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Abstract

The cytoskeleton in eukaryotic cells plays several crucial roles. In terms of intracellular transport,
motor proteins use the cytoskeletal filaments as a backbone along which they can actively transport bio-
logical cargos such as vesicles carrying biochemical reactants. Crossings between such filaments constitute
a key element, as they may serve to alter the destination of such payload. Although motor proteins are
known to display a rich behaviour at such crossings, the latter have so far only been modelled as simple
branching points. Here we explore a model for a crossing between two microtubules which retains the in-
dividual tracks consisting of protofilaments, and we construct a schematic representation of the transport
paths. We study collective transport exemplified by the Totally Asymmetric Simple Exclusion Process
(TASEP), and provide a full analysis of the transport features and the associated phase diagram, by a
generic mean-field approach which we confirm through particle-based stochastic simulations. In particular
we show that transport through such a compound crossing cannot be approximated from a coarse-grained
structure with a simple branching point. Instead, it gives rise to entirely new and counterintuitive fea-
tures: the fundamental current-density relation for traffic flow is no longer a single-valued function, and
it furthermore differs according to whether it is observed upstream or downstream from the crossing. We
argue that these novel features may be directly relevant for interpreting experimental measurements.

Keywords cytoskeletal intracellular transport; transport in crowded conditions; exclusion process;
traffic on networks; current-density fundamental relation

1 Introduction

Understanding how the logistics inside a cell is run
constitutes one of the major challenges in biology,
with strong and direct implications for medicine
[1, 2, 3, 4, 5] and biotechnologies [6, 7]. One central
issue is that active transport is required in order to
efficiently deliver biomaterials over distances which
can no longer be covered by Brownian motion on the
required timescale. This is achieved by ATP-driven
motor proteins like myosins, kinesins and dyneins,
which move cargos of different types and sizes along
the cytoskeleton [8].

Cytoskeletal transport is an extremely complex
process, involving multiple players, long trajecto-
ries of the cargos, and a crowded environment.
Crowding is significant in two ways. On one hand,

the presence of cytoskeletal fibres is overwhelming:
their total length can exceed one metre, huge com-
pared to the typical cell size, of the order of a few
tens of micrometres [9]. This implies that the fibres
are highly intermingled, with an important num-
ber of connections, which can either consist in sim-
ple proximity between filaments or be stabilised,
or even induced, by accessory protein complexes
(e.g. by Arp2/3 for actin filaments [10] or aug-
min complexes for microtubules [11, 12]). On the
other hand, crowding also arises on the strands of
filaments themselves, along which motor proteins
drag their cargos. This implies that they necessar-
ily interact with one another, if only sterically, and
transport by cytoskeletal motor proteins is therefore
necessarily a collective process.

It is a fascinating question to ask how the cell-

1

http://arxiv.org/abs/2006.10416v1
http://creativecommons.org/licenses/by-nc-nd/4.0/


wide delivery can be organised efficiently under
these circumstances. In addition, the question of
routing arises: depending on the nature of the cargo,
delivery will be required to one part of the cell or
to another. Even before considering the question
how this can be regulated on a cell-wide level, this
immediately raises the question of re-routing, i.e.

how motor proteins may be re-directed from one cy-
toskeletal filament to another, typically at a branch-
ing point or crossing of fibres. In some cases, the ac-
tors and mechanisms governing track changes have
been investigated and are known, such as the ac-
tion of protein complexes (e.g. p150 in dynactin
cargo complexes for dyneins [13]), post-translational
modifications of tubuline (e.g. polyglutamylation
[14, 15]) and the activity of microtubule-associated
proteins (MAPs) [16, 17]. However, more generic
biophysical mechanisms must be expected to inter-
vene, such as the 3-dimensional proximity of the lin-
ear filaments, their elasticity, or the notion of how
molecular motors explore the space around them to
find their next point of attachment. To some extent
this suggests a contribution of physically motivated,
generic rules, that govern the cytoskeletal transport
through filament crossings. Despite the fundamen-
tal progress in microscopy, as well as the advent
of single molecule and super-resolution microscopy
techniques, it is still a challenge to uncover such
generic rules.

Significant advances have nevertheless been
made in many respects. Recent literature describes
detailed transport features for specific cases, like
switching of protofilaments induced by roadblocks
[18] and motion at filament crossings for single car-
gos driven by one or several motors [19, 20, 21, 22].
Employing multiple motors for transporting a cargo
constitutes in fact an efficient strategy to overcome a
crossing: due to the fact that motors are distributed
over the cargo surface (several hundreds of nm2 for a
small organelle) they can explore the 3-dimensional
space around the crossing [23, 24, 25, 26]. In such
conditions, research has focussed on the mechanisms
that could explain bidirectional cargo transport and
regulation of motor activity. Other publications
have analysed the transport of a single motor pro-
tein in-vitro and in-cellulo, and have quantified the
statistics of different events which can occur at a
crossing: persistent movement across the crossing,
switching to another protofilament, reversing, etc
[18, 20, 21]. However, little is known when these
transport phenomena occur in crowded conditions,
meaning when many cargos are occupying the same
filament track.

If cargos are transported by a single motor, the
connectivity of filaments and the proximity of po-
tential binding sites on nearby filaments are also
expected to matter. Firstly, potential binding sites
must be within reach for the next step, and there-
fore proximity is crucial. But secondly, more subtly,
different options for the next processive step will be
explored stochastically, weighted according to the
free energy landscape of the detailed process of asso-
ciated conformational changes. This amounts to at-

tributing rates for steps to any of the potential next
anchoring points, and sets the search time for the
next anchoring position. But how does this impact
the global, collective transport of motors through
the crossing?

Answering this question experimentally poses
huge technical challenges, which reside in the spe-
cific requirements: resolving details of the transport
process at a crossing necessitates both very good
3-dimensional resolution, but also high time resolu-
tion. For example, the typical step length (from a
few tens of nm for dyneins or processive myosins,
down to 8 nm for kinesins) sets the length scale
which should ideally be resolved. A time scale can
be estimated from motor speeds (between 100 nm/s
and few µm/s), which implies that steps and bind-
ing/unbinding events occur on the milli- or even
micro-second scale. Therefore, the extent of the ex-
perimental feat becomes clear: characterising how
one motor protein explores the crossing between two
adjacent filaments would require to dynamically de-
tect a fully 3-dimensional motor position, with a
spatial resolution below 10 nm and a time reso-
lution with milli- or micro-seconds. Imaging mi-
croscopy has recently been performed with nano-
metric lateral resolution [18, 27], which has indeed
provided measurements of the characteristics of var-
ious motor protein transport mechanisms. However,
time-dependent measurements resolving the motor
position in all spatial directions are currently still
out of reach for even the most advanced experimen-
tal techniques [29, 30]. In addition, a large major-
ity of imaging methods are based on Single Parti-
cle Tracking (SPT) techniques, meaning that collec-
tive effects along the cytoskeletal network cannot be
probed.

