imaging modality [120]. The results of this study, where 59 patients were injected
with [68Ga]-DOTATOC followed by an injection of [64Cu]-DOTATATE one week later, concluded that
the two radiopharmaceuticals had the same sensitivity. Nevertheless, in this cohort of neuroendocrine
tumors, [64Cu]-DOTATATE had a substantially better lesion detection rate. The patient follow-up
revealed that these additional lesions detected by [64Cu]-DOTATATE were true positives. To evaluate
the benefits of this better detection of lesions with [64Cu]-DOTATATE than with [68Ga]-DOTATOC, the
correlation between PET image [64Cu]-DOTATATE uptake (expressed in maximal standardized
uptake value - SUVmax) and overall (OS)/progression free survival (PFS) was studied during
24 months after [64Cu]-DOTATATE PET/CT acquisition. The conclusion of this study claimed a
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good correlation/prognostic between SUVmax and PFS but not with OS [121]. The major drawback
of these preliminary human studies consist of the affinities differences for the five SSTRs subtypes
between DOTATOC and DOTATATE compounds. To circumvent these discrepancies, an in vitro
study in a mouse model was conducted and compared [64Cu]-DOTATATE to [68Ga]-DOTATATE.
The results showed a similar pharmacokinetic and absolute uptake between both compounds 1 h
post-injection [122]. In Europe, where the PET radiopharmaceutical approved is [68Ga]-DOTATOC, it
could be interesting to perform some PET imaging with [64Cu]-DOTATOC to compare the performance
of the two tracers. A first-in-human retrospective study was recently conducted and seems to present
same results than [64Cu]-DOTATATE with high detection rate of suspected lesion associated to a high
target-to-background contrast [123]. A recent first-in-human study also demonstrated potential interest
for [64Cu]-SARTATE analog [124].

In conclusion, despite a higher dosimetric impact for copper-64 (only 17.6% of radioactive decay
lead to positron emission), copper-64 somatostatin analogs appear to be an advantageous alternative
to gallium-68 radiopharmaceuticals. Compared to 68Ga, in addition to economic advantages, 64Cu
has a lower positron range which leads to a better PET intrinsic resolution and a higher half-life
which allows for a more flexible scanning window. The better patient care management and outcomes
remain to be proven and the work is in progress to establish these points [121,125]. In parallel, at
present, a radiopharmaceutical industrial company submitted a market authorization from FDA for
[64Cu]-DOTATATE and thus confirms the interest of copper-64 in SSTRs imaging.

3.1.4. Other Radiometals

Other radionuclides have also been investigated for SSTRs imaging. Cobalt-55 seems to be a
possible alternative to gallium-68 and copper-64 compounds, with similar behavior and lifespan
(17.5 h vs. 12.7 h) to the latter, but with a higher positron yield (75.9% vs. 17.6%). Preliminary
complexation tests of DOTATOC with the isotope 57Co as a surrogate for 55Co showed a higher affinity
for SSTR2 than [68Ga]-DOTATOC, implying a rate of internalization among the highest of all derivatives
of SST and thus, a strong accumulation in targeted tissues. Despite similar structures, the analogs
of cobalt and gallium have different biological behaviors. This confirms the fact that the physical
characteristics of radioactive elements influence the affinity, biodistribution, and pharmacokinetics of
radiolabeled peptides [126]. The properties of cobalt-based compounds have been further investigated
with the comprehensive evaluation of other octreotide analogs such as DOTANOC and DOTATATE [127].
Furthermore, [55Co]-DOTATATE compared favorably with [68Ga]-DOTATATE and [64Cu]-DOTATATE
in an animal model [122]. Associated with the Auger-emitting 58mCo, it could represent a potentially
interesting theranostic pair [128].

Scandium and terbium are two metals that recently emerged as possibly useful for theranostic
applications, as both possess imaging and therapeutic radionuclides [129]. DOTATOC was
radiolabeled with scandium-44 (T1/2 = 3.97 h, Eβ+ = 632 keV) [130] and terbium-152 (T1/2 = 17.5 h,
Eβ+ = 1140 keV) [131] and rapidly injected in patients in proof-of-concept studies [132,133]. No adverse
effects were observed during follow-up periods and images proved suitable for diagnosis.
With DOTATATE, it seems the affinity to SSTR2 receptors is lower with scandium than with
gallium, thus limiting its interest [134]. In a study comparing the labeling and stability of
DOTANOC and NODAGANOC with 44Sc and 68Ga, it was observed that [44Sc]-NODAGANOC
labeling was more challenging and less stable than [44Sc]-DOTANOC [135]. The opposite was
observed with 68Ga. Recently, a new chelator was proposed, AAZTA (1,4-bis (carboxymethyl)-6-[bis
(carboxymethyl)]amino-6-methylperhydro-1,4-diazepine), which enables fast and easy labeling at
room temperature. AAZTA-TOC labeled with 44Sc demonstrated high in vitro stability [136]. Affinity
tests are now necessary to assess its potential utility. DOTATATE has also been labeled with 155Tb
(T1/2 = 5.32 days, Eγ = 87 keV (32%), 105 keV (25%)) for SPECT imaging [137]. Though a potentially
promising radionuclide for theranostic applications, availability of 155Tb is currently the main limitation
for further development.
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At the turn of the millennium, yttrium-86 (T1/2 = 14.74 h, 32% β+) was thought to be a potential
radionuclide of interest, particularly for pretherapeutic dosimetry of 90Y-radiotracers, and notably
90Y-labeled somatostatin analogs [138]. Thus, several octreotide analogs were developed [139,140].
[86Y]-DOTATOC even reached the clinics [139,141]; however, 86Y properties are less than optimal, and
availability is limited, so interest soon faded out.

