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Wrench-feasible workspace and stiffness characteristics of
revolute and antiparallelogram tensegrity joints

Vimalesh Muralidharan

Abstract
This technical report details the derivation of the static models of two antagonistically actu-

ated joints: revolute (R) joint and antiparallelogram (X) joint. The wrench-feasible workspace
(WFW) and stiffness characteristics of these joints are studied with numerical examples. Based
on this study, several templates have been considered for the WFW for these joints. The na-
ture of joint stiffness in each of these templates is characterized in a case-wise manner. Finally,
a WFW template that is most suitable for designing these joints is identified.

1 Organization of the report

Two antagonistically actuated joints namely, the revolute joint or the R-joint and the antiparallelo-
gram joint, also referred to as the X-joint, are studied in this report. The analysis of the R-joint is
carried out in Section 2, and the X-joint in Section 3. The organization of each of these sections are
identical and are detailed in the following. Firstly, a generalized coordinate is identified to describe
the configuration of the joint, and all the dependent coordinates are obtained in terms of this co-
ordinate for further study. This is followed by static analysis of the joint, where the expression of
total potential energy is derived, followed by the equation of static equilibrium and stiffness. Based
on the study of numerical examples, several workspace templates have been proposed and their
respective stiffness behaviors are characterized in each case. Finally, the conclusion of this study is
presented in Section 4.

2 R-joint

A schematic of the R-joint is shown in Fig. 1. It consists of two congruent isosceles triangles, one on
top of another, connected by a revolute joint at point o. The joint is equipped with two identical
springs (spring constant, k) on either side to impart stiffness into the system. It is actuated by
two cables passing through the middle of the springs, by applying forces, F1 and F2, respectively.
Additionally, a point mass M is attached to the segment p1p2 at a distance d. The linear mass
density (i.e., mass per unit length) of the links is given by ρ.
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Figure 1: Schematic of the revolute joint.

The generalized coordinate that measures the orientation of the joint w.r.t. the vertical is given
by θr. The dependent coordinates l1 and l2 are expressed as a function of θr, for further use in the
upcoming sections. The following relations can be obtained using elementary geometric principles:

l1 = 2
(
h cos θr2 − r sin θr2

)
, l2 = 2

(
h cos θr2 + r sin θr2

)
. (1)

The derivatives of l1, l2 w.r.t. θr are:

dl1
dθr

= −
(
h sin θr2 + r cos θr2

)
,

dl2
dθr

=
(
−h sin θr2 + r cos θr2

)
; (2)

d2l1
dθ2r

= 1
2

(
−h cos θr2 + r sin θr2

)
,

d2l2
dθ2r

= −1
2

(
h cos θr2 + r sin θr2

)
. (3)

2.1 Limits of motion of the R-joint due to singularities

The direction of the applied forces F1 and F2 are not defined when l1 = 0 and l2 = 0, respectively.
Hence, it is not possible to control the manipulator in these configurations, and consequently, they
define the boundaries of the wrench-feasible workspace (when no limits are imposed on the forces
applied by the tendons) of the joint. This is illustrated in Fig. 2.

Cable-driven manipulators also suffer from force-closure singularities in addition to the singular-
ities observed in parallel manipulators. Force-closure singularities refer to the configurations where
the manipulator cannot withstand an arbitrary external wrench applied on one of the links, when
all the cables are in tension and locked. For the R-joint, such situations occur when the line of
action of force, l1 or l2 passes through the point o as illustrated in Fig. 3.

However, the limits of motion are defined by only one of these singularities, depending on the
ratio r

h
. From the Figs. 2 and 3, the following observations on the limits of motion can be made:
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(a) Singularity for the first cable (b) Singularity for the second cable

Figure 2: Limits of motion for the R-joint due to the vanishing of l1 and l2.

(a) Singularity for the second cable (b) Singularity for the first cable

Figure 3: Limits of motion for the R-joint due to force-closure singularity.
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• Case 1 (r > h): The limit of motion is formed by li = 0, i = 1, 2, leading to:
θr ∈ (−

(
π − 2 tan−1

(
r
h

))
,
(
π − 2 tan−1

(
r
h

))
.

• Case 2 (r < h): Occurrence of force-closure singularity limits the motion, leading to:
θr ∈

(
−2 tan−1

(
r
h

)
, 2 tan−1

(
r
h

))
• Case 3 (r = h): Limit of motion is formed by both li = 0, i = 1, 2 and force-closure singularity

simultaneously: θr ∈
(
−π

2 ,
π
2

)
. The amplitude of singularity free motion is maximum in this

case.

