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I EXECUTIVE SUMMARY 

I.1 Products covered by this document 

This document presents approaches and tools used to produce and validate the Global Ocean Surface 
Carbon Product MULTIOBS_GLO_BIO_CARBON_SURFACE_REP_015_008. 

Short Description Product code Area Delivery Time 

Surface Carbon MULTIOBS_GLO_BIO_CARBON_SURFACE_REP_015_008 Global Yearly 

The product provides surface ocean partial pressure of carbon dioxide, surface ocean downward mass 
flux of carbon dioxide expressed as carbon (positive for flux into the ocean) and surface pH on a regular 
grid (1°x1°) with a monthly resolution from 1985 onward. 

 

I.1 Summary of the results  

Surface ocean partial pressure of carbon dioxide (spco2) is obtained from an ensemble of feed forward 
neural networks (FFNNs) which is referred to as CMEMS-LSCE-FFNNv2 (Chau et al., 2021). The models 
were trained on 100 subsampled datasets from the Surface Ocean CO2 Atlas (SOCAT) 
(https://www.socat.info/). Like the original data, subsamples are distributed after interpolation on 1° by 
1° grid cells along ship tracks. Sea surface salinity, temperature, sea surface height, mixed layer depth, 
atmospheric CO2 mole fraction, chlorophyll, spco2 climatology, latitude and longitude are used as 
predictors. 

The CMEMS-LSCE-FFNNv2 approach follows a leave-p-out cross-validation (p spco2 observations 
corresponding to the month of reconstruction are excluded from the training data), allowing the quality 
of the reconstruction to be assessed against independent SOCAT data. At the global scale and over the 
full period of reconstruction (1985-2020), the root-mean-square difference (RMSD) is ~2.13 Pa, the 
mean absolute difference (MAD) is 1.28 Pa and the coefficient of determination (r2) is 0.76. CMEMS-
LSCE-FFNNv2 quantifies spatial and temporal model uncertainties in terms of standard deviations of the 
100-member ensembles. 

The SOCAT database is an extensive compilation of surface carbon observations. The period covered by 
the reconstruction corresponds to a percentage larger than 85% of that data set. As shown in Figure 2, 
the spatial distribution of observations is, however, very heterogeneous and the data density remains 
poor over large areas of the global ocean (e.g., large areas of the Pacific Ocean, Indian Ocean) or 
seasonally biased (high latitudes). The approach ensures an optimal usage of available data but remains 
sensitive to data density.  

 

Surface ocean downward mass flux of carbon dioxide expressed as carbon (fgco2) was estimated using 

the gas exchange formulation fgco2=-kρL(1−fsea ice)(spco2−pCO2atm), where k is the piston velocity, ρ 

is the seawater density, L is the temperature-dependent solubility of CO2 and fsea ice 
 is the sea ice fraction.  

The global ocean CO2 sink corresponds to the global integral of fgco2 over space and time. In 2020 [resp. 

2019], the global ocean CO2 sink was 2.75±0.15 [resp. 2.63±0.12] PgC/yr (Figure 1).  The number behind 

https://www.socat.info/
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the ± sign corresponds to the standard deviation (σ) computed from the ensemble and it is thus an 

estimate of the uncertainty associated with the reconstruction. The average over the full period 1985-

2020 is 1.62±0.12 PgC/yr (including 0.15±0.01 PgC/yr of the coastal uptake) with an interannual 

variability (temporal standard deviation) of 0.48 PgC/yr. Taking into account the total ocean area of 

361,900,000 km2 and the outgassing of river carbon of 0.78 PgC/yr yields an anthropogenic carbon 

uptake by the ocean of 3.65±0.15 PgC/yr [3.51±0.13 PgC/yr] for 2020 [2019], and 2.46±0.15 PgC/yr 

averaged over the years 1985-2020. Our data-based estimates of the anthropogenic fluxes are above 

the estimates in Global Carbon Budget 2020 (GCB2020) by Friedlingstein et al. (2020) (see Table 5). The 

assessment in GCB2020, however, pointed out that the models might underestimate the global ocean 

CO2 sink. In Hauck et al. 2020, the authors also suggested that further studies are needed to understand 

the model-data mismatch and to improve the riverine carbon inputs. 