3.1.5. Fluorine-18

Radiometals’ production is currently still limited, even for the most advanced ones [142–144].
Fluorine-18, on the contrary, can be mass-produced and distributed daily, thanks to a worldwide
network of cyclotrons. Because of this availability, and favorable decay characteristics (T1/2 = 110 min,
97% β+), it thus should be noted that some radiotracers based on fluorine-18 have been described
(Figure 9) [145]. The first generations such as 2-[18F]fluoropropionyl-d-Phe1-octreotide [146] or
4-[18F]fluorobenzoyl-d-Phe1-octreotide [147] generally showed unfavorable biokinetic properties
(low accumulation and low retention in the tumor). The probes developed subsequently contained
hydrophilic or charged moieties to reduce the lipophilicity of the radiotracer. In particular, several
carbohydrate derivatives of octreotide/octreotate have been developed [148,149]. A disadvantage
of fluorine-labeling compared to radiometal labeling is the use of generally long and tedious
multi-step procedures. To circumvent this, innovative strategies, enabling fast and purification-less
labeling, have been developed, such as the formation of 18F-boron or 18F-silicon bonds, or the
use of click-chemistry [150–152]. Another elegant method to label somatostatin analogs is the
use of [18F]-aluminum fluoride with radiotracers previously developed for radiometals, such as
NOTATOC [153]. These new generation analogs demonstrated general properties (affinity for
the targeted receptors, metabolic stability, biodistribution and clearance) which are much more
interesting, and some of them have been investigated in patients, where they gave results comparable to
[68Ga]-DOTATOC [154,155]. In addition, [18F]F-FET-βAG-TOCA and [18F]-IMP466 ([Al18F]-NOTATOC)
are currently being evaluated in phase I clinical trials (EudraCT number 2013-003152-20 and
NCT03511768, respectively). Recently published results with [18F]-IMP466 demonstrated it was
safe and well-tolerated, with a physiologic uptake pattern similar to [68Ga]-DOTATATE [156]. Besides
cost and availability, another advantage of fluorine-18 is its shorter positron range compared with
gallium-68, leading to an improved spatial resolution, and thus, better quantification of uptake [157].
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3.2. Radiolabeled Somatostatin Analogs for Therapy

Concerning radionuclide therapy and more particularly peptide receptor radionuclide therapy
(PRRT), radioactivity is used to destroy the targeted cells. Radiopharmaceuticals used in therapy are
designed in the same way as those used in imaging, only the nature of the radioelement being modified.
Contrary to imaging, which uses radioelements having very penetrating but little ionizing radiations,
PRRT privileges the use of radionuclides that have little penetrating and more energetic and thus more
ionizing radiations. Brought directly to the cancer cell, the radiation emitted by the radioactive decay
causes irreversible ionization of the cell’s DNA, which induces its apoptosis. The main isotopes used
today are iodine-131, yttrium-90, lutetium-177 and, to a lesser extent, rhenium-188 [158]. As mentioned
earlier, the purpose of the DOTA-SSA design was to work with a chelating cavity capable of complexing
radioelements for imaging or therapy. Consequently, most of the platforms discussed above have been
transposed for therapeutic application via the use of β− emitters [64,74,81,82].

3.2.1. Yttrium-90 and Lutetium-177

Yttrium-90, a pure high energy β− emitter (T1/2 = 64 h, Eβmax = 2.28 MeV), and lutetium-177,
a medium energy β− emitter (T1/2 = 6.7 d, Eβmax = 0.5 MeV) with a γ component (208 keV), are
currently the most used in PRRT. Each of these two elements has its own advantages for targeted
therapy. The particles emitted by 90Y are more energetic and more penetrating; they are able to diffuse
on a thicker layer of cells, which is an advantage for the treatment of large tumors. However, even if
high energy radiation allows a more uniform irradiation of the tumor, the risk of imposing an excessive
dose of radiation on the adjacent tissues is very present. For its part, the 177Lu emits less energetic
radiation, more suited to small tumors. In addition, the energy of its γ radiation is sufficient to allow
detection by scintigraphy and establish dosimetry during the therapy sequences [159].

The first analog to be studied was [90Y]-DOTATOC (Octreother®), and the first treatment sessions
quickly showed good results, stopping the progression of the tumor [72,160,161]. Many studies on this
long-used treatment have made it possible to observe a good tolerance for this radiotracer, with fairly
mild side effects (fatigue) and in very rare cases a little more severe ones (nausea). However, it also
showed some toxicity for the kidneys and the bones, these two aspects being the dose-limiting factors
for the patient. In vitro, a greater affinity for SSTR2 has been demonstrated for [90Y]-DOTATATE
compared to [90Y]-DOTATOC [64]. However, for the diagnosis in humans, a better contrast between
the kidneys and the tumor was found for [111In]-DOTATOC compared to [111In]-DOTATATE [73],
which may explain the wider use of DOTATOC analog. Despite this, these two analogs have relatively
similar properties and have proven to be effective treatment methods that improve survival in some
patients with neuroendocrine tumors (approximately 50 months vs. 18 months without treatment) [162].
In a Phase IIA study with [90Y]-DOTALAN (MAURITIUS trial), this one demonstrated lower tumor
uptake in neuroendocrine tumors compared to 90Y-DOTATOC, but could be of potential interest for
other tumors, such as HCC or lung cancers [163]. With the perspective of several years of clinical use,
PRRT with 90Y-labeled somatostatin analogs appears to be well-tolerated with favorable long-term
outcome. Unfortunately, Phase III studies are still lacking [164,165].