Here we employ a modelling strategy in order
to explore the impact of microscopical detail on
large-scale transport, including what this implies
for experimental measurements. We acknowledge
that a detailed microscopic characterisation of how
motors evolve at crossing microtubules is currently
unavailable. A description can therefore only be
based on effective transition rates, and we elabo-
rate a reduced model, based on stochastic trans-
port on the individual protofilaments. However, we
then raise the question of collective transport as
seen through the lens of current experimental op-
tions: all measurable quantities will characterise the
compound microtubule, thus inevitably convoluting
them over individual protofilaments. The key ques-
tion is to which extent theoretical understanding,
which is available on the transport process on a sin-
gle protofilament, may be transposed to the com-
pound, average transport. To our knowledge such a
description has not yet been discussed in the liter-
ature. We shall show that this point of view holds
surprises, which must be kept in mind when inter-
preting data on any such measurements.

The paper intends to elaborate a minimalistic
analysis of transport through a crossing of two fil-
aments, exemplified by two nearby microtubules.
The model is highly schematic in order to empha-

2



sise generic properties, but the framework presented
here can easily be extended to more complex situ-
ations. The manuscript is organised as follows: In
section II we elaborate a (schematised) representa-
tion of a crossing between two nearby microtubules,
and we decompose the transport process into sin-
gle protofilaments with transition points between
them. In section III we briefly review the Totally
Asymmetric Simple Exclusion Process (TASEP).
The TASEP belongs to the class of exclusion pro-
cess models that have been successfully applied
to cytoskeletal transport driven by motor proteins
[31, 32, 33, 22], and many theoretical aspects of its
collective behaviour are well studied, including on
branched structures [34, 35, 36, 37, 38, 39, 40]. In
section III we employ this paradigmatic model for
stochastic and collective transport in order to illus-
trate our approach as we analyse TASEP transport
on our representation of the crossing. We intro-
duce the notion of a ’compound’ system, englob-
ing all transport throughout the microtubules with-
out resolving individual protofilaments. This is de-
signed to characterise the overall transport based on
coarse-grained, averaged quantities as they may be
accessible in experiments. Based on well-established
results for TASEP transport on branched structures
we establish a compound phase diagram as well
as a compound current-density relation. We high-
light new features, which qualitatively differentiate
the compound system from a branching point be-
tween two TASEP segments. We discuss how these
features may interfere in the interpretation of ex-
perimental measurements. In particular, the com-
pound current-density relation is seen to be counter-
intuitive in two important ways: it no longer con-
stitutes a one-to-one relation between current and
density, and it differs according to whether the mea-
surement is made upstream or downstream from the
crossing. In section IV we summarise our results
and discuss how the approach employed here can
be generalised both to more complex structures and
to more complex transport processes. Specifically,
we examine how the presence of individual protofil-
aments is expected to impact predictions for the be-
haviour of motors as they negotiate a crossing, such
as characterised by the recent experimental work of
Deeb et al. [28]. In particular, the traffic through
junctions is seen to be intrinsically dependent on
crowding, a purely physical effect which will inter-
fere with any active biochemical regulation. The
appendices provide a brief review of the mean-field
strategy we use throughout, as well as a template
for a paper mock-up which may be useful for visu-
alising the transport paths referred to in text and
figures.

2 Unwrapping a microtubule

crossing

Traffic of molecular motors has successfully been
modelled as a stochastic process. At this stage we
do not focus on any specifics of this process, but

rather provide arguments how to disentangle the
trajectories of motor proteins in the vicinity of the
crossing in a generic manner. To this end, recall
that microtubules typically consist of 13 protofila-
ments, as schematically represented in Fig. 1(a).
The processive motion of a given motor predomi-
nantly follows one such filament as a ’track’ or ’lane’,
although ’lane-changes’ have been observed [18, 27].
On a larger scale, motors travel along the cytoskele-
ton, of which the microtubule network is one con-
stituent. Re-routing can occur at ’crossings’, where
two microtubules are sufficiently close for motors to
switch over from one microtubule to another. They
have indeed been seen experimentally to either fol-
low along their initial microtubule, or to switch to
the alternative one, as schematically represented in
Fig. 1(b) (a certain number of them may also de-
tach as they approach the crossing, but we do not
retain this feature in this work). Here we focus on
modelling a crossing of two microtubules, but the
strategy is generic, and may be adapted to other
situations or other filaments.

To construct our approach it may be useful to
have in mind very recent experimental work, such
as the results presented by Deeb et al. [28]. These
experiments investigate the way in which motor pro-
teins navigate crossings of microtubules. Based on
single-molecule quantum dot motility assays, the
ability of KIF3AC motors to successfully pass cross-
ings of microtubules is studied. Specifically, prob-
abilities are characterised for motors to either fol-
low straight through a crossing on the same mi-
crotubule, or to switch over from one microtubule
to the other. Events of motors detaching at the
crossing are accounted for (but are relatively rare
for KIF3AC). However, the data also quantify the
probability for motors to pause before continuing
their journey through the crossing. The particu-
lar motivation for these experiments has been to
discriminate which domains of the motor proteins
are involved in successfully transiting the crossing.
By contrasting data for the heterodimer KIF3AC
to those on the homodimeric variants KIF3AA and
KIF3CC the study concludes that the KIF3A do-
main is key to successfully passing such crossings
without overwhelming detachment rates.

It is worth pointing out that these experiments
are state of the art, and exploit technically chal-
lenging imaging techniques in order to detect and
characterise the individual events of motors nego-
tiating the crossing. But they also show the cur-
rent limitations of experimentation. First, the ob-
servation is carried out on single motors. This is
of course desired, as it is the most straightforward
regime to analyse: as motors are also sparse along
the microtubules, no crowding effects can interfere.
However, as argued above, this is not necessarily
the case in the crowded environment of a cell, and
a denser occupancy with motors has indeed been
shown in vitro to lead to important collective ef-
fects [33]. Second, protofilaments are not resolved
in this analysis. This is so for a good reason, which
is that motor proteins simply cannot be attributed
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Figure 1: (colour online) (a) Illustration of a ’crossing’, where two microtubules, consisting of (typically) 13
protofilaments each, are in close proximity. Motor proteins advance stochastically in the direction set by
the polarity of each microtubule. As it negotiates the crossing, a motor protein may pause, and will then
ultimately follow straight through on the same microtubule, switch over to the other microtubule or, less
frequently, detach. (b) Molecular motors require free binding sites ahead in order to advance. The success of
the stepping motion along the microtubules, as well as switching to the other microtubule, due to obstruction
which varies with the density: these are collective effects.

to specific protofilaments with the current spatio-
temporal resolution. It is also perfectly consistent
with the setup as single-molecule experiments, for
which interactions between motors running on the
same protofilament are not an issue.