Surface ocean pH on total scale (ph) was computed from spco2 and reconstructed surface ocean 
alkalinity using the CO2sys speciation software (Van Heuven et al., 2011; Lewis and Wallace, 1998). Time 
and space varying alkalinity fields were obtained from a multivariate linear regression with salinity, 
temperature, dissolved silica and nitrate (Table 2) as independent variables. pH decreases in response 
to the uptake of CO2 by the ocean. The rate of decrease computed over the period of reconstruction is 
0.0016 pH units (Figure 1).  The global RMSD between pH from GLODAPv2.2021 bottle data and the 
reconstructed pH over the period 1985-2020 is 0.0348 pH units and the r2 values is 0.5730. 
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Figure 1. Top: area integrated yearly surface downward flux of total CO2 for the period from 1985 onward 
(GLOBAL_OMI_HEALTH_CARBON_co2_flux_integrated product). Bottom: yearly mean surface pH reported on total scale 
(GLOBAL_OMI_HEALTH_CARBON_ph_area_averaged CMEMS product). The uncertainty envelop is defined as the 68% 
confidence interval (estimate ± uncertainty) of yearly means. The trend and its variation are computed as the mean and 
standard deviation of the differences between consecutive estimates. 
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I.2 Estimated Accuracy Numbers 

The quality of the reconstruction is assessed against independent SOCAT data in a leave-p-out cross-
validation where p spco2 observations corresponding to a given month of reconstruction have been 
excluded from the training data. A ratio of 2:1 for training and validating is used. At the global scale and 
over the full period of reconstruction (1985-2020), the main statistics are reported in the following table. 

For pH, the statistics are with respect to the independent GLODAPv2.2021 bottle data over the period 
1985-2020 (https://www.glodap.info/index.php/merged-and-adjusted-data-product-v22021/). 

 

Table 1: Estimated skill over the global, open, and coastal oceans (see section III for definitions). 

Variable 
Metrics 

Units 
MAD RMSD r2 

spco2 

global 1.28 2.13 0.76 

Pa open 1.15 1.86 0.77 

coastal 2.41 3.72 0.70 

ph 

global 0.0193 0.0348 0.5730 
pH total 

scale 
open 0.0173 0.0296 0.6061 

coastal 0.0531 0.0836 0.4045 
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II PRODUCTION SYSTEM DESCRIPTION 

Production centres name: Laboratoire des Sciences du Climat et de l’Environnement (LSCE) (MULTIOBS-
LSCE-GIF-FR) 

II.1 Production system name:  CMEMS-LSCE-FFNNv2Origin of input fields 

Table 2: Details of input fields  

Reconstruction of surface ocean CO2 partial pressure 

Target data: surface ocean CO2 partial pressure. 

Measurements of 
CO2 fugacity 

Bakker et al., 
2016 

SOCATv2021: https://www.socat.info/ (last access 16/06/2021) 

Predictor data 

Sea surface 
temperature 

CMEMS 
CMEMS 

MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012 (1993-2020)  
SST_GLO_SST_L4_REP_OBSERVATIONS_010_011 (1985-1992) 

Sea surface 
salinity 

CMEMS 
 

MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012 (1993-2020) 

Climatology (1985-1992) computed from 
MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012 (1993-2020) 

Sea surface height  CMEMS 
 

MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012 (1993-2020) 

Climatology plus linear trend (1985-1992) computed from 
MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012 (1993-2020) 

Mixed layer depth Menemenlis 
et al., 2008 

ECCO2: “Estimating the Circulation and Climate of the Ocean” project Phase II (1992-
2020) 
Climatology (1985-1991) computed from ECCO2 (1992-1997) 

Chlorophyll GlobColour, 
available from 
CMEMS 

http://www.globcolour.info/products_description.html (1998-2020) 

Climatology computed from GlobColour (1985-1997) 

Atmospheric CO2 
mole fraction 

Chevallier et 
al. 2005, 2010; 
Chevallier, 
2013  

CO2 atmospheric inversion from the Copernicus Atmosphere Monitoring Service 

(https://atmosphere.copernicus.eu/) 

spco2 climatology Takahashi et 
al. (2009) 

LDEO spco2 climatology 

https://www.pmel.noaa.gov/co2/story/LDEO+Surface+Ocean+CO2+Climatology 

 

Reconstruction of surface ocean downward mass flux of CO2 

6-hourly wind 
speed 

ERA5 https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 
 

Atmospheric CO2 
mole fraction 

Chevallier et 
al. 2005, 2010; 
Chevallier, 
2013 

CO2 atmospheric inversion from the Copernicus Atmosphere Monitoring Service 

(https://atmosphere.copernicus.eu/) 

 

Total pressure ERA5 https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 

Sea ice fraction CMEMS SST_GLO_SST_L4_REP_OBSERVATIONS_010_011 
SST_GLO_SST_L4_NRT_OBSERVATIONS_010_001 

 

https://www.socat.info/
https://atmosphere.copernicus.eu/
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://atmosphere.copernicus.eu/
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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Reconstruction of surface ocean pH on total scale 

Nitrate, dissolved 
silica 

World Ocean 
Atlas v2 2018 

https://www.ncei.noaa.gov/data/oceans/woa/WOA18/ 

pH (validation 
data) 

GLODAPv2.20
21 bottle data 
(Lauvset et al 
2021) 

https://www.glodap.info/index.php/merged-and-adjusted-data-product-v22021/ 

 

 

In addition to the predictors listed in this table, latitude and longitude are also used as predictors for the 
reconstruction of surface ocean pCO2. 