2.2 Static analysis of the R-joint

In this section, the equation of static equilibrium and stiffness of the R-joint are obtained using the
potential energy approach. The expression of total potential energy of the joint is obtained as the
sum of potential due to gravity (Ug), springs (Usp), and external forces applied by the tendons (Uf),
which are computed as follows:

• Gravitational potential: Setting the zero potential to be along the X axis, the potential due
to gravity is obtained as follows:

Ug = 2ρg
(
r +
√
r2 + h2

)
yc cos θr +Mg(d+ h) cos θr, (4)

where yc = h(2r+
√
r2+h2)

2(r+√r2+h2) is the distance of the center of mass (COM) of the moving triangle
from o. Substituting the expression of yc in Eq. (4), results in:

Ug = ρg
(
2r +

√
r2 + h2

)
cos θr +Mg(d+ h) cos θr. (5)

• Elastic potential due to springs: Assuming zero free-lengths for the springs, the spring poten-
tial may be computed as follows:

Usp = 1
2k
(
l21 + l22

)
= 2k

(
r2 + h2 −

(
r2 − h2

)
cos θr

)
. (6)

• Work potential due to tendons/cables: Potential due to actuation forces are computed as:

Uf = F1l1 + F2l2 = 2F1

(
h cos θr2 − r sin θr2

)
+ 2F2

(
h cos θr2 + r sin θr2

)
. (7)

Hence, the total potential energy of the R-joint is obtained to be:

Ur =Ug + Usp + Uf, (8)

Ur =ρgh
(
2r +

√
r2 + h2

)
cos θr +Mg(d+ h) cos θr + 2k

(
r2 + h2 −

(
r2 − h2

)
cos θr

)
+2F1

(
h cos θr2 − r sin θr2

)
+ 2F2

(
h cos θr2 + r sin θr2

)
. (9)
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Differentiation of the total potential (Ur) w.r.t. θr leads to the equation of static equilibrium, which
is of the form: Gr = Γr, where:

Gr = C sin θr, with C =
(
2k
(
r2 − h2

)
− g

(
M(d+ h) + hρ

(√
h2 + r2 + 2r

)))
, (10)

Γr = −F1
dl1
dθr
− F2

dl2
dθr

= F1

(
h sin θr2 + r cos θr2

)
+ F2

(
h sin θr2 − r cos θr2

)
. (11)

The symbol Gr represents the wrench due to gravity and the springs, while Γr represents the external
wrench that can be provided by the tendons. Using Eq. (2), it can be shown that the coefficients
of F1 and F2 are positive and negative, respectively, within the limits of motion in all the cases
listed in Section 2.1. This result is also intuitive from Fig. 1, as it is apparent that F1 applies an
anticlockwise moment, and F2 a clockwise moment on the joint, respectively.

Also, the forces provided by the cables are limited physically, leading to: F1, F2 ∈ [Fmin, Fmax].
Since the coefficient of F1 (resp. F2) in Γr is always positive (resp. negative), the maximal (resp.
minimal) boundary of the available wrench Γmax (resp. Γmin) is obtained when F1 = Fmax and
F2 = Fmin (resp. F1 = Fmin and F2 = Fmax). Considering these limits on Γr, it follows that the
equation of static equilibrium can be satisfied only when: Gr ∈ [Γmin,Γmax]. A numerical illustration
of the plot of wrench boundaries (Γmin,Γmax), and the curve Gr are shown in Fig. 4(a).

The expression of stiffness of the joint is obtained by considering the second derivative of the
total potential function w.r.t. θr as follows:

Kr = dGr

dθr
+ F1

d2l1
dθ2r

+ F2
d2l2
dθ2r

, (12)

Kr = C cos θr + 1
2F1

(
−h cos θr2 + r sin θr2

)
− 1

2F2

(
h cos θr2 + r sin θr2

)
. (13)

It is essential to account for the static equilibrium equation (Gr = Γr) also while evaluating the
stiffness of the joint at any orientation. Since the R-joint is redundantly actuated with two cables,
it is capable of exhibiting a range of stiffness values at a given orientation. As a numerical example,
the stiffness bounds for the joint parameters listed in Fig. 4(a), are shown in Fig. 4(b). The
corresponding forces values are also indicated on the boundaries. It is observed that on the lower
boundary of stiffness, at least one of the forces is equal to its allowed maximum of Fmax, which
shows that the actuation forces have a negative impact on the joint stiffness. A formal proof of this
observation is not presented in this report for want of space.