Both points, however, must be expected to mat-
ter for higher motor concentrations: collective ef-
fects occur, and especially so between motors fol-
lowing the same protofilament, and it is therefore
important to know on which of the parallel protofil-
aments the motors run. Here we set out to explore
the consequences of such a refined description, well
ahead of experimental data, in order to highlight
that this leads to qualitatively new phenomena as
well as unexpected pitfalls. We will also show specif-
ically that the probabilities for ’straight’ or ’switch’
events at the crossing are expected to evolve with
the density of motors. In our analysis we thus re-
main within the picture of motors following specific
tracks, but which we take to be individual protofil-
aments. This implies that one must then also ask
which paths the motors take, or may take, when
transitioning from one microtubule to another: this
is the extra complexity which, as we will show, gives
rise to new features.

We first focus on analysing a (deliberately)
schematic model for this process, on a simplified
representation of a microtubule crossing, which
serves to acknowledge the effect of this additional
complexity. Unravelling all possible paths along
protofilaments on a simplified microtubule, we then
argue that these correspond to a network of inter-
linked tracks, which can be analysed using the es-
tablished methods for transport on branched struc-
tures. We then show how to reconstruct transport
through the microtubule crossing, considered as a

compound of possible paths along protofilaments.
This prepares the ground for analysing the phases
and the current-density relation of the compound
crossing, as it would be observable: this will reveal
significant differences from what one would expect
based on intuition of single-track models.

We conclude by discussing how this approach
may be extended to more refined, less schematic rep-
resentations of microtubules, illustrating also how
switch rates become density dependent due to col-
lective effects in the transport process.

2.1 Protofilaments and transport

along elementary paths

On each protofilament, the flow of motor proteins
can be described by a current-density relation of the
form

J = ρ v(ρ) , (1)

where J is the current (number of motors passing
a given point per unit time), ρ is the motor den-
sity (number per unit length), and v is their (aver-
age) velocity. This is often referred to as the fun-

damental relation, and is central to phenomena of
collective transport [41]. The dependency v(ρ) cap-
tures all collective effects due to the interaction of
motors, such as steric hindrance or more complex
phenomena. This relation may be derived from the
stochastic transport process under consideration, or
v(ρ) can be a phenomenological relation, deduced
from experimental data. The point is that such re-
lations are available for molecular motors [33, 22],
restricted to a single filament, i.e. in the absence
of branching. Here we show that decomposing the
crossing of microtubules into interconnected paths
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(a) (b) (c)

Figure 2: Schematic representing crossing microtubules by two parallelepipeds, each face representing a
protofilament. We assume that motor proteins can only switch from one track to another if the latter shares
a common edge. Motor proteins can only follow three kinds of paths along the lattice, called vertices: (a)
V(2:1) (two entries, one exit at the branching point), (b) V(1:1) (two independent, unbranched trajectories)
and (c) V(1:2) (one entry, two exits at the branching point). A mockup to be cut out from paper is supplied
in Appendix B, and may prove useful for visualising the proximity of tracks.

makes it possible to study this problem for a com-
pound, multi-track crossing.

The idea is to analyse the paths along individ-
ual protofilaments which motor proteins may take as
they travel along the microtubule. This will unwrap
the 3-dimensional structure of the crossing into an
ensemble of 1-dimensional or quasi-1-dimensional
paths, corresponding to the protofilaments, with
branching points located at the crossing. We will
then proceed, in the next section, to solve the col-
lective transport on this ensemble of filaments for
a particular transport model and illustrate the rel-
evance of our findings in terms of what to expect
from finite resolution measurements.

In our model we need to acknowledge a cer-
tain number of facts: first, as motor proteins ap-
proach a crossing on a given protofilament, they
may simply follow their path, presumably along the
same protofilament; but they may also transition to
the crossing microtubule. The trajectory for any
given motor protein is a probabilistic process, but
their likelihoods must be expected to vary from one
protofilament to the other: indeed, due to the cylin-
drical structure of the microtubules, those protofil-
aments located on the side facing the second mi-
crotubule may offer the possibility for a motor pro-
tein to transition, whereas this is much less likely
for the protofilaments on the opposite side. Steric
hindrance due to the obstruction presented by the
crossing microtubule is another feature expected to
influence the motion of a motor protein, which may
be seen as a variant of the ’roadblocks’ considered
in [18].
Here we account for this complexity in a deliber-
ately schematic way, by distinguishing three types
of trajectories along a protofilament (see Figure 2
for an illustration) : (i) on certain protofilaments,
close to the crossing microtubule, a motor protein
cannot pursue its trajectory and is obliged to tran-
sition to the closest alternate protofilament; (ii) on

the opposite side of the microtubule, a motor pro-
tein follows its trajectory on the same protofilament,
without transitioning, as there is no specific reason
to do so; (iii) in intermediate positions, the motor
protein randomly does one or the other; for simplic-
ity, we assume a probability of 50% for each option,
although this is a parameter which should be inves-
tigated further.
The simplest setup retaining these scenarios re-
quires 4 protofilaments for each microtubule. Al-
though this is of course different from real micro-
tubules, we make this simplifying choice as it al-
lows us to focus on qualitative arguments: it will
be obvious in the discussion that a generalisation to
13 protofilaments (or other protofilament configura-
tions) is straightforward. In order to visualise our
representation of the crossing between two micro-
tubules, we refer to Figure 2, where the four protofil-
aments are represented as the geometrical sides of
a square tube (parallelepiped). We provide an A4
scaled mock-up (see Appendix B) for easier visu-
alisation. In this representation transitions from a
protofilament to another one on the crossing micro-
tubule are therefore possible between faces which
share an edge, and compulsory if the face is ob-
structed by the crossing microtubule.