 

 

Figure 2 Distribution of SOCAT v2021 – ship traces for the period Jan 1985-Dec 2020 (Bakker et al., 2016). Monthly data on 

1⁰x1⁰ regular grid. 
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II.2 Description of system 

(a) Reconstruction of surface ocean carbon dioxide partial pressure 

Central to the production process is the reconstruction of surface ocean carbon dioxide partial pressure 
(spco2) by a Feed Forward Neural Network (FFNN) model following an ensemble-based approach (Chau 
et al. 2021). Taking advantage of the Surface Ocean CO2 Atlas (SOCAT) (Bakker et al., 2016), the 
ensemble-based FFNN approach is used to reconstruct the global distribution of spco2 with a monthly 
resolution over the global 1°×1°-gridded surface ocean. FFNN models were fitted on 100 datasets sub-
sampled randomly from the drivers and SOCAT data with a ratio of 2:1 for training and validating. The 
model is sensitive to the observational coverage. This limitation is partly overcome by the FFNN 
approach as the reconstruction of monthly global ocean distributions draws on a larger data set such 
that FFNN outputs remain close to realistic values. The approach further uses observations in a 3-month 
gliding window centered on the month of reconstruction. Note that the data from the month of 
reconstruction is excluded from the training data in order to reduce model overfitting. The new network 
was developed at the Laboratoire des Sciences du Climat et de l’Environnement (LSCE) and validated as 
an improvement of LSCE-FFNN-v1 (Denvil-Sommer et al. 2019). The model outputs are part of the 
Copernicus Marine Environment Monitoring Service (CMEMS). It is hence referred to  CMEMS-LSCE-
FFNNv2. 

The means (μ) and standard deviations (σ) are computed from the 100-member ensembles for each of 
the three variables contributing to the global carbon product. The standard deviation stands for the 
associated model uncertainty. In this report, the notation μ±σ expresses an estimate of the surface 
ocean partial pressure of CO2 (as well as surface ocean downward mass flux of CO2 or pH) along with its 
relative uncertainty.  In cases of the uncertainty reported for the spatial mean and/or temporal mean of 
carbon variables, spatial and temporal decorrelation length scales are used to reduce the bias in variance 
estimates of the mean quantities. 

 

(b) Reconstruction of surface ocean downward mass flux of carbon dioxide expressed as carbon  

The surface ocean downward mass flux of CO2 is computed from the gas exchange formulation fgco2=-
kρL(1−fsea ice)(spco2−pCO2atm)  

where k is the piston velocity, ρ the seawater density, L is the temperature-dependent solubility of CO2 

(Weiss, 1974) and fsea ice is the sea ice fraction. The piston velocity is estimated after Wanninkhof (2014) 
with wind speed computed from 6-hourly ERA5 wind speed and the sea ice fraction extracted from 
OSTIA data.   spco2 corresponds to the surface ocean pCO2, reconstructed by the neural network  
CMEMS-LSCE-FFNNv2 model and pCO2

atm was derived from the atmospheric CO2 mixing ratio fields 
provided by the CAMS inversion (Chevallier et al. 2005, 2010; Chevallier 2013). 

The uncertainty of the surface downward mass flux is quantified after applying the gas exchange formula 
to the difference between the 100-member ensemble of monthly spco2 estimates and the 
corresponding atmospheric pCO2 values.  

 

(c) Reconstruction of surface ocean pH  

Surface ocean pH is calculated from reconstructed spco2 and alkalinity using the speciation software 
CO2sys (Van Heuven et al., 2011; Lewis and Wallace, 1998). Time and space varying surface ocean 
alkalinity fields are obtained from the multivariate linear regression model LIAR (Carter et al., 2016; 

http://www.bgc-jena.mpg.de/CarboScope/%22HYPERLINK%20http:/www.bgc-jena.mpg.de/CarboScope/
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2018) as a function of sea surface temperature and salinity, as well as climatogical nitrate and dissolved 
silica from World Ocean Atlas v2018 (https://www.ncei.noaa.gov/data/oceans/woa/WOA18/). 
Uncertainties of input fields are taken as constant in time but spatially variable. For temperature and 
salinity, the uncertainty is defined as the RMSD between the products and observations, and for the 
nitrate and dissolved Si climatologies the uncertainties are defined as 15% of the values (see 
https://archimer.ifremer.fr/doc/00651/76336/77327.pdf). 