From Eqs. (10), (11), and (13), it is observed that replacing θr by (−θr) and interchanging F1

and F2, results in the same respective expressions. This implies that only F1 and F2 interchange
their roles, as the joint moves from the positive half of its workspace (θr > 0) to the negative
half (θr < 0), while the distribution of stiffness remains unaffected. This is a consequence of the
symmetry in the architecture as well as the actuation scheme of the joint (see Fig. 1). Thus,
studying just one half of the problem, say, θr ≥ 0 is sufficient to understand the behavior of the
joint throughout its workspace. It will be shown that (F1 ≥ F2) is necessary when

(
θr ∈

]
0, π2

[)
, if
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(b) Stiffness bounds

Figure 4: Wrench-feasible workspace (left) and stiffness bounds (right) for the R-joint.

the stiffness (Kr) is specified to be positive. Using this information, the templates for WFW will
be studied, subsequently.

2.3 Proof for (F1 ≥ F2) when Kr > 0 and θr ≥ 0

Since Kr must be positive for all admissible combinations of forces inside the WFW, it follows that
stiffness must also be positive when θr = 0, F1 = 0, F2 = 0. Substituting these values into the
expression in Eq. (13), leads to the condition: C > 0, which must be satisfied always. From the
expression of C in Eq. (10), this requires (r > h) to be satisfied.

The expressions in Eqs. (10), (11), and (13) can be rewritten in a simplified form as follows:

2Ccs− rF−c− hF+s = 0, (14)

Kr = C(c2 − s2) + 1
2rF

−s+ 1
2hF

+c > 0, (15)

where c = cos θr
2 , s = sin θr

2 , F
+ = F1 + F2, and F− = F1 − F2. Since it is known that the positive

half of WFW must be limited by
(
θr <

π
2

)
due to singularities, it is observed that (c > s). Solving

for F+ from Eq. (14) and substituting into the expression in Eq. (15), leads to the condition:

F− >
2Cs3

r
. (16)

Since it has been shown that C > 0 must be satisfied, it is clear from the above condition that F− >
0, or F1 > F2.

2.4 Templates for the WFW boundary of R-joint

This section aims at finding a suitable workspace template that can be used in a design process
when the stiffness is specified to be positive throughout the WFW. By studying several numerical
examples, three general cases were observed in the plot of Gr and bounds of Γr. These are shown
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Figure 5: Templates of WFW for R-joint.
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in Fig. 5. In templates 1 and 3, it is found that the WFW is bounded by the intersection of the
curves Gr and bounds of Γr. While, in template 2 the WFW is bounded by singularities (l1, l2 = 0).
In the latter situation, it is possible to reduce the limit of actuation forces (Fmax) till an intersection
happens between the curve Gr and the wrench boundary. Such a change would not affect the size
of WFW, but would increase the stiffness of the joint which is desirable. Thus, when a minimum
Fmax is required in the design process, WFW template 2 is not favorable.

From Fig. 5(c), it is found that the slope of Gr w.r.t. θr is negative at rest (i.e., when F1 = F2 =
0,Γr = 0). From Eq. (12), this implies that the stiffness is negative at rest and hence this template
is also unsuitable for the design process.

The issues pointed out with templates 2 and 3 are not present in template 1, where the positive
boundary of WFW is formed by the intersection of Gr with Γmax. Hence, it is regarded as the
most favorable choice in a design process aimed at minimizing the actuation forces, while ensuring
that the joint is able to reach the prescribed WFW with a minimum specified (positive) stiffness
throughout.

3 X-joint

Figure 6: Schematic of the X-joint.