The same analogs have also been radiolabeled with lutetium-177. Initially, [177Lu]-DOTATOC was
used in cases of relapse of neuroendocrine tumors after treatment with [90Y]-DOTATOC. Despite satisfactory
results [166], its subsequently developed analog [177Lu]-DOTATATE has shown more promise, mainly due to
a more significant retention time in the tumor. For this reason, octreotate analog (TATE) is being preferred to
octreotide (TOC) for labeling with lutetium [164,167]. It is also important to note that, unlike 90Y, no cases of
nephrotoxicity after treatment with 177Lu have been reported. In 2005, the possibility of combining these
twoβ− emitters for therapy in cases where tumors of variable sizes are detected, was demonstrated [168].
From there, different treatment combinations between the four main systems ([90Y]-DOTATOC,
[90Y]-DOTATATE, [177Lu]-DOTATOC, and [177Lu]-DOTATATE) have proven to be interesting and
sometimes even more effective than using a single treatment modality [169,170]. Similarly,
combination treatments with non-labeled somatostatin analogs, chemotherapy, targeted therapy, and/or
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radiosensitizers might further improve the efficacy and/or tolerability [171,172]. [177Lu]-DOTATATE
has been investigated in a phase III trial, in well-differentiated, unresectable or metastatic, progressive
midgut neuroendocrine tumors (Netter 1 trial). Treatment with [177Lu]-DOTATATE resulted in a
significant tumor response rate of 18% compared with 3% in the high-dose octreotide LAR group,
coupled with a 79% risk reduction for disease progression or death [173]. Following these positive
findings, [177Lu]-DOTATATE was granted marketing authorization in this indication, both in Europe
and in the US (Lutathera®) [174]. Coupled with 68Ga-imaging (Figure 10), it represents a powerful
theranostic tool for the management of neuroendocrine tumors (NETs) [175]. Current research
with [177Lu]-DOTATATE aims to improve the safety and efficacy of this procedure, enlarge possible
indication, notably in advanced, poorly-differentiated, GEP-NETs, [176,177] or other NETs, such as
pheomochromocytoma or paraganglioma [178,179].Molecules 2020, 25, x FOR PEER REVIEW 19 of 37 
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imaging of a patient treated for progressive metastatic midgut NET (images courtesy of Centre Eugene
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3.2.2. Rhenium-188 and Other β-Emitting Radionuclides

Despite equally interesting characteristics, rhenium-188 remains widely less used than 90Y
and 177Lu [180]. This is mainly due to more difficult chemistry and the unavailability of a
pharmaceutical-grade 188W/188Re generator, as compared to the other two. Vapreotide and Lanreotide
analogs have been described in the literature with 188Re. They have been investigated in experimental
cancer models (e.g., pancreas, colorectal, lungs and cervical) to reduce tumor growth [181–184].
[188Re]-Lanreotide notably demonstrated favorable pharmacokinetics and distribution profiles
(tumor-to-liver ratio) in HCC-bearing rats compared to healthy ones [185]. Another example is
an equivalent to Depreotide (P829). After the development of 99mTc-Depreotide for imaging, the idea
was to label this compound with 188Re, to assess its potential in vivo. Although the radiolabeling
proceeded successfully, the study showed unacceptable toxicity to non-target organs. To improve its
properties, structural modifications of the peptide sequences close to the chelating moiety were tested.
This optimization led to P2045, which showed better accumulation in the tumor, weaker retention in the
kidneys, and faster urinary excretion than [99mTc]-depreotide [186]. This new rhenium-based analog of
depreotide, [188Re]-P2045 (Figure 11), went up to phase I in therapy for small cell lung cancer [187] and
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has shown promising in vivo results in the treatment of pancreatic tumors in mice [188]. To the best
of our knowledge, no HYNIC-TOC/TATE or demotate derivatives have yet been radiolabeled with
rhenium. Recent research with rhenium isotopes has been focusing on tricarbonyl core derivatives for
the labeling of NOTA-SSAs [96].
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In a theranostic perspective, other β-emitting nuclides could have a potential interest—such as
47Sc (T1/2 = 3.35 d, Eβmax = 600.8 keV), 67Cu (T1/2 = 2.58 d, Eβmax = 577 keV), and 161Tb (T1/2 = 6.91 d,
Eβmax = 593 keV)—to be coupled with 44Sc, 64Cu, and 152Tb/155Tb respectively [129,158,189]. To date,
no 67Cu-labeled somatostatin analogs have been described so far, and only very preliminary studies
have been described with [161Tb]-DTPA-Octreotide and [47Sc]-DOTATOC [190,191].