Total uncertainty of the monthly output fields (σtot, m) is evaluated by taking into account empirical 

variances of two sources: model randomness (σran, m) and systematic errors (σsys, m): 

σtot, m
2 = σran, m

2 + σsys, m
2 

The first uncertainty represents the dispersion of the pH field computed from 100 ensemble members 

of the reconstructed spco2, and the latter is assessed through uncertainty propagation following Orr et 

al. (2018) and the speciation software CO2sys (Lewis and Wallace, 1998; Van Heuven et al., 2011). Inputs 

to the uncertainty propagation routine are default values for dissociation constants, measurement 

errors, uncertainty estimates for alkalinity fields from LIAR (Carter et al., 2016; 2018), and reconstruction 

errors between of spco2 estimates from the  CMEMS-LSCE-FFNNv2 approach and SOCAT observations. 

https://archimer.ifremer.fr/doc/00651/76336/77327.pdf
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III VALIDATION FRAMEWORK 

III.1 spco2 reconstruction 

Only two thirds of the SOCAT target data are used for the training algorithm, leaving one third for model 
validation. The models are trained separately for each month, resulting in adaptive models with a 
common architecture but trained on different data. To increase the amount of data available for 
training, the models are trained using as target data from a 3-month moving window of the entire period 
from 1985 onward but excluding the reconstructed month.  

Model output is assessed on the independent SOCAT data and collocated reconstructed data. A leave-
p-out cross-validation approach is applied (where p is the amount of data in the month considered for 
reconstruction) and 100 random subsamples of independent data are drawn from the SOCAT dataset. 
The network was run on each subsample. From these 100 results the mean was chosen as an estimate 
of monthly spco2 per grid cell. 

All metrics are computed over the full reconstruction period and the sub-period (2001-2016) for the 
comparison with the LSCE-FFNN-v1 (see section VI). The assessment is broken down into the regions 
defined after Gurney et al. (2008) with modification from Landschützer et al. (2014) (Table 13 and Figure 
3). Reconstructed data along the coast are evaluated within the coastal zones defined from the MARgins 
and CATchments Segmentation (MARCATS; Laruelle at al. 2013) and collocated on the 1°x1° SOCAT grid. 

 

III.2 fgco2 reconstruction 

There is no independent data for validating fgco2.  CMEMS-LSCE-FFNNv2 estimates of air–sea CO2 fluxes 
are assessed by comparison to published estimates derived from an ensemble of global ocean 
biogeochemical models (GOBMs) used in the Global Carbon Project (GCP, Friedlingstein et al., 2020). 
Note that in order to obtain estimates for the anthropogenic fluxes the data-based estimates need to 
be corrected for the preindustrial outgassing of riverine carbon input (0.78 PgC/yr, Resplandy et al., 
2018).  

 

 
Figure 3. Map of the Ocean Inversion regions (Gurney et al. 2008, modified by Landschützer et al., 2014) used for model 
assessment. The coastal mask (grey) is defined with the MARgins and CATchments Segmentation (MARCATS; Laruelle et 
al, 2013) collocated on 1°x1° SOCAT grid. 
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Number Name 

1 Arctic 

2 Subpolar Atlantic 

3 Subpolar Pacific 

4 Subtropical Atlantic 

5 Subtropical Pacific 

6 Equatorial Atlantic 

7 Equatorial Pacific 

8 South Atlantic 

9 South Pacific  

10 Indian Ocean 

11 Southern Ocean 

Table 3: Ocean Inversion regions (Gurney et al. 2008, modified by Landschützer et al., 2014) 

III.3 Surface ocean pH reconstruction 

The pH from GLODAPv2.2021 bottle data (https://www.glodap.info/index.php/merged-and-adjusted-
data-product-v22021/) are used for the evaluation of reconstructed surface ocean pH during 1985-2020. 
Only data from depths shallower than 10 m are used. Data are averaged per month and on a regular 
1°x1° grid, which resulted in 10813 data points. The reconstruction metrics are calculated from co-
located reconstructed values at these data points.  
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IV VALIDATION RESULTS 

IV.1 spco2 reconstruction 

Region 
Latitude 

boundaries 

MAD (Pa) RMSD (Pa) r2 

Open Coastal Open Coastal Open Coastal 

Global(287984, 33864)  1.15 2.41 1.86 3.72 0.77 0.70 

Subpolar 
Atlantic(25705, 13749) 

49°N to 76°N 1.46 2.16 2.43 3.19 0.77 0.80 

Subpolar 
Pacific(11575, 4145) 

49°N to 76°N 2.04 4.03 2.92 5.52 0.65 0.57 

Equatorial Pacific 
(47893, 258) 

18°S to 18°N 1.11 1.90 1.74 2.69 0.79 0.47 

South Pacific   (18396, 
1276) 

44°S to 18°S 0.81 0.95 1.21 1.44 0.74 0.62 

Southern Ocean 
(31760, 5798) 

90°S to 44°S 1.27 2.51 1.96 3.60 0.61 0.64 

 

Table 4: Statistical validation for CMEMS-LSCE-FFNNv2 over the period 1985-2020. Comparison between reconstructed 
surface ocean spco2 and spco2 values from the SOCAT data that were not used during the algorithm training. Global statistics 
and regional examples (Figure 3), number of measurements of SOCATv2021 per (open, coastal) region between brackets.  