Figure 2 also indicates the topology of the tra-
jectories as they unwrap along protofilaments. Sev-
eral types of paths of motor proteins along protofil-
ament tracks can be identified, as is illustrated in
Figure 2: subfigures (a), (b) and (c) correspond to
scenarios (i), (ii) and (iii) above, respectively. The
schematic diagrams below the illustrations identify
the corresponding protofilaments as tracks joined at
a contact point, labeled as a V(2:1) where two tracks
join at the crossing, as V(1:1) for the tracks without
branching, and as V(1:2) where two exiting tracks
are available for the molecular motor (the nomencla-
ture follows our earlier work, see [35]). We consider
that, far away from the crossing, all protofilaments
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are in contact with reservoirs, represented by an en-
try rate α and an exit rate β, which are common to
all protofilaments.

2.2 Averaging and experimental res-

olution

The key lies in the observation that, as argued in
the introduction, the spatial resolution in measure-
ments must be accounted for: transport on individ-
ual protofilaments cannot currently be resolved in
crowded environments, and we are therefore neces-
sarily dealing with an average over parallel protofil-
aments. Noting i = 1...P the individual protofila-
ments making up the microtubule, the average den-
sity (ρ) and the average current (J) are given by

ρ(x) = 1
P

P
∑

i=1

ρi(x) and J(x) = 1
P

P
∑

i=1

Ji(x) .

(2)
Here ρi(x) is the motor density on protofilament

i, which may depend on the spatial position x mea-
sured along the protofilament. The total current on
the other hand will be independent of the position,
due to conservation, unless attachment/detachment
of motors is considered. We will refer to the com-

pound current J and density ρ, to distinguish them
from those of individual protofilaments Ji and ρi.
Experimental observation would in fact measure
P × J(x) and P × ρ(x).

Up to this point the model of the crossing is
not specific to any particular microscopic represen-
tation of the transport process, and it is only in the
following section that we will use the paradigmatic
TASEP as one model to illustrate the important im-
plications this analysis has for measurements on the
compound microtubule crossing.

3 TASEP transport through a

microtubule crossing

In this section we exploit the model we have de-
veloped for the crossing of two microtubules and
explore the resulting phenomenology, based on
one particular choice for representing the collective
transport, the Totally Asymmetric Simple Exclu-
sion Process (TASEP). We briefly summarise the
main features of the model and recall how it can
be adapted to treat branched paths in a mean-field
approximation. We establish the features of a 3-
fold branching point. From this we construct the
full transport characteristics through the compound
microtubule crossing, and discuss the resulting phe-
nomenology.

3.1 A brief reminder of TASEP

transport

We base our analysis on the TASEP model, a well-
studied model for stochastic but directed transport
on a line-like structure, in which interactions be-
tween particles are limited to an excluded volume

condition. Any such TASEP segment consists of
successive sites, corresponding to the potential po-
sitions of molecular motors on the periodic protofil-
ament structure, which may be empty or occupied
at any instant. Time-averaging the occupancy for
each site yields a local density for each site, and thus
a spatial density profile. Motor proteins stochasti-
cally advance one site, with rate γ, if and only if
the target site is not yet occupied (excluded vol-
ume interaction). The boundary conditions consist
in attempting to inject a particle on the first site
(entrance rate α) or removing one from the last site
(exit rate β), which amounts to coupling the seg-
ment to two particle reservoirs. The model is sum-
marised graphically in Figure 3. An exact solution
exists [42, 43], and validates the simple mean-field
expression which can be established as follows.

α γ=1 βX

Figure 3: Schematic illustration of a TASEP
lattice with open boundary conditions. The at-
tempt rate for a particle to enter is α, and the
exit rate β. Particles hop from left to right, and
interact through their excluded volume. We use
γ = 1 throughout.

3.1.1 Collective transport in TASEP

The behaviour of this model is well studied [44].
One central result is that, with the exception of
small zones at the boundaries which can be inter-
preted as boundary layers from a hydrodynamic
perspective, the density profile is homogeneous
throughout the entire segment [43]. Denoting this
bulk density ρ it directly follows that the mean-field
current is given by

J = γ ρ(1 − ρ) . (3)

Here γ is the microscopic jump rate. It is commonly
taken to be equal to unity, which amounts to using
it to set the timescale.

Distinct transport regimes arise, which are con-
trolled by the boundary rates (α and β). In essence,
one observes a low density (LD) phase when the en-
try rate is limiting (α < β and α < γ/2), a high
density (HD) phase when the exit rate is limiting
(β < α and β < γ/2), and a maximum current
(MC) phase when the bulk hopping rate is limiting
(γ/2 < α and γ/2 < β). The bulk density is given
as ρ = α (in LD), as ρ = 1 − β (in HD), and as
ρ = 1/2 (in MC); the corresponding currents follow
from Eq. (3). In the following we set γ = 1, which
amounts to measuring all rates in units of γ.

These regimes can be identified directly from the
current-density relation J(ρ) (see Figure 4(a)), and
are summarised in the representation referred to as
a ’phase diagram’ (Figure 4(b)), which attributes a
phase to each point in the (α, β) plane of param-
eter space. These phases are key to the following
analysis.
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Figure 4: Main features of TASEP transport. (a) fundamental relation of transport for a simple TASEP
segment with open boundary conditions, J = ρ(1 − ρ). (b) Corresponding phase diagram, featuring one of
the three transport regimes according to the entry and exit rates (α and β): in the LD (low density) phase
the current is entry limited, in HD (high density) it is exit limited, and in MC (maximum current) it is bulk
limited.

3.1.2 Branched paths and effective rates

As argued above, we have decomposed the possible
trajectories a given motor protein may take along
a microtubule crossing into a V(1:1), i.e. a direct
straight path along a protofilament, as well as 3-
fold branching points, a V(2:1) where two protofil-
aments join, and a V(1:2) where a protofilament
splits into two possible choices. Features of this
system have been studied [45], and more complex
branched structures have been analysed in great de-
tail using mean-field arguments based on effective
rates [34, 35, 39].

Figure 5: Schematic illustration of a vertex
V(1:2) with open boundary conditions charac-
terized by and entry rate α and an exit rate β.
At the branching point the density is ρ̃, and the
effective rates are βeff (to exit segment A) and
αeff (to enter either of segments B).

To summarise briefly, the idea behind effective
rates is to focus on the site at the point where two
paths meet. This is considered simultaneously as
an exit reservoir to the upstream segment(s) and as
an entry reservoir to the downstream segment(s),
as represented in Figure 5. This amounts to de-
composing the branched paths into simple TASEP
segments, coupled at the branching points.