3.2.3. Alpha and Auger Emitters

Recently, alpha emitters have attracted particular attention for radionuclide therapy. Long confined
to hematological tumors, they are now being considered for the potential treatment of solid tumors [192].
In vitro, α-labeled somatostatin analogs (DOTATOC and DOTATATE) demonstrated a significantly
higher killing effect compared to 177Lu [193–195]. [213Bi]- and [225Ac]-labeled DOTATOC (213Bi:
T1/2 = 45.6 min, Eα = 5.88 MeV; 225Ac: T1/2 = 9.92 d, Eα = 5.83 MeV) have demonstrated promising
therapeutic effects in pre-clinical animal studies [196,197]; whereas [213Bi]-DOTATATE, investigated in
human small cell lung carcinoma and rat pancreatic tumor models, demonstrated a great therapeutic
effect in both small (50 mm3) and large (200 mm3) tumors, but with a higher probability for stable
disease in small tumors [198]. First, and, to date, the only clinical experience with [213Bi]-DOTATOC,
was published by Kratochwil et al., and included seven patients with advanced NETs with liver
metastases refractory to treatment with [90Y]-DOTATOC or [177Lu]-DOTATOC [199]. It demonstrated
specific tumor binding, lower toxicity than with β-irradiation and partial remission of metastases.
Two years after intra-arterial injection of [213Bi]-DOTATOC, all seven patients were still alive. Regarding
225Ac, a first-in-human study included 10 patients with progressive NETs after β-PRRT. As with 213Bi,
[225Ac]-DOTATOC was well tolerated and effective [200]. A recent study with [225Ac]-DOTATATE
confirmed the potential of these radiotracers as an additional, and valuable, treatment option for patients
who are refractory to [177Lu]-DOTATATE therapy. 32 patients with previous [177Lu]-DOTATATE
therapy were treated with [225Ac]-DOTATATE (100 kBq/kg body weight). The response was assessed
in 24 patients, with 9 stabilized diseases and 15 partial remissions [201].

Though not stricto sensu an α-emitter, lead-212 (T1/2 = 10.6 h) eventually decays to stable 208Pb
through a cascade chain with two α-emissions of potential therapeutic interest. A somatostatin
analog, DOTAMTATE (Figure 12), has been labeled with 212Pb and investigated in a murine model of
neuroendocrine tumor. Results showed a promising safety index with a 3.2-fold increase in median
survival and one-third of the animals being tumor-free. A combination with 5-FU (Fluorouracyl) was
able to durably cure approximately 80% of the animals. [202] Given these promising outcomes, a Phase
I dose-escalation clinical trial has recently been started with [212Pb]-DOTAMTATE (AlphaMedix™)
including 50 patients with unresectable or metastatic neuroendocrine tumors (NCT03466216).
Preliminary results (nine patients enrolled) demonstrated a favorable safety profile at the tested
doses [203].
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Cyclotron-produced astatine-211 (T1/2 = 7.2 h, Eα = 5.87 MeV) is another very promising
α-emitting radionuclide. Astatine is the heaviest halogen with a behavior somehow similar to
iodine, but, in certain circumstances, it also displays significant metallic characteristics [204]. Direct
astatination of somatostatin analogs is feasible, through tyrosine residues, but it led to poor stability
of the resulting analogs, therefore different prosthetic groups have been developed [205–207].
Although N-(3-[211At]astato-4-guanidinomethylbenzoyl)-Phe1-octreotate ([211At]-AGMBO) and
Nα-(1-deoxy-d-fructosyl)-Nε-(3-[211At]astatobenzoyl)-Lys0-octreotate ([211At]-GABLO) showed
disappointing biodistribution results, with poor tumor uptake, [211At]-SPC-octreotide displayed a
more favorable biodistribution profile, and a dose-dependent apoptosis in an NSCLC murine model.

Auger electron emitters are also very potent for specific tumor cell killing, sparing surrounding
cells, with a highly localized energy deposition. Indium-111 emits Auger electrons (EAe- = 19 keV,
16%), and, as such, has been investigated for therapy. Several clinical trials have been undertaken with
high doses of [111In]-Pentetreotide. A first study with 20 patients that had neuroendocrine progressive
tumors demonstrated stabilization of the disease in 5 patients, and tumor shrinkage in 5 others. All of
them had received a cumulated dose higher than 20 GBq [208]. In a study with 50 SSTR-positive
patients treated with cumulated doses from 20 to 160 GBq, of which 40 were evaluable, there was a
stabilization in 14 patients, minor remission in 6 and partial remission in 1, with mild bone marrow
toxicity [209]. However, half of the patients receiving more than 100 GBq developed a myelodysplastic
syndrome or leukemia. A dose of 100 GBq was thus considered the maximal tolerated activity. Another
study with 27 patients with GEP-NETs found that two doses of 6.6 GBq (180 mCi) were safe and
well-tolerated, demonstrating a clinical benefit in 62% of patients [210]. Benefit of 111In-Pentetreotide
treatment was shown to last at least 6 months for 70% of patients, while only 31% of them still had
sustained benefit after 18 months [211]. Efficacy in large tumors and end-stage patients is limited,
mainly because of heterogeneous radiopharmaceutical uptake due to poor tumor vascularity and
central necrosis [212]. This has been demonstrated by Capello et al. in a rat tumor model, with different
sizes of tumors [213]. Effects were much more pronounced in small (≤ 1 cm2) tumors than in large
(≥8 cm2). They also found a significant increase in tumor receptor density after tumor regrowth,
indicating repeated injections would probably be more efficient than single-dose treatment. It could
also be worth using PRRT with Auger emitters in an adjuvant setting after surgery, to destroy occult
metastases. A final example is [58mCo]-DOTATOC. This radiotracer presented for potential use in
Auger-based therapy, particularly for disseminated tumor cells and micrometastases, appears to have
more beneficial in vitro properties than those of [177Lu]-DOTATATE, with a significantly more efficient
cell killing effect per cumulated decay, which has to be confirmed in vivo [127].