 

Table 4 exemplifies skill scores computed for 5 regions. It illustrates - for the full period - that the highest 
RMSDs (open: 2.92 Pa, coastal: 5.52 Pa) and MAD (open: 2.04 Pa., coastal: 4.03 Pa) are associated with 
the region having the lowest data density  and high temporal and/or spatial pCO2 variations (e.g., 
Subpolar Pacific, 15720 observations). The CMEMS-LSCE-FFNNv2 reconstruction over the coastal regions 
for the full period is roughly twice less effective than over the open ocean in terms of RMSD and MAD 
while it shows a rather good fit with r2 = 0.70. The high RMSD reflects local high model errors along the 
continental shelves (Figure 5) which are characterized by complex physical and biological dynamics 
leading to high variability at small scales. Further model improvement is needed in order to capture such 
high spatial and temporal variability of surface ocean pCO2 present in observations (see in Bakker et al. 
2016; Laruelle et al., 2017, and references therein). An in-depth analysis on the model reconstruction 
over different oceanic basins for both open and coastal regions is presented in Chau et al. 2021. 

The average surface ocean spco2 for the period 1985-2020 is shown on the left panel of Figure 4. High 
surface ocean spco2 values are associated to the upwelling of deep water, which is naturally enriched 
in DIC (Dissolved Inorganic Carbon, e.g., Equatorial Pacific upwelling). Low CO2 partial pressures are 
found in cold northern and southern latitudes, a combination of the temperature effect on the solubility 
of CO2 and the drawdown of DIC by biological activity. The spatial uncertainty of spco2 corresponding 
to the standard deviation of outputs from the 100 models from the CMEMS-LSCE-FFNNv2 is displayed 
on the right plots of Figure 4. These maps illustrate the confidence level in the reconstruction of spco2. 
Large estimates of the uncertainties were found in the coastal regions, regions sparse or devoid of 
SOCAT data (see Figure 2) such as Indian Ocean, Southern Ocean, and regions with high or low surface 
pressure of CO2 such as East Pacific, Labrador Sea, North Western Pacific.  
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Figure 4. Reconstructed surface ocean carbon dioxide partial pressure averaged over over the global ocean (top) and coasts 
(bottom) for 1985 to 2020. Mean (left) and standard deviation (right) of the 100-member CMEMS-LSCE-FFNNv2 model 
outputs are shown. The uncertainty estimate of the temporal mean per grid cell was corrected with a constant decorrelation 
length scale of 3 months. 

 

 

Figure 5. Map of the mean differences between MULTIOBS spco2 and the entire SOCAT dataset [Pa].   

 

While the average bias of reconstructed surface ocean partial pressure compared to the SOCAT data is 
small, there are areas with persisting strong positive or negative biases (e.g., coastal seas and continental 
shelves, subpolar and polar regions, Eastern Pacific Ocean, Western South Atlantic). Figure 5 shows the 
full dataset of the differences from the observations for the period 1985-2020. It hides the still sparse 
data coverage for individual months, which challenges any reconstruction method. Even more 
problematic is the poor data coverage of large regions (e.g., coasts, high latitudes, Indian Ocean and 
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South Pacific Ocean). Reconstructed monthly fields are very noisy with high uncertainty over areas with 
poor data coverage (see Figure 2) and/or high variations of pCO2, and should be viewed with caution. 

 