3.1.3 TASEP with 3-fold branching
points

These arguments can directly be applied to the 3-
fold vertices. It is straightforward to see [35] that in
a mean-field spirit, noting the density at the branch-
ing site ρ̃, we have effective rates of

βeff = 1− ρ̃, αeff = ρ̃/2 (4)

for a V(1:2), and

βeff = 1− ρ̃, αeff = ρ̃ (5)

for a V(2:1). See also the brief discussion in Ap-
pendix A.

Current conservation then fixes the density ρ̃,
from which everything else follows. Details of these
calculations are not essential for the interpretation,
and we recapitulate the method in Appendix A.
Here we simply summarise the results as they are
relevant for the following arguments.

Following the notation used in [35], we charac-
terise the state of the branched system by indicat-
ing the phases in each of its segments as A:(B1|B2)
for a V(1:2) or as (A1|A2):B for a V(2:1). As we
are assuming that both out-segments are equivalent
in a V(1:2), and both in-segments in a V(2:1), the
notation can be simplified to A:2B in the former
case and 2A:B in the latter. The main results are
the phase diagrams, in which we find the 3 TASEP
phases. With respect to a simple TASEP segment
though, the critical rates at which the transition into
the MC phase occurs are modified, and the phase
boundary separating LD and HD phases is no longer
a straight line. Analytical mean-field expressions for
the various phases are recapitulated in Table 1 for
the density, the current can be deduced directly by
applying Eq. (3) to the segment which carries the
full current.
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Figure 6: Phase diagrams of 3-fold vertices (a) V(1:2) and (b) V(2:1) with open boundary conditions. The
exit rates for the V(1:2) are taken to be identical for both B-segments, just as the entrance rates for the
V(2:1) are identical for both A-segments. Both diagrams are obviously related, as can be argued based on an
extended particle-hole symmetry for branched structures, analogous to what has been discussed for a similar
system [34, 35].

It will be useful to recall the correspondence be-
tween the two phase diagrams in Figure 6, which
can be established on the grounds laid out in [35].
Essentially, it consists in realising that a V(1:2) cor-
responds to a V(2:1) operated ’backwards’, and vice
versa. This requires reverting the flow direction,
and therefore exchanging the entrance rate α and
the exit rate β. Those segments on which transport
was limited by the entrance rate (LD) therefore be-
come limited by the exit rate (HD), and vice versa,
whereas those limited by the bulk flow (MC) remain
unchanged. Applying all these changes simultane-
ously maps the two phase diagrams onto each other.
This correspondence can be linked to a particle-hole
symmetry in the TASEP model [35].

3.2 Constructing transport through

the compound microtubule

crossing

In this section we exploit the results discussed
above to address the question of compound trans-
port through the three dimensional structure of two
crossing microtubules. So far we have broken down
the complex pathways along this complex structure
in section 2.1, and then analysed transport on each,
possibly branched, pathway in section 3.1.3. Here
we set out to assemble the results, to construct
transport through the structure in different regimes
of crowding. Recall that measurements do not cur-
rently give access to the transport through indi-
vidual protofilaments, but rather cumulate those
into a global current-density relation for the en-
tire microtubule, which implies an average as dis-
cussed in section 2.2. Here we derive an expression
for this compound current-density relation based on
TASEP transport.

3.2.1 Compound phase diagram

Assuming that, away from the crossing, all protofil-
aments connect to the same entry or exit reservoirs,
they are all subject to the same entry and exit rates,
α and β. The state of the full system can therefore
be characterised by determining the phase of each
of the segments in all paths, for each type of vertex,
for any point (α, β) in the parameter plane. This
amounts to superposing the phase diagrams for the
branched vertices V(1:2) and V(2:1), as well as the
regular segment V(1:1), on the same phase plane.
This superposition is represented in Figure 7, where
each line of the labels refers to one type of vertex.

From this diagram we can read off, for any given
set of rates (α, β), the phases in all segments of all
protofilaments, as represented in the labels. Based
on the expressions in Table 1 for the individual types
of 3-fold vertices, the corresponding densities and
currents can be attributed to each of these phases.
All in all this fixes the transport through any of the
individual protofilaments of the microtubule cross-
ing.

3.2.2 Symmetry

The symmetry in the compound phase diagram
is apparent. It can be understood by realising
that the compound transport regime can be es-
tablished by superposing those of its constituting
branched paths: V(1:2), V(2:1) and V(1:1). Ap-
plying the correspondence between topologically
complementary V(1:2) and V(2:1), discussed above
(see section 3.1.3), one can deduce how com-
pound phases transform into one another. For
example, the compound phase II, characterised
as (LD:2LD; 2HD:MC; LD:LD) would map onto
(2HD:HD; MC:2LD; HD:HD). Note however that
the order in which the vertices composing the com-
pound structure are enumerated is pure convention,
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Table 1: Mean-field expressions characterising all phases, for both 3-fold vertices, V(1:2) and V(2:1), re-
spectively. For each phase (column 1), the corresponding conditions on entrance and exit rates are specified
(columns 2 and 3). Densities on the sections upstream (ρA) and downstream (ρB) are indicated (columns 4
and 5), as well as the density ρ̃ on the branching site itself (column 6) and the current through the branching
point (column 7). To improve readability, expressions are stated in terms of the currents Jα = α(1−α) and
Jβ = β(1 − β). Note that the densities ρA,B in the column for the density at the branching point ρ̃ refer to
the preceding columns on the same line.

phase interval of α interval of β ρA ρB ρ̃ J

vertex V(1:2)

LD:2LD α < 1/2 β > 1−
√
1−2Jα
2

α 1−
√
1−2Jα
2

2ρB Jα

MC:2LD α > 1/2 β > 2−
√
2

4
1/2 2−

√
2

4
2ρB 1/4

HD:2HD α >
1−
√

1−8Jβ

2
β < 2−

√
2

4

1+
√

1−8Jβ

2
1− β ρA 2Jβ

vertex V(2:1)

2LD:LD α < 2−
√
2

4
β > 1−

√
1−8Jα
2

α 1−
√
1−8Jα
2

ρB 2Jα

2HD:MC α > 2−
√
2

4
β > 1/2 2+

√
2

4
1/2 ρA 1/4

2HD:HD α >
1−
√

1−2Jβ

2
β < 1/2

1+
√

1−2Jβ

2
1− β ρA Jβ

here taken to be the order (V(1:2); V(2:1); V(1:1)).
This therefore corresponds to a mapping between
the phases II and VI in the compound phase dia-
gram.