4. Antagonists vs. Agonists

Pharmacomodulation around the synthetic somatostatin analogs has led to a change of chirality in the
first amino-acid (from d to l form) and in cysteine number 2 (from l to d form). These modifications have
given a new class of SSTR specific compounds with antagonist effects (Table 4). From a pharmacological
point of view, the biological and molecular mechanisms responsible for their targeting effectiveness
in vivo are completely different. After binding to an SST receptor, an agonist analog is internalized into
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the cell as a ligand-receptor complex. This internalization allows it to accumulate in the cell, and to
increase the amount of radiation emitted. This very powerful and specific internalization mechanism
enables efficient in vivo targeting of receptors. This phenomenon does not occur (or very little) for
somatostatin antagonists, and they do not stimulate the G-protein coupled to the SSTR with an associate
blockage of the agonist-induced activity. Surprisingly, it has been shown that targeting receptors
can also be effective without internalization of the ligand-receptor complex, and some antagonist
analogs can sometimes behave better than agonists (e.g., better accumulation in tumor, poor kidney
retention, and rapid clearance) [214,215]. This high tumor uptake appears to be a consequence of a
greater number of target binding sites for antagonists and a more slowly dissociation than for agonists,
which allows for a longer accumulation of radiation [216,217]. The hypothesis of a ligand rebinding
mechanism has been put forward, but this still requires some investigation before it can be validated.
These first results were confirmed by preclinical studies and by preliminary clinical trials and seems
to show superior results for antagonist-based tracers than agonists [218–221]. The first comparative
study of antagonists with Octreoscan® confirmed the good characteristics of the [111In]-DOTA-BASS
analog, and better accumulation at the level of the tumor and better visualization of metastases. It was
truly the first proof of the concept of antagonist SSTRs imaging [222].

Table 4. Main somatostatin antagonist analogs. Differences towards octreotide (OC) are highlighted
in red.

Antagonist Peptide Peptidic Sequence

Sst2-ANT (BASS) p-NO2-Phe1-cyclo(d-Cys2-Tyr3-d-Trp4-Lys5-Thr6-Cys7)d-Tyr8-NH2
LM3 p-Cl-Phe1-cyclo(d-Cys2-Tyr3-d-Aph4(Cbm)-Lys5-Thr6-Cys7)d-Tyr8-NH2
JR10 p-NO2-Phe1-cyclo(d-Cys2-Tyr3-d-Aph4(Cbm)-Lys5-Thr6-Cys7)d-Tyr8-NH2

JR11 (Satoreotide) p-Cl-Phe1-cyclo(d-Cys2-Aph3(Hor)-d-Aph4(Cbm)-Lys5-Thr6-Cys7)d-Tyr8-NH2

Concerning the affinity for each SSTR subtype, it turned out that the nature of the chelator and the
radiometal is of great importance for the in vivo pharmacokinetic fate (mainly for the tumor uptake and
retention time) [223]. Ultimately, copper-64 based radiotracers seem to be more interesting, especially
when comparing their contrast ratio between the tumor and normal tissues which increases over
time—a direct consequence of their higher half-life. The influence of radiometals (111In, 90Y, 177Lu,
64Cu, and 68Ga) and chelates (DOTA and NODAGA) on three antagonist families (LM3, JR10, and
JR11) were also studied. On the radiometric side, the overall affinity of [68Ga]-DOTA was found to be
much lower than for the other elements, which is the opposite of the results obtained with the agonists.
For the chelate, the substitution of DOTA by NODAGA seems to greatly improve the affinity of the
antagonist analogs. During this study, two particularly promising platforms emerged, DOTA-JR11 and
NODAGA-JR11 [224]. Another example highlighting the influence of the chelate is 406-040-15 (cyclo
(2–11) H-Cpa-DCys-Asn-Phe-Phe-DTrp-Lys-Thr-Phe-Thr-Cys-2NalNH2), a pansomatostatin analog,
with an SSTR3 antagonist behavior. Chelation to DOTA turned this analog to an agonist [225]. Note that
the first antagonist labeled via a [99mTc]-tricarbonyl core has been described. 99mTcL-sst2-ANT (with
L = tridentate ligand type N, S, N) has shown very promising in vivo behavior, but requires some
modifications to improve its pharmacokinetics [226].

As for imaging, antagonists are also an interesting alternative for therapy. As discussed above, the
first proof of the feasibility of imaging using antagonists was highlighted by comparing Octreoscan®

and [111In]-DOTA-BASS. However, this analog has shown only a very modest affinity for the SSTR2
receptor subtype targeted in the therapy of neuroendocrine tumors [214]. To overcome this problem,
the second generation of somatostatin antagonists was synthesized to improve affinity for this
receptor. DOTA-JR11 showed the highest affinity for SSTR2 and was selected for use in targeted
therapy [218]. A pilot study to assess the possibility of treatment with [177Lu]-DOTA-JR11, by
comparing it to [177Lu]-DOTATATE, was carried out. This new antagonist has shown favorable
properties, such as better accumulation in the tumor and a higher dose received by the tumor, thanks
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to a longer retention time [227]. Further developments led to a theranostic pair with JR11: one with
a NODAGA chelator (satoreotide trizoxetan, OPS-202) and one with DOTA chelator (satoreotide
tetraxetan, OPS-201) [228,229]. Satoreotide trizoxetan is currently radiolabeled with 68Ga and used in
PET imaging clinical trials (Figure 13) [230,231]. Satoreotide tetraxetan radiolabeled with 177Lu has
been evaluated in a therapeutic clinical trial [232]. First clinical results for this somatostatin antagonist
theranostic pair seem to be promising with high sensitivity for neuroendocrine tumors and require
further studies in larger patient population.Molecules 2020, 25, x FOR PEER REVIEW 23 of 37 
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Figure 13. Comparison between [68Ga]-OPS202 (A,B) and [68Ga]-DOTATOC (C,D) PET/CT images
of the same patient with ileal neuroendocrine tumours, showing bilobar liver metastases (from
Rangger et al. [233]).