IV.2 fgco2 reconstruction 

Table 5 presents a comparison between CMEMS-LSCE-FFNNv2 and an ensemble of global ocean 
biogeochemical general circulation models (GOBMs) used in Global Carbon Budget 2020 (GCB2020, 
Friedlingstein et al. 2020) for the reconstruction of air-sea CO2 fluxes. The global ocean CO2 sink 
corresponds to the global integral of fgco2 over space and time. The reconstructed field covers both the 
open ocean and coastal regions and hence approximately 96.15% of the total ocean area (361,900,000 
km2). In 2020 [resp. 2019], the global ocean CO2 sink was 2.75±0.15 [resp. 2.63±0.12] PgC/yr (Figure 1). 
The average of yearly contemporary fluxes over the full period 1985-2020 is 1.62±0.12 PgC/yr (including 
0.15±0.01 PgC/yr from the coastal uptake) with an interannual variability (temporal standard deviation) 
of 0.48 PgC/yr. Taking into account the total ocean area of 361,900,000 km2 and the outgassing of river 
carbon of 0.78 PgC/yr yields an anthropogenic carbon uptake by the ocean of 3.65±0.15 PgC/yr 
[3.51±0.13 PgC/yr] for 2020 [2019] and 2.46 ±0.15 PgC/yr for the years 1985-2020. Our data-based 
estimates of the anthropogenic uptake are above the model-based estimates by Friedlingstein et al. 
(2020) (see Table 5). However, it is demonstrated in Friedlingstein et al. (2020) and Hauck et al. (2020) 
that the CMEMS-LSCE-FFNNv2 flux estimates are in line with alternative data-based estimates. The 
spatial distribution of CO2 sources and sinks, as well as decadal trends of data-based and model-based 
estimates are consistent at global and regional scales. However, the mismatch in magnitude of these 
estimates and uncertainty from global scaling and river flux adjustment are still large and remain to be 
resolved. 

 

The new ensemble-based approach yields spatio-temporal varying uncertainties which are consistent 
with uncertainty estimates of an ensemble of data-based and model-based approaches in Hauck et al. 
(2020). However, they are lower than the previous GCB published total estimate of ± 0.6 PgC/yr. The 
latter estimate corresponds to the mean of flux estimates from global ocean biogeochemical general 
circulation models (GOBMs). The uncertainty estimate combines the interannual variability derived from 
GOBMs (± 0.4 PgC/yr) and the uncertainty of the mean ocean sink over the 90s, which is taken as a 
reference (± [0.2-0.4] PgC/yr). 
 

Methods 
Periods 

1990s 2000s 2010s 2019 

CMEMS-LSCE-FFNNv2 
Contemporary 1.36 ± 0.12 1.55 ± 0.11 2.14 ± 0.12 2.63 ± 0.12 

Anthropogenic 2.20 ± 0.12 2.40 ± 0.11 3.01 ± 0.12 3.51 ± 0.13 

GCB2020* 2.0 ± 0.5 2.1 ± 0.5 2.5 ± 0.6 2.6 ± 0.6 

Table 5: Air-sea CO2 flux (PgC/yr) integrated over the global ocean. Comparison between CMEMS-LSCE-FFNNv2 and other 
estimates for periods in 1985-2020 (*source: Friedlingstein et al. 2020). The estimates of CMEMS-LSCE-FFNNv2 
anthropogenic flux were computed by adjusting the contemporary flux estimates with the global ocean area of 361,900,000 
km2 and the riverine flux of 0.78 PgC/yr. 
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The map of average air-sea fluxes of CO2 for the period 1985-2020 (Figure 6) highlights the regional 
variability of fluxes over the global ocean (top) and the coastal regions (bottom). Outgassing of CO2 is 
associated with the upwelling of CO2-rich subsurface waters (e.g., Equatorial Pacific). The northern and 
southern mid to high latitudes are sink regions. The North Atlantic stands out as a major area of CO2 
uptake explained by a marked strong cooling in winter and a vigorous phytoplankton bloom in spring 
and early summer. A region of enhanced uptake is also associated with the subtropical convergence 
zone in the southern hemisphere. Based on the gas exchange formulation the uncertainties derived from 
the 100-member ensemble of fgco2 estimates can be interpreted as the scalar product of the spco2 

uncertainties resulted from the CMEMS-LSCE-FFNNv2 and the gas transfer coefficients (kρL(1−fsea ice)). 
Shown on the right panels of Figure 6, the uncertainty at the Southern Ocean with strong and variable 
winds is higher than the other regions.  
 

 

Figure 6. Reconstructed surface downward flux of carbon dioxide averaged over the global ocean (top) and coastal regions 
(bottom) for 1985 to 2020.  Mean (left, positive values correspond to ocean uptake) and standard deviation (right) of the 
computed from the 100-member ensemble of CMEMS-LSCE-FFNNv2 are shown. The uncertainty estimate of the temporal 
mean per grid cell was corrected with a constant decorrelation length scale of 3 months. 