3.2.3 Compound densities and currents

In order to make contact with experimentally mea-
surable quantities, we now establish expressions for
the densities as they might be observed on the com-
pound microtubule. Indeed, as outlined before, we
are chiefly interested in the density as it would be
probed over a zone of finite size, implying an aver-
age both over parallel protofilaments as well as over
a finite distance along each filament. The latter av-
erage is innocuous, as both density and current are
constant along each filament (with the exception of
small boundary layers).

Nevertheless, we must consider two cases, ac-
cording to whether the measurement is performed
upstream (A segments) or downstream (B seg-
ments) of the crossing. Referring to the mock-up of
the crossing provided in Appendix B will illustrate
this easily. Performing the averages over protofila-
ments (see Eq. (2)) yields the density on sections
upstream of the crossing as

ρA =
1

4
[2 ρA,V (2:1) + ρA,V (1:2) + ρA,V (1:1)] , (6)

whereas downstream it is

ρB =
1

4
[ρB,V (2:1) + 2 ρB,V (1:2) + ρB,V (1:1)] , (7)

with densities specific to each vertex type given as
in Table 1. These are the densities which would
be observed by a local measurement, such as those
based on fluorescence, averaging over the protofil-
aments due to lack of resolution in crowded condi-
tions. The resulting compound density, upstream

and downstream of the crossing, is represented in
Figure 8, and the colour-coded values of the density
are seen to feature different zones, which clearly re-
flect both, the structure of the phase diagram for a
full crossing, and the symmetry discussed above.
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-
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Figure 7: Analytically determined phase dia-
gram of the compound model for two crossing
microtubules. It is obtained as the superpo-
sition of the phase diagrams of vertices V(1:2),
V(2:1), and V(1:1). Capital roman numbers are
used to identify the individual phases for later
reference.

3.2.4 Sweeps in the entry rate

A common strategy in experiments is to control the
density of molecular motors in the system by chang-
ing their concentration in the surrounding. This
amounts to setting the in-rate α, in our case for the
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Figure 8: (colour online) Density, colour-coded for each set of boundary rates (α, β), for the full crossing. (a)
Upstream density (ρA) and (b) downstream density (ρB). The values are obtained numerically, by enumer-
ating the values of these rates and exploiting the mean-field expressions of Table 1. The phase boundaries
sketched in Figure 7 above are clearly visible. Phases are denoted by capital roman numbers, which refer
back to Figure 7. The difference between panels (a) and (b) stresses how the location of the measurement
zone impacts the observed results: in identical conditions, i.e. same rates (α, β), the compound density
largely differs between the zones upstream versus downstream of the branching point for most phases.

compound system, whereas the exit rate β remains
unaffected. Measuring the current for several such
values of α, while keeping β constant, thus yields a
graph of J(α), which is a useful way of characteris-
ing transport regimes.

We have therefore constructed such ’sweeps’ in
the entry rate α, for several values of the exit rate
β, chosen to cover the three possible scenarios. The
results are shown in Figure 9, where both the up-
stream and downstream density on the microtubule
are represented, as well as the current, as a function
of α. The current J = JA,B(α) is thus seen to be
a monotonously increasing function of α which re-
flects the phase boundaries in the compound phase
diagram. The densities ρA and ρB differ for most
phases. Their values may or may not experience a
’jump’ at critical values of the entrance rate, which
illustrates that transitions may be discontinuous or
continuous. The number of observed transitions de-
pends on the value of the exit rate, as is easily
rationalised from the phase diagram in Figure 9,
according to the path followed in the (α, β) plane.
Interestingly, transitions can be continuous in the
downstream density ρB but discontinuous in the up-
stream density ρA, as exemplified in the transition
(I-II) for β = 0.75.

3.3 Interpreting the compound

current-density relation

One relevant way of envisaging the current of motors
through a microtubule crossed by another one is to
think of it as a coarse-grained transport path, with
a current-density relation for this compound object.
We will construct this now, based on the densities
specified in Eqs. (6) and (7), as well as the corre-
sponding mean-field currents determined from Eq.

(3).

For each pair of rates (α, β), the resulting com-
pound current and densities are calculated from
mean-field expressions, and represented in the two
plots of Figure 10, one for the upstream and one
for the downstream measurement zone, where each
data point corresponds to one pair of values (α, β).
In order to provide an overall view of the data, but
also to allow for comparison with simulation data,
we use three complementary symbols: (i) light gray
diamonds show all mean-field data points from a
rather dense enumeration of points in the (α, β)
parameter plane; (ii) open squares show data as
obtained from Monte Carlo simulation with spe-
cific choices for the rates (α, β), selected through-
out the parameter plane; (iii) black diamonds show
the mean-field predictions for exactly those parame-
ters used for simulations, in order to allow for direct
comparison. Labels carrying roman numbers corre-
spond to those identifying the phases in Figure 7.

A direct conclusion can be drawn from compar-
ing simulation data with the corresponding mean-
field results. It becomes clear that the predictions,
if not entirely accurate, are overall largely correct:
simulation points (open squares) systematically fall
close to, if not on top of, mean-field predictions
(black diamonds).

A first point is that the average current can
never reach the maximum value of 1/4, as it is im-
possible to simultaneously find all protofilaments
in a MC phase. But there are several other fea-
tures of the current-density relation which deserve
attention. Each of them highlights a central ob-
servation: the current-density relation Eq. (3) is
qualitatively different from what would be expected
from a coarse grained picture. Indeed, intuitively
one might expect that a coarse-grained description
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Figure 9: (colour online) Current (J) and densities upstream (ρA) and downstream (ρB) from the full cross-
ing, at fixed exit rate (β): β = 0.07, β = 0.25, and β = 0.75. Simulations are plotted with coloured symbols,
both for the current and the densities. Colours code for each transport phase, additional labels are as defined
in Figure 7. Empty circles represent the density upstream from the crossing (ρA) while crosses represent
the density downstream from the crossing (ρB). The current J is plotted with empty triangles. Note that
the spacing of the data points has been maintained close to the critical values of α (dashed lines). In all
cases the current is a continuous function of the entrance rate, jumps in the density indicate discontinuous
transitions.
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Figure 10: (colour online) Locally averaged current-density relations upstream (J(ρA)) and downstream
(J(ρB)) the crossing point. Grey diamonds show a dense enumeration of mean-field predictions for pairs of
boundary rates (α,β) of the parameter plane. Open squares show simulation data for a selection of boundary
rates pairs. Black diamonds show the analytic mean-field prediction corresponding to each selected (α,β)
pair. Open squares are colour-coded depending on the transport phase, which are additionally indexed by the
capital roman labels as in Figure 7: respectively for vertices V(1:2), V(2:1) and V(1:1) we have I (LD:2LD;
2LD:LD; LD:LD), cyan; II (LD:2LD; 2HD:MC; LD:LD), blue; III (MC:2LD; 2HD:MC; MC:MC), green; IV
(LD:2LD; 2HD:HD; LD:LD), red; V (LD:2LD; 2HD:HD; HD:HD), purple; VI (MC:2LD; 2HD:HD; HD:HD),
orange and VII (HD:2HD; 2HD:HD; HD:HD), yellow.
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would be able to describe transport through the mi-
crotubule crossing in terms of a mapping onto a
coarse-grained V(2:2) branching point between two
transport paths, the properties of which are well
known [35]. However, this is not the case: the mi-
croscopic routing through the ensemble of transport
paths confers the compound transport relation dis-
tinctive new properties.