5. Future Prospects

Regarding clinically established somatostatin analogs, the development of kit-based 68Ga
radiotracers, as well as cyclotron production of gallium-68 should improve their availability and
worldwide dissemination. Further clinical translation of 64Cu- and 18F-based somatostatin SSAs could
also represent an attractive alternative. For therapy, current research focuses on optimizing the dose
received by the tumor while sparing healthy tissues. Fractionation, as well as combination of 90Y and
177Lu, have demonstrated their interest [168,234]. The same approach with other treatment modalities,
such as external-beam radiotherapy or chemotherapy could enhance treatment response [235,236].
Targeted α-therapy also seems to hold promises and is currently attracting much interest, notably from
the industry.

Recent developments showed a switch from agonist to antagonist derivatives, demonstrating
higher efficacy. With the advent of new promising radionuclides and somatostatin analogs with better
pharmacokinetic properties and binding profiles, the future looks bright for radiolabeled somatostatin
analogs, expanding their use for wider indications, than just GEP-NETs. With peptide derivatives with
improved targeting, tumors with lower SSTR expression might nonetheless be clinically relevant. In this
context, as already demonstrated with some analogs, use of somatostatin-based radiopharmaceuticals
might be of interest in pulmonary or hepatic cancers, warranting further studies. The development
of bivalent radiotracers to target several receptors concomitantly expressed could be of interest to
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improve targeting [237]. Similarly, improved detection and sensitivity could be achieved using
bimodal agents [238]. Besides, the clinical success for radiolabeled somatostatin analogs both with
diagnostic and therapeutic radionuclides paved the way for new promising peptide derivatives,
such as bombesin, neurotensin, or CXCR4 ligands, and, in a similar way, PSMA ligands, for cancer
theranostics [49,233,239,240].

Author Contributions: All authors contributed to the writing of the manuscript. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was partly supported with a funding from Ligue Contre le Cancer (R.E.), a grant from Ligue
22 Contre le Cancer, and Labex IRON (grant no. ANR-11-LABX-0018).

Acknowledgments: The authors thank Sophie Laffont for providing the [68Ga]-DOTATOC and [177Lu]-DOTATATE
pictures.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Brazeau, P.; Vale, W.; Burgus, R.; Ling, N.; Butcher, M.; Rivier, J.; Guillemin, R. Hypothalamic polypeptide
that inhibits the secretion of immunoreactive pituitary growth hormone. Science 1973, 179, 77–79. [CrossRef]
[PubMed]

2. Patel, Y.C.; Greenwood, M.T.; Panetta, R.; Demchyshyn, L.; Niznik, H.; Srikant, C.B. The somatostatin
receptor family. Life Sci. 1995, 57, 1249–1265. [CrossRef]

3. Günther, T.; Tulipano, G.; Dournaud, P.; Bousquet, C.; Csaba, Z.; Kreienkamp, H.J.; Lupp, A.; Korbonits, M.;
Castaño, J.P.; Wester, H.J.; et al. International Union of Basic and Clinical Pharmacology. CV. Somatostatin
Receptors: Structure, Function, Ligands, and New Nomenclature. Pharmacol. Rev. 2018, 70, 763–835.
[CrossRef]

4. Patel, Y.C. Somatostatin and Its Receptor Family. Front. Neuroendocrinol. 1999, 20, 157–198. [CrossRef]
[PubMed]

5. Weckbecker, G.; Lewis, I.; Albert, R.; Schmid, H.A.; Hoyer, D.; Bruns, C. Opportunities in somatostatin
research: Biological, chemical and therapeutic aspects. Nat. Rev. Drug Discov. 2003, 2, 999–1017. [CrossRef]
[PubMed]

6. Abdel-Rahman, O.; Lamarca, A.; Valle, J.W.; Hubner, R.A. Somatostatin receptor expression in hepatocellular
carcinoma: Prognostic and therapeutic considerations. Endocr. Relat. Cancer 2014, 21, R485–R493. [CrossRef]

7. Pyronnet, S.; Bousquet, C.; Najib, S.; Azar, R.; Laklai, H.; Susini, C. Antitumor effects of somatostatin.
Mol. Cell. Endocrinol. 2008, 286, 230–237. [CrossRef]

8. Barbieri, F.; Bajetto, A.; Pattarozzi, A.; Gatti, M.; Würth, R.; Thellung, S.; Corsaro, A.; Villa, V.; Nizzari, M.;
Florio, T. Peptide receptor targeting in cancer: The somatostatin paradigm. Int. J. Pept. 2013, 2013, 926295.
[CrossRef]

9. Rai, U.; Thrimawithana, T.R.; Valery, C.; Young, S.A. Therapeutic uses of somatostatin and its analogues:
Current view and potential applications. Pharmacol. Ther. 2015, 152, 98–110. [CrossRef]

10. Reubi, J.C.; Schaer, J.C.; Laissue, J.A.; Waser, B. Somatostatin receptors and their subtypes in human tumors
and in peritumoral vessels. Metabolism 1996, 45, 39–41. [CrossRef]

11. Reubi, J.C.; Waser, B.; Schaer, J.C.; Laissue, J.A. Somatostatin receptor sst1-sst5 expression in normal and
neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur. J. Nucl. Med.
2001, 28, 836–846. [CrossRef] [PubMed]

12. Guillermet-Guibert, J.; Lahlou, H.; Pyronnet, S.; Bousquet, C.; Susini, C. Somatostatin receptors as tools for
diagnosis and therapy: Molecular aspects. Best Pract. Res. Clin. Gastroenterol. 2005, 19, 535551. [CrossRef]