The schematic of the X-joint is shown in Fig. 6. It contains three moving links 2, 3, 4 and one
fixed link 1. The top and bottom bars (1, 4) are of length b, while the crossed bars (2, 3) are of
length l. It is noted that the condition, l > b must be satisfied for the assembly of the joint. The
other parameters k, ρ,M, d, F1, F2 possess the same definitions as in the case of the R-joint (see
Section 2).
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The configuration of the X-joint is denoted by the orientation angle (θx) of the segment con-
necting the midpoints of the bars 1 and 4 w.r.t. the vertical (see Fig. 6). All the other dependent
coordinates can be expressed as a function of θx, using elementary geometric principles, as follows:

α = 2θx;

cosφ =

(
b cos2 θx − sin θx

√
l2 − b2 cos2 θx

)
l

; sinφ =

(
b sin θx +

√
l2 − b2 cos2 θx

)
l

;

cosψ = −

(
b cos2 θx + sin θx

√
l2 − b2 cos2 θx

)
l

; sinψ =

(
−b sin θx +

√
l2 − b2 cos2 θx

)
l

; (17)

l1 = −b sin θx +
√
l2 − b2 cos2 θx; l2 = b sin θx +

√
l2 − b2 cos2 θx.

Differentiation of l1 and l2 w.r.t. θx yields:

dl1
dθx

= b cos θx
(

b sin θx√
l2 − b2 cos2 θx

− 1
)

; dl2
dθx

= b cos θx
(

b sin θx√
l2 − b2 cos2 θx

+ 1
)
. (18)

Further differentiation w.r.t. θx results in:

d2l1
dθ2x

= b

(
bl2 cos 2θx − b3 cos4 θx

(l2 − b2 cos2 θx)3/2 + sin θx
)

; d2l2
dθ2x

= b

(
bl2 cos 2θx − b3 cos4 θx

(λ2 − b2 cos2 θx)3/2 − sin θx
)
. (19)

Unlike the R-joint, the motion of the X-joint is always limited by the occurrence of parallel singu-
larities at θx = ±π

2 , irrespective of the dimensions of the links.

3.1 Static analysis of the X-joint

The expression for total potential energy of the X-joint is obtained in a manner similar to that of
the R-joint, as:

Ux = − cos 2θx
(
b2k − dgM

)
+ (ρ(b+ l) +M)g cos θx

√
l2 − b2 cos2 θx + kl2 + F1l1 + F2l2. (20)

Differentiating the total potential energy w.r.t. θx leads to the equation of static equilibrium: Gx =
Γx, with:

Gx = C1 sin 2θx + C2 sin θx (2b2 cos2 θx − l2)
b
√
l2 − b2 cos2 θx

, where C1 = 2(b2k −Mgd), C2 = bg(M + ρ(b+ l)),

(21)

Γx = −F1
dl1
dθx
− F2

dl2
dθx

= F1b cos θx
(√

l2 − b2 cos2 θx − b sin θx√
l2 − b2 cos2 θx

)
− F2b cos θx

(√
l2 − b2 cos2 θx + b sin θx√

l2 − b2 cos2 θx

)
.

(22)

The symbols Gx and Γx possess the same physical meaning as in case of the R-joint. It can be shown
that the coefficient of F1 in the expression of Γx, is positive from the assembly condition l > b and
the following argument: b

√
l2

b2 − cos2 θx > b sin θx(= b
√

1− cos2 θx). Also, from Eq. (22), it is
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clear that the coefficient of F2 is negative. This shows that the upper bound of Γx is obtained
when F1 = Fmax, F2 = Fmin and the lower bound when F1 = Fmin, F2 = Fmax.

The expression of stiffness of the joint is obtained by computing the second derivative of the
total potential function w.r.t. θx as follows:

Kx =d(G− Γ)
dθx

= dG
dθx

+ F1
d2l1
dθ2x

+ F2
d2l2
dθ2x

=2C1 cos 2θx −
C2 cos θx

(
(l2 − b2 cos 2θx)2 − b2 (l2 − b2) cos 2θx

)
b (l2 − b2 cos2 θx)3/2

+bF1

(
bl2 cos 2θx − b3 cos4 θx

(l2 − b2 cos2 θx)3/2 + sin θx
)

+ bF2

(
bl2 cos 2θx − b3 cos4 θx

(λ2 − b2 cos2 θx)3/2 − sin θx
)
. (23)

Similar to that of R-joint, the X-joint also exhibits symmetry about θx = 0, in which F1 and F2

interchange their respective roles in the positive and negative halves of the WFW. Therefore, for
the X-joint also studying just the positive half of the WFW, θx ≥ 0 is sufficient. Additionally it is
recalled that (l > b) or (λ(= l

b
) > 1) is necessary for the assembly of the joint.