We discuss some of these features in the follow-
ing.

Density gaps. First, the current-density shows
’gaps’, i.e. certain density ranges cannot be at-
tained. It has been illustrated before that this is a
feature of an open system, for which the motor den-
sity can adapt freely to the imposed entrance/exit
rates [34, 35]. The existence of these gaps is directly
due to the presence of branching in the microscopic
transport pathways.

Degeneracy of the current-density rela-
tion. Second, the current-density relation is strik-
ingly different from what is usually observed, in-
cluding for branched systems: we are not dealing
with a one-to-one relation, i.e. the current is not
a well-defined function of the density. Indeed, the
current-density relation traces out an entire surface,
rather than a line.

Instead, simulation points for the locally aver-
aged relations between currents (JA and JB) plot-
ted as a function of the corresponding densities (ρA
and ρB) are spread out over surfaces. This amounts
to an infinite degeneracy for certain phases, as a
continuum of values of the current corresponds to a
single value of the density, or vice versa.

To see how this is due to an ambivalence in
the boundary rates we focus on phase V (LD:2LD;
2HD:HD; HD:HD) as an example. In this phase,
the (averaged) current in the compound tubule can
be read from Table 1 as

J =
1

4
[JA

,
V (1:2) + 2JA,V (2:1) + JA,V (1:1)]

=
1

4
[α(1 − α) + 2β(1− β)] .

(8)

Similarly, the density on the upstream compound
tubule can be read off as

ρA =
1

4
[ρA,V (1:2) + 2ρA,V (2:1) + ρA,V (1:1)]

=
1

4
[2 +

√

1− 2β(1− β) + α− β] .

(9)

The key here is that the rates α and β may be cho-
sen independently, within the intervals compatible
with this phase. Say these parameters are chosen
to produce a (compound) current J = JA at some
(compound) density ρA. Changing either α or β
will affect these values. However, it is now possible
to match the changes in these rates such that the
density ρA does not change, although the current
still does: it suffices to accompany a variation in
α by the required change in β, chosen to maintain
the equality expressed by Eq. (9). However, this

will typically modify the compound current J = JA
(Eq. (8)). Therefore there is a continuum of current
values which may be produced at a given density,
by choosing the entrance and exit rates as required.
Similarly, an infinity of densities may be selected
which all produce the same current.

Questions of particle-hole symmetry.
Third, both the upstream and the downstream
current-density relations do not show a particle-hole
symmetry, i.e. the interval of currents which can be
achieved for ρA, for example, differs from the one for
1− ρA. They are, however, symmetric one with re-
spect to the other when the mapping ρA ↔ 1−ρB is
made. This is a direct consequence of the symmetry
in the compound phase diagram, already discussed
in section 3.2.2.

Location of the zone of measurement. Fi-
nally, an important point follows directly from the
simple observation that the upstream and down-
stream relations are not identical: the location of
the zone of measurement matters. This is also an
entirely novel observation, which is due to the com-
pound nature of the microtubules, as well as that
of the crossing. Specifically, the current-density re-
lation which one would observe by measuring cur-
rent and density is different according to whether
an upstream section or a downstream section of the
microtubules are probed.

4 Discussion and conclusions

Essential features of cell structure and functionality
rely on the cytoskeleton and on cytoskeletal trans-
port. This is a collective process, in a crowded
environment, taking place on the scaffolding of in-
terlinked filaments which guide molecular motors.
This transport process is crucial, yet in vivo and
in vitro experiments are still very challenging. This
is mainly due to the fact that we are dealing with
a large scale process, taking place in the complex
environment which is the cytoplasm, as well as its
dynamical nature.

Summary and discussion In this work we
have addressed the question how the structure of
crossings between microtubule filaments, where mo-
tor proteins may switch from one filament to an-
other, affect the collective transport. We have done
so by considering the crossing as a compound object,
which we have decomposed into individual ’paths’
along which molecular motors advance stochasti-
cally. Rules for switching between such paths have
been formulated to represent a schematic micro-
tubule crossing, but can easily be adapted to other
scenarios. We have then implemented the TASEP
model for transport, a simple but paradigmatic
model, in order to highlight how the internal struc-
ture of the compound crossing strongly affects the
features of transport.
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We have constructed the full phase diagram of
the average density of the crossing filaments by a
mean-field method, based on well-established re-
sults for TASEP transport on branched structures.
It features distinctive phases, according to how the
entry and exit rates control individual transport
paths. Both continuous and discontinuous transi-
tions in the average density are present. Direct nu-
merical simulations of the transport process corrob-
orate our findings.

A central result is the corresponding current-
density relation. This relation is key in traffic sci-
ences for characterising the capacity of a transport
system, as it quantifies its ability to convey matter
efficiently [41]. Here we found that the fundamen-
tal relation shows several new features. These set
the compound crossing apart from a single branch-
ing point between transport paths, as they have
been considered heretofore. Most strikingly, there
no longer is an unequivocal relation between current
and density. Instead, in certain density regimes,
an entire range of currents can be produced for the
same density by varying the entry and exit rates.
This is qualitatively different from what is known for
TASEP transport, even when branching points are
present. The phenomenon is directly linked to the
fact that density and current are convoluted over all
transport paths at a given point along the filament.
Note that this reflects the experimental situation, as
resolving collective transport along each of the indi-
vidual paths appears currently out of reach. Beyond
the specific TASEP model used here, we expect this
to be a generic property which should hold for any
low dimensional transport process with compound
crossings between filaments.

Importantly, it follows directly from this result,
and also from the absence of particle-hole symmetry
in the current-density relation, that it is impossi-
ble to represent the compound crossing as a coarse-
grained 4-fold crossing between the two filaments.
Rather, the internal structure of the transport paths
through the crossing confers it a complexity which
largely exceeds that of a simple branching point,
and which is also reflected in the current-density
fundamental relation.