13. Hasskarl, J.; Kaufmann, M.; Schmid, H.A. Somatostatin receptors in non-neuroendocrine malignancies:
The potential role of somatostatin analogs in solid tumors. Future Oncol. 2011, 7, 895–913. [CrossRef]

14. Gomes-Porras, M.; Cárdenas-Salas, J.; Álvarez-Escolá, C. Somatostatin Analogs in Clinical Practice: A Review.
Int. J. Mol. Sci. 2020, 21, 1682. [CrossRef]

15. Hejna, M.; Schmidinger, M.; Raderer, M. The clinical role of somatostatin analogues as antineoplastic agents:
Much ado about nothing? Ann. Oncol. 2002, 13, 653–668. [CrossRef]

http://dx.doi.org/10.1126/science.179.4068.77
http://www.ncbi.nlm.nih.gov/pubmed/4682131
http://dx.doi.org/10.1016/0024-3205(95)02082-T
http://dx.doi.org/10.1124/pr.117.015388
http://dx.doi.org/10.1006/frne.1999.0183
http://www.ncbi.nlm.nih.gov/pubmed/10433861
http://dx.doi.org/10.1038/nrd1255
http://www.ncbi.nlm.nih.gov/pubmed/14654798
http://dx.doi.org/10.1530/ERC-14-0389
http://dx.doi.org/10.1016/j.mce.2008.02.002
http://dx.doi.org/10.1155/2013/926295
http://dx.doi.org/10.1016/j.pharmthera.2015.05.007
http://dx.doi.org/10.1016/S0026-0495(96)90077-3
http://dx.doi.org/10.1007/s002590100541
http://www.ncbi.nlm.nih.gov/pubmed/11504080
http://dx.doi.org/10.1016/j.bpg.2005.03.007
http://dx.doi.org/10.2217/fon.11.66
http://dx.doi.org/10.3390/ijms21051682
http://dx.doi.org/10.1093/annonc/mdf142


Molecules 2020, 25, 4012 23 of 35

16. Keskin, O.; Yalcin, S. A review of the use of somatostatin analogs in oncology. OncoTargets Ther. 2013, 6,
471–483. [CrossRef]

17. Reubi, J.C. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr. Rev. 2003, 24,
389–427. [CrossRef]

18. Zhao, B.; Zhao, H.; Zhao, N.; Zhu, X.G. Cholangiocarcinoma cells express somatostatin receptor subtype 2
and respond to octreotide treatment. J. Hepatobiliary Pancreat. Surg. 2002, 9, 497–502. [CrossRef]

19. Bläker, M.; Schmitz, M.; Gocht, A.; Burghardt, S.; Schulz, M.; Bröring, D.C.; Pace, A.; Greten, H.; De Weerth, A.
Differential expression of somatostatin receptor subtypes in hepatocellular carcinomas. J. Hepatol. 2004, 41,
112–118. [CrossRef]

20. Reubi, J.C.; Waser, B. Concomitant expression of several peptide receptors in neuroendocrine tumours:
Molecular basis for in vivo multireceptor tumour targeting. Eur. J. Nucl. Med. Mol. Imaging 2003, 30, 781–793.
[CrossRef]

21. Reubi, J.C.; Zimmermann, A.; Jonas, S.; Waser, B.; Neuhaus, P.; Läderach, U.; Wiedenmann, B. Regulatory
peptide receptors in human hepatocellular carcinomas. Gut 1999, 45, 766–774. [CrossRef] [PubMed]

22. Reynaert, H.; Rombouts, K.; Vandermonde, A.; Urbain, D.; Kumar, U.; Bioulac-Sage, P.; Pinzani, M.;
Rosenbaum, J.; Geerts, A. Expression of somatostatin receptors in normal and cirrhotic human liver and in
hepatocellular carcinoma. Gut 2004, 53, 1180–1189. [CrossRef] [PubMed]

23. Nguyen-Khac, E.; Ollivier, I.; Aparicio, T.; Moullart, V.; Hugentobler, A.; Lebtahi, R.; Lobry, C.; Susini, C.;
Duhamel, C.; Hommel, S.; et al. Somatostatin receptor scintigraphy screening in advanced hepatocarcinoma:
A multi-center French study. Cancer Biol. Ther. 2009, 8, 2033–2039. [CrossRef] [PubMed]

24. Verhoef, C.; van Dekken, H.; Hofland, L.J.; Zondervan, P.E.; de Wilt, J.H.; van Marion, R.; de Man, R.A.;
IJzermans, J.N.; van Eijck, C.H. Somatostatin receptors in human hepatocellular carcinomas: Biological,
patient and tumor characteristics. Dig. Surg. 2008, 25, 21–26. [CrossRef] [PubMed]

25. Liu, H.L.; Huo, L.; Wang, L. Octreotide inhibits proliferation and induces apoptosis of hepatocellular
carcinoma cells. Acta Pharmacol. Sin. 2004, 25, 1380–1386.