As in the case of R-joint, the WFW and the stiffness bounds for the X-joint are illustrated with
an examples in Fig. 7. From Fig, 7(a), it is observed that the WFW is formed by three disconnected
regions, θxm ∈ [−θxm, θxm] and two smaller isolated regions near the flat singularities (θx = ±π

2 ).
A “jump” from one region to another could be possible with a suitable dynamic trajectory might
be possible, but those isolated regions are very small and are associated with unstable equilibrium
configurations or negative stiffness. Thus, only the central portion would be considered as the
WFW of this manipulator, in further study. The stiffness bounds are plotted for θx ∈ [−θxm, θxm]
in Fig. 7(b). Contrary to the observation made for R-joint, the effect of forces on stiffness turns out
to be positive for the X-joint.
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(b) Stiffness bounds

Figure 7: Wrench-feasible workspace (left) and stiffness bounds (right) for the X-joint.
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3.2 Proof for (F1 ≥ F2) when Kx > 0 and θx ≥ 0

The equilibrium equation and the stiffness expression can be rewritten as follows:

bcsF+
√
λ2 − c2

− bcF− + C2s (2c2 − λ2)√
λ2 − c2

+ 2csC1 = 0, (24)

Kx = −bF
+ (c4 − c2λ2 + λ2s2)

(λ2 − c2)3/2 + bsF− + 2C1
(
c2 − s2

)

−
C2c

(
(−c2 + λ2 + s2)2 − (λ2 − 1) (c2 − s2)

)
(λ2 − c2)3/2 > 0. (25)

where F+ = (F1 +F2), F− = (F1−F2). In the context of X-joint, the substitutions: c = cos θx, s =
sin θx and λ = l

b
, have been carried out to simplify the expressions. Solving for C1 from Eq. (24)

and substituting into the expression of stiffness in Eq. (25), results1 in:

bc2

s
F− − bc2s2

(λ2 − c2)3/2F
+ − λ4s2

c (λ2 − c2)3/2C2 > 0. (26)

Since it is known that C2 > 0 (by definition in Eq. (21)) and F+ > 0, it is observed that the second
and third terms in Eq. (26) are both negative. On the other hand, the coefficient of F− is found to
be positive. Thus, in order to ensure that the left hand side (LHS) of Eq. (26) remains positive, F−

must necessarily be positive. In other words, when the stiffness is specified to be positive, it is
necessary that F1 > F2 for the X-joint when θx > 0.

3.3 Templates for the WFW boundary of X-joint

This section aims at finding a suitable workspace template for the X-joint to be used in its design
process. As in the case of R-joint, the stiffness is considered to be positive throughout the WFW.
By studying several numerical examples, three general templates are found for the plot of Gx and
bounds of Γx. These are shown in Fig. 8. In templates 2 and 3, the positive boundary of WFW
is formed by the intersection of Gx with Γmin, where F2 > F1. But, from Section 3.2, it is known
that F1 > F2 is necessary to ensure a positive stiffness in the right half of the WFW. Thus, it
is clear that the stiffness would be negative at some parts of the WFW in templates 2 and 3,
which makes them unfavorable for the design process. On the other hand, the central portion of
WFW in template 1 is free from the issue of negative stiffness and is hence deemed suitable for the
design process. In summary, for the X-joint the positive boundary of WFW must be formed by the
intersection of Gx with Γmax for the stiffness to be positive throughout the WFW.

1Alternatively, it is possible to eliminate F + using Eq. (24), as in the case of R-joint. But, one must account for
the condition: F + ≥ 0 along with the inequality from stiffness. This turned out to be difficult to handle, algebraically.
On the other hand, since there are no constraints on the sign of C1 (see Eq. (21)), its elimination does not add any
conditions other than the one from stiffness.
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Figure 8: Templates of WFW for X-joint.
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4 Conclusion

The static analysis of two antagonistically actuated joints with a point mass payload has been
conducted in this study: the revolute (R) joint and the antiparallelogram (X) joint. For the R-
joint, it is observed that the effect of applied forces on stiffness is negative. On the contrary, for the
X-joint the effect of applied forces on stiffness is positive. For both the joints, it is found that the
positive boundary of the wrench-feasible workspace (WFW) must be formed by the intersection of
wrench due to internal potential (spring and gravity) and the upper bound of applied wrench, for
the stiffness to be positive throughout the WFW and the actuation forces to be as low as possible.
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