 

The global yearly integrated air-sea flux of CO2 seen in Figure 1 is characterized by interannual variability 
in response to modes of natural climate variability, which occurs superposed on the trend driven by 
increasing atmospheric CO2 levels. The Equatorial Pacific is a dominant source of CO2 to the atmosphere. 
Equatorial Pacific outgassing is strongly modulated by ENSO dynamics and imprints global air-sea fluxes 
of CO2 (Feely et al., 2010). During El Niño events (e.g., 1997-1998, 2015-2016), reduced upwelling 
translates into reduced outgassing of CO2 and an enhanced global ocean net air-sea CO2 flux. To the 
contrary, La Niña events are characterized by increased upwelling, enhanced outgassing and a decreased 
global ocean net air-sea CO2 flux (Chau et al. 2021 [Figure 9]).  
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IV.3 Surface ocean pH reconstruction 

The assessment of the quality of the CMEMS-LSCE-FFNNv2 reconstruction with respect to pH data from 
the GLODAPv2.2021 bottle data set yields a global RMSD of 0.0348 pH and an absolute bias of 0.0193 
pH units. Model scores for the regional assessment are shown in Table 6 and Figures 7, 8. CMEMS-LSCE-
FFNNv2 produces reliable estimates of pH over the open ocean between “60°S-60°N”. Model errors 
(Figure 7) and uncertainty estimates (Figure 8) remain high over the coastal seas, continental shelves, 
and high latitudes. 

 

Region 
Latitude 

boundaries 
MAD RMSD r2 

Open Coastal Open Coastal Open Coastal 

Global    
(10213, 600) 

 0.0173 0.0531 0.0296 0.0836 0.61 0.41 

Subpolar Atlantic 
(1137, 244) 

49°N to 76°N 0.0281 0.0339 0.0450 0.0523 0.29 0.34 

Subpolar Pacific   
(403, 203) 

49°N to 76°N 
0.0409 0.0930 0.0644 0.1242 0.30 0.37 

Equatorial Pacific 
(1171, 1) 

18°S to 18°N 
0.0129 0.0130 0.0200 0.0130 0.65 NaN 

South Pacific         
(710, 0) 

44°S to 18°S 0.0130 NaN 0.0157 NaN 0.80 NaN 

Southern Ocean 
(1465, 33) 

90°S to 44°S 0.0169 0.0326 0.0245 0.0499 0.54 0.28 

Table 6: Statistical validation for CMEMS-LSCE-FFNNv2 over the period 1985-2020. The assessment is based on the 
comparison between reconstructed surface ocean pH and pH values from GLODAPv2 bottle data set over the period 1985-
2020. Global statistics and regional examples (Figure 3), number of GLODAPv2.2021 data per (open, coastal) region between 
brackets. 

 

Reconstructed surface ocean pH is given on total H+ scale. Low pH values are found in upwelling regions 
(e.g., Equatorial Pacific, Arabian Sea) where old naturally dissolved inorganic carbon (DIC) enriched 
waters reach the surface ocean. Higher values are found in subpolar and polar waters, especially during 
spring and summer when photosynthesis draws DIC down (Figure 7). The uncertainty map of pH 
displayed on the right plot of Figure 7 is derived through a monthly uncertainty propagation for each 
member of 100-ensemble of spco2 following Orr et al. (2018) and the speciation software CO2sys (Lewis 
and Wallace, 1998; Van Heuven et al., 2011) (see II.2.c for details). Estimates of spco2 and associated 
uncertainties (see Figure 4) have the largest impact on the estimation of pH uncertainties. 
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Figure 7. Reconstructed surface ocean pH averaged over the global ocean (top) and coastal regions (bottom) for 1985 to 
2020.  pH estimate (left) and uncertainty (right) computed for the 100-member ensemble of CMEMS-LSCE-FFNNv2 are 
shown. The uncertainty estimate of the temporal mean per grid cell was corrected with a constant decorrelation length scale 
of 3 months. 

 

 

Figure 8. Maps of the mean of the differences between MULTIOBS pH and GLODAPv2.2021 bottle dataset.   



QUID for Global Ocean Surface Carbon Product 
MULTIOBS_GLO_BIO_CARBON_SURFACE_REP_015_008 

Ref: 
Date: 
Issue: 

CMEMS-MOB-QUID-015-008 
September 2021 
3.0 

 

 

                                                                                            Page 20/26 

V SYSTEM’S NOTICEABLE EVENTS, OUTAGES OR CHANGES 

MULTIOBS_GLO_BIO_CARBON_SURFACE_REP_015_008 is the new name of 
MULTIOBS_GLO_BIO_REP_015_005. 

This release corresponds to a reprocessed and extended time series of spco2, fgco2, ph. Estimates of 
spco2 are obtained from an ensemble of feed forward neural network (FFNNs) (Chau et al. 2021). It is 
referred to as CMEMS-LSCE-FFNNv2 and it is an improvement (method-wise) of the 1st version (LSCE-
FFNN-v1) described in Denvil-Sommer et al. 2019. All variables are distributed with associated 
uncertainties derived from the 100-member ensemble. 