26. Li, S.; Liu, Y.; Shen, Z. Characterization of somatostatin receptor 2 and 5 expression in operable hepatocellular
carcinomas. Hepatogastroenterology 2012, 59, 2054–2058. [CrossRef]

27. Liu, Y.; Jiang, L.; Mu, Y. Somatostatin receptor subtypes 2 and 5 are associated with better survival in operable
hepatitis B-related hepatocellular carcinoma following octreotide long-acting release treatment. Oncol. Lett.
2013, 6, 821–828. [CrossRef]

28. Huang, C.Z.; Huang, A.M.; Liu, J.F.; Wang, B.; Lin, K.C.; Ye, Y.B. Somatostatin Octapeptide Inhibits Cell
Invasion and Metastasis in Hepatocellular Carcinoma Through PEBP1. Cell Physiol. Biochem. 2018, 47,
2340–2349. [CrossRef]

29. Hua, Y.P.; Huang, J.F.; Liang, L.J.; Li, S.Q.; Lai, J.M.; Liang, H.Z. The study of inhibition effect of octreotide on
the growth of hepatocellular carcinoma xenografts in situ in nude mice. Chin. J. Surg. 2005, 43, 721–725.

30. Jia, W.D.; Xu, G.L.; Wang, W.; Wang, Z.H.; Li, J.S.; Ma, J.L.; Ren, W.H.; Ge, Y.S.; Yu, J.H.; Liu, W.B.
A somatostatin analogue, octreotide, inhibits the occurrence of second primary tumors and lung metastasis
after resection of hepatocellular carcinoma in mice. Tohoku J. Exp. Med. 2009, 218, 155160. [CrossRef]

31. Reynaert, H.; Colle, I. Treatment of Advanced Hepatocellular Carcinoma with Somatostatin Analogues:
A Review of the Literature. Int. J. Mol. Sci. 2019, 20, 4811. [CrossRef] [PubMed]

32. Kouroumalis, E.; Skordilis, P.; Thermos, K.; Vasilaki, A.; Moschandrea, J.; Manousos, O.N. Treatment of
hepatocellular carcinoma with octreotide: A randomised controlled study. Gut 1998, 42, 442–447. [CrossRef]
[PubMed]

33. Dimitroulopoulos, D.; Xinopoulos, D.; Tsamakidis, K.; Zisimopoulos, A.; Andriotis, E.; Panagiotakos, D.;
Fotopoulou, A.; Chrysohoou, C.; Bazinis, A.; Daskalopoulou, D.; et al. Long acting octreotide in the
treatment of advanced hepatocellular cancer and overexpression of somatostatin receptors: Randomized
placebo-controlled trial. World J. Gastroenterol. 2007, 13, 3164–3170. [CrossRef] [PubMed]

34. Becker, G.; Allgaier, H.P.; Olschewski, M.; Zähringer, A.; Blum, H.E.; HECTOR Study Group. Long-acting
octreotide versus placebo for treatment of advanced HCC: A randomized controlled double-blind study.
Hepatology 2007, 45, 9–15. [CrossRef]

http://dx.doi.org/10.2147/OTT.S39987
http://dx.doi.org/10.1210/er.2002-0007
http://dx.doi.org/10.1007/s005340200062
http://dx.doi.org/10.1016/j.jhep.2004.03.018
http://dx.doi.org/10.1007/s00259-003-1184-3
http://dx.doi.org/10.1136/gut.45.5.766
http://www.ncbi.nlm.nih.gov/pubmed/10517918
http://dx.doi.org/10.1136/gut.2003.036053
http://www.ncbi.nlm.nih.gov/pubmed/15247189
http://dx.doi.org/10.4161/cbt.8.21.9737
http://www.ncbi.nlm.nih.gov/pubmed/19738430
http://dx.doi.org/10.1159/000117819
http://www.ncbi.nlm.nih.gov/pubmed/18292657
http://dx.doi.org/10.5754/hge12357
http://dx.doi.org/10.3892/ol.2013.1435
http://dx.doi.org/10.1159/000491540
http://dx.doi.org/10.1620/tjem.218.155
http://dx.doi.org/10.3390/ijms20194811
http://www.ncbi.nlm.nih.gov/pubmed/31569719
http://dx.doi.org/10.1136/gut.42.3.442
http://www.ncbi.nlm.nih.gov/pubmed/9577356
http://dx.doi.org/10.3748/wjg.v13.i23.3164
http://www.ncbi.nlm.nih.gov/pubmed/17589893
http://dx.doi.org/10.1002/hep.21468


Molecules 2020, 25, 4012 24 of 35

35. Barbare, J.C.; Bouché, O.; Bonnetain, F.; Dahan, L.; Lombard-Bohas, C.; Faroux, R.; Raoul, J.L.; Cattan, S.;
Lemoine, A.; Blanc, J.F.; et al. Treatment of advanced hepatocellular carcinoma with long-acting octreotide:
A phase III multicenter, randomised, double blind placebo-controlled study. Eur. J. Cancer 2009, 45, 1788–1797.
[CrossRef]

36. Samonakis, D.N.; Notas, G.; Christodoulakis, N.; Kouroumalis, E.A. Mechanisms of action and resistance of
somatostatin analogues for the treatment of hepatocellular carcinoma: A message not well taken. Dig. Dis. Sci.
2008, 53, 2359–2365. [CrossRef]

37. Kaemmerer, D.; Schindler, R.; Mußbach, F.; Dahmen, U.; Altendorf-Hofmann, A.; Dirsch, O.; Sänger, J.;
Schulz, S.; Lupp, A. Somatostatin and CXCR4 chemokine receptor expression in hepatocellular and
cholangiocellular carcinomas: Tumor capillaries as promising targets. BMC Cancer 2017, 17, 896. [CrossRef]

38. Rinke, A.; Müller, H.H.; Schade-Brittinger, C.; Klose, K.J.; Barth, P.; Wied, M.; Mayer, C.; Aminossadati, B.;
Pape, U.F.; Bläker, M.; et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of
octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors:
A report from the PROMID study group. J. Clin. Oncol. 2009, 27, 4656–4663. [CrossRef]
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