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(Manuscript received and in final form 15 March 2005)

1. Introduction

The dramatic increase in computer power over the
last decades has not fulfilled the ever-increasing needs
of the climate and weather sciences. Improving the ef-
ficiency of numerical models is still topical. In their
paper “New approach to calculation of atmospheric
model physics: Accurate and fast neural network emu-
lation of longwave radiation in a climate model,” Kras-
nopolsky et al. (2005, hereafter KFCO05) develop the
idea that artificial neural networks could accelerate
model physics components in an atmospheric general
circulation model (AGCM). As a first step, they apply
it to the computation of longwave (LW) cooling rates
and fluxes, which usually represent the main computa-
tional burden in an AGCM. KFCO05 quote the studies
previously performed at Laboratoire de Météorologie
Dynamique and at the European Centre for Medium-
Range Weather Forecasts (ECMWF) (Chéruy et al.
1996; Chevallier et al. 1998, 2000b; Chevallier and Mah-
fouf 2001). While referring to these earlier works is fair,
KFCO05 hardly discuss how their “new” method differs
from the previous one, nor how the conclusions dis-
agree. I wish to make such a discussion in the present
note, as a complement to the KFCO5 paper. The fol-
lowing sections successively tackle the method and the
prospects.

2. Method

An AGCM LW radiation model basically computes
LW surface net fluxes F; and vertical profiles of LW
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cooling rates C,. Fluxes and cooling rates are functions
of surface variables S, of the profiles of atmospheric
temperature T, and of atmospheric compounds A; T
and A depend on the pressure discretization P. Cooling
rates in the vertical are proportional to the partial de-
rivative of net fluxes as a function of atmospheric pres-
sure:

aF (P)
P

C(P) ~ (1)
Among the variables representing the atmospheric
compounds A, one can make the distinction between
cloud variables C and the other ones V, which mainly
describe gas profiles, the former having usually more
subgrid-scale variability than the latter. In the approach
of Washington and Williamson (1977), used in several
LW radiation codes (e.g., Morcrette 1991), a separation
of variables is assumed between C and V in the expres-
sion of the fluxes:

FS,T,V,C) = X a(OF(S,T,V), ()

where the sum is over the discretized atmospheric lay-
ers between the surface and the top of the atmosphere.
Chevallier et al. (1998, 2000b) introduced neural net-
works N; to replace (or “emulate” in the words of
KFCO05) the F;’s and call the result “NeuroFlux”:

FS,T,V,0) = X a(ON(S,T,V).  (3)

KFCO05 suggest to replace (or emulate) the whole func-
tion C(S, T, V, C) by a single neural network N:

C(S, T,V,C)= NS, T, V,C). (4)

Equation (3) allows one to speed up the radiation com-
putation by sevenfold (Chevallier et al. 2000b). KFC05
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take advantage of the singleness of the neural network
involved and demonstrate 50 to 80 times faster comput-
ing times.

The claim of novelty made by KFCO5 is mainly based
on the inclusion of cloud variables C in the neural net-
work. The reader is free to approve it or not. One of the
questions / wish to answer here is why my former co-
authors and myself did choose the more complicated
formulation (3) rather than the straightforward Eq. (4).
The simulation of all-sky fluxes from the Morcrette
(1991) radiation model with a single neural network
actually showed poor accuracy (Chevallier 1994). My
analysis of this preliminary result is twofold. First the
performance of a neural network is tightly linked with
the statistical properties of its training dataset. Ideally a
neural network in an AGCM should process seldom
input configurations and frequent ones with the same
quality. Strategies have to be implemented to even out
the probability distribution functions of the variables in
the training dataset (Chevallier et al. 2000a), even
though KFCO05 do not mention this issue. In practice,
since atmospheric variables are coupled to each other
in a nonlinear way, a training dataset is a compromise,
which is all the more difficult to find when the number
of variables is increased. In this respect, the variable
separation (3) is advantageous. A more fundamental
problem may also explain the failure of that prelimi-
nary test. There always exists a neural network that can
simulate any continuous function over a given compact
interval at any desired accuracy (Cybenko 1989). Now,
subgrid-scale cloudiness may not be properly treated by
continuous functions. In the case of the maximum-
random overlap scheme Morcrette (1991), a series of
condition tests is used, the simulation of which may be
poor with neural networks. Consequently, the success
of KFCOS in dealing with the problem may be due to a
better neural network technique (type of network,
choice of architecture, quality of the training dataset,
implementation skill) than the previous studies, and/or
a more continuous radiation scheme to simulate.
KFCO05 do not give any clue about this matter. Note
that the latter reason would considerably limit the pros-
pects of the method.

3. Prospects

In addition to the discontinuities in the modeling of
subgrid-scale processes, important issues have raised
skepticism about the use of neural networks for the
modeling of the atmosphere. It is important to recall
them in order to define the range of possible neural
network applications.

The validity domain of a trained neural network is
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usually the first topic to be raised. Faster parameteriza-
tions allow easier simulations of the atmosphere in par-
ticular and of the earth system in general over long time
scales. Over such scales the climate may differ from the
conditions of the present day. The corresponding evo-
lution of the neural network errors is a matter of con-
cern. Indeed the interpretation of a climate simulation
requires the distinction of the real climate signals from
the numerical artifacts.

The flexibility of a trained neural network is another
major problem for further development of the ap-
proach. The development of observation campaigns
and the inclusion of more processes in the models ever
increase the list of inputs to an AGCM parameteriza-
tion block. For LW radiation, one tends to make aero-
sols and minor gases interactive with the rest of the
AGCM. The inclusion of new atmospheric compounds
is all the more complicated now that the code is less
physically (i.e., more statistically) based. As an ex-
ample, to introduce a new aerosol type in the LW ra-
diation computation, a simple extension of existing ar-
rays is needed in the code of Morcrette (1991), whereas
a redefinition of the training datasets and of the neural
network architecture is required in the NeuroFlux ap-
proach. This argument also applies to any change in the
vertical resolution. For instance the ECMWF vertical
grid has been changed twice since 1999 and another
refinement is being prepared.

Further to several studies that highlighted undesir-
able features in the neural network Jacobians (Aires et
al. 1999; Chevallier and Mahfouf 2001), the accuracy of
the derivatives usually comes third in the critics. Indeed
sensitivity studies like those with ensemble simulations
(e.g., Stainforth et al. 2005) form another major appli-
cation for faster parameterizations. In the case of small
perturbations, such studies critically depend on the ac-
curacy of the AGCM Jacobians. Satisfactory accuracy
for the neural network Jacobians can actually be ob-
tained with larger neural networks (i.e., more neurons
on the hidden layers), which complicates the training
and penalizes the computing time. Demonstrating a
useful trade-off is a subject for future research.

These issues are mentioned in KFCO5, but they are
not addressed. They show research directions where
new developments are needed. In comparison, the
question of which variables have to be inputs to the
neural networks is of lesser importance.

4. Conclusions

There exist specific applications for which neural net-
works can usefully simulate environmental processes.
For instance, the neural-network-based longwave ra-
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diation scheme NeuroFlux is operationally used in the
ECMWEF data assimilation system, where Janiskova et
al. (2002) could demonstrate that its advantages exceed
its drawbacks. Krasnopolsky et al. (2002) present an-
other successful application, in the field of ocean mod-
eling. However, the limitations that my former coau-
thors and myself found for AGCM modeling are still
topical and indicate directions for future research. Like
any other parameterization technique, the relevance of
neural networks needs to be regularly reevaluated with
respect to the particular computational and scientific
contexts where they are developed and used.
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