Since the year 2021, the full CMEMS-LSCE-FFNN product including data over the coasts and high 
latitudes (above 60°N) has been submitted to CMEMS (and Global Carbon Project). Due to these 
changes, all statistics reported in this version of the document are significantly different from those in 
the previous version (2020). Note that the larger errors are derived from the reconstruction over the 
coasts and high latitudes. See Section IV and VI for further updates of the validation corresponding this 
new release. 
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VI QUALITY CHANGES SINCE PREVIOUS VERSION 

Skill scores are improved for this release, CMEMS-LSCE-FFNNv2 (2021), as documented for spco2 (Table 

7) and ph (Table 8). In comparison to the reconstruction skill of the LSCE-FFNN-v1 using K-fold cross-

validation over the period 2001-2016 (Denvil-Sommer et al. 2019),  CMEMS-LSCE-FFNNv2 provides 

spco2 estimates with less errors and higher correlation to the observations for the global ocean and the 

majority of regions. Taking advantage of an increase in the number of observations available in 

SOCATv2021, CMEMS-LSCE-FFNNv2 (2021) slightly improves the reconstruction of spco2 compared to 

the model run in 2020. In addition, the new release results in pH estimates with similar skill scores as 

those of the previous year (Table 8).  

 

Region 
Latitude 

boundaries 

MAD (Pa) RMSD (Pa) r2 

v1* 
v2 

(2020) 
v2 

(2021) 
v1* 

v2 
(2020) 

v2 
(2021) 

v1* 
v2 

(2020) 
v2 

(2021) 

Global         
(300363, 321848) 

 1.17 1.04 1.04 1.82 1.68 1.68 0.76 0.76 0.76 

Subpolar Atlantic 
(36483, 39454) 

49ºN to 76ºN 1.52 1.12 1.12 2.53 1.88 1.88 0.76 0.71 0.71 

Subpolar Pacific  
(14394, 15720) 

49ºN to 76ºN 2.34 2.08 2.07 3.52 3.09 3.08 0.65 0.62 0.62 

Equatorial Pacific   
(45806, 48151) 

18ºS to 18ºN 1.05 1.03 1.05 1.59 1.73 1.74 0.79 0.79 0.79 

South Pacific   
(18255, 19672) 

44ºS to 18ºS 0.95 0.75 0.74 1.37 1.11 1.09 0.63 0.73 0.74 

Southern Ocean   
(34158, 37558) 

90ºS to 44ºS 1.21 1.07 1.06 1.76 1.57 1.57 0.58 0.55 0.55 

Table 7: Comparison between LSCE-FFNN-v1 and CMEMS-LSCE-FFNNv2 for reconstruction of surface ocean spco2 over the 
period 2001-2016. The assessment is on spco2 values from SOCAT data that are not used during algorithm training (*source 
of LSCE-FFNN-v1 using SOCATv5: Denvil-Sommer et al., 2019, units modified). Global statistics and regional examples (Figure 
3), total number of SOCAT measurements (v2020, v2021) used in training CMEMS-LSCE-FFNNv2 (2020, 2021) per region 
between brackets. 

 

For a comparison with CMEMS-LSCE-FFNNv2 (2020) over the full period, CMEMS-LSCE-FFNNv2 (2021) 

learned on the SOCATv2021 data, and hence benefitting with an increase in the number of observations 

in recent years, results in spco2 estimates with slightly lower RMSD (Figures 9). Additional observations 

with high values of spco2 possibly lead to a higher estimate of the new monthly spco2 timeseries as seen 

in Figure 10.  Consequently, the global ocean Carbon sink and surface pH estimated by CMEMS-LSCE-

FFNNv2 (2021) are lower than those estimated by the CMEMS-LSCE-FFNNv2 (2020) in the last two 

decades. 
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Figure 9. Top: RMSD of reconstructed global mean monthly surface ocean carbon dioxide partial pressure. Middle: Number 
of observations of monthly SOCAT data. Bottom: Number of observations of monthly SOCAT data used for fitting CMEMS-
LSCE-FFNNv2 models. 

 

 MAD RMSD r2 
v2 

(2020) 
v2 

(2021) 
v2 

(2020) 
v2 

(2021) 
v2 

(2020) 
v2 

(2021) 

Global 0.0157 0.0157 0.0253 0.0253 0.6410 0.6416 

Table 8: Comparison of reconstructed pH data derived from spco2 of CMEMS-FFNN-LSCEv2 (2020, 2021) for global open 
ocean. The statistical assessment is based on the comparison between reconstructed surface ocean pH and pH values from 
GLODAPv2.2021 bottle data set over the common period 1985-2019. 
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Figure 10. Global mean monthly surface ocean carbon dioxide partial pressure (top), monthly integration of air-sea fluxes 
(middle), and global mean monthly pH (bottom) estimated by CMEMS-LSCE-FFNNv2 (2020, 2021). 
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