Another important point is the observation that
the current-density relation differs according to
whether measurements are made upstream or down-
stream from the crossing. This too is novel, and dif-
fers from what is seen for a simple branching point.
This feature is of particular interest, as it directly
impacts measurements, which therefore need to con-
sider carefully at which point the flux of motors is
measured as a function of the motor average density.

Towards realistic microtubule crossings
In a larger context, the impact of our findings goes
far beyond the, deliberately schematic representa-
tion, consisting of a ’microtubule’ with 4 protofila-
ments, which we have employed to expose the new
features as clearly as possible. As a proof of concept,
let us illustrate how information may be obtained on
a biologically more realistic crossing of two full mi-

crotubules with 13 protofilaments. To do so we elab-
orate one simple scenario, which is again inspired
by the situation in the experiments by Deeb et al.
[28], where microtubules are synthesised adhering
to glass plates. We reason in terms of categories of
protofilaments, according to how their transport is
affected by the other microtubule: it may be blocked
due to steric hindrance, receive or donate motor pro-
teins, or remain entirely unaffected by the presence
of the other microtubule. These are essentially what
made us retain four faces in our toy model. Here we
furthermore consider that those protofilaments ad-
hering to the glass surface are entirely unavailable
for transport, and we focus on the top microtubule
as an example. For the sake of simplicity we assume
that there are three protofilaments of each category,
as illustrated in Fig 11(b). The thirteenth protofil-
ament is attributed to the class of protofilaments
along which no motors are received or gained.

It is important to keep in mind that this is
one scenario, which we considered simplest when
two full microtubules with 13 protofilaments are
retained. Other scenarios may emerge as further
details of the microscopic processes are discovered.
Our aim here is simply to illustrate that a model
with such complexity may be addressed, and to
show that it leads to interesting predictions in terms
of the routing process for cargos.

We therefore analyse the individual transport
paths as they emerge from Fig. 11(b). For the
top microtubule, for example, the topmost protofil-
aments are unaffected, i.e. do not receive or donate
motors: these are the ones which, in the light of our
previous analysis, would have behaved as V(1:1).
But we also see three paths corresponding to V(2:1)
which receive motors from the other protofilaments
at the crossing, and three V(1:2) which donate mo-
tor molecules, as well as three protofilaments which
adhere to the surface and are therefore barred from
transport.

Currents and densities are then calculated by
straightforwardly generalising Eq. (8) and (9), by
adapting coefficients to account for all 13 protofil-
aments. Results are presented in Fig. 12, in a
way to make contact with the experimental results
in [28]. This particularly focusses on the impor-
tance of ’straight’ vs. ’switch’ events, according to
whether a motor protein continues to proceed along
the same microtubule or switches over to the other
microtubule at the crossing (recall that events where
motors detach at the crossing were found to be rel-
atively rare in the experiments and thus are not
considered here).

Fig. 12(a) represents separately the currents of
motors as they switch to the alternative microtubule
(Jswitch) and as they persevere on the same micro-
tubule (Jstraight). These currents correspond to the
number of motors moving through the crossing per
unit time, with or without switching, respectively.
The depicted currents are therefore proportional to
the number of corresponding events, and display-
ing them in the parameter plane of ’straight’ vs.
’switch’ characterises their relative importance, as
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(a) (b)

Figure 11: (a) Schematic representation of a crossing of two full microtubules with 13 protofilaments, ad-
hering to a glass surface. The scenario is inspired by the situation found in recent experiments [28]. (b) A
simple scenario for decomposing transport paths, for clarity shown on non-curved microtubules. Protofila-
ments close to the glass plate (shown in red) are considered inaccessible, and for simplicity motors switching
onto the alternative microtubule are taken to do so onto specific protofilaments.
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Figure 12: (colour online) Results for a full crossing of microtubules with 13 protofilaments, based on the
scenario sketched in Fig. 11(b) and described in the text. The representation of results is inspired by the
experimental work in [28], and focusses on the probability of ’straight’ and ’switch’ events at the crossing. (a)
Each data point in the ’straight’ vs. ’switch’ plane corresponds to a particular choice of entrance/exit rates
(α, β), and the corresponding phases are identified according to the same symbols and colour code as in Figs.
10. The straight line corresponds to experimental data from [28] on Kif3AA. (b) Histograms representing
the importance of ’straight’ and ’switch’ events, for different densities. Also indicated is the phase to which
transport corresponds, and the ratio of straight vs. switch events. The importance of these events is seen to
vary, indicating that re-routing is non-trivially affected by collective transport effects.
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exploited in [28]. The colour code and symbols,
identical to those in Figs. 10(a) and 10(b), further-
more indicate the underlying phases at which trans-
port is found to operate for each point (the phases
established in the phase diagram Fig. 7 are, by con-
struction, independent of the multiplicity of each
type of vertex). The data points are produced by
an enumeration of combinations of (α, β) rates, and
therefore cover the entire density range. Interest-
ingly, the low density data (labelled as phase I) fol-
low a straight line, which furthermore corresponds
to the correlation determined in [28], where straight
passing events have been found to be roughly 5
times more likely than switching events. Although
this does not prove that the hypotheses underlying
our scenario are correct or complete, it does mean
that our model clearly meets the experimental re-
sult for very low motor concentrations, as any valid
model should do.

Another point is illustrated in Fig. 12(b), where
the importance of ’straight’ and ’switch’ events
is characterised, opposing several motor densities.
The main point is that the importance of these
events varies depending on the density. Recall that
molecular motors were assumed to select any path
which is open to them with equal probability. How-
ever, the occupancy differs between the different
types of protofilaments, and can thus render either
’straight’ or ’switch’ events more likely, and this ef-
fect depends on density. The process of routing car-
gos through a crossing is therefore seen to be sen-
sitive to density, in a non-trivial way. For motor
densities as they are expected to arise in crowded
cellular environments, the routing process is there-
fore impacted significantly by collective transport
effects: the ratio of straight vs. switch events varies
by about a factor of 2 for the densities represented
in Fig. 12(b).

Outlook The overall context holds many fur-
ther perspectives. Clearly, the model presented
here has omitted many aspects of the complexity
of the processes which govern how motor proteins

behave at microtubule crossings. Many improve-
ments can be envisaged, and several such refine-
ments would be of particular interest in the light
of modelling actual cytoskeletal transport. Indeed,
it should be straightforward to incorporate the ab-
sorption/desorption of molecular motors (using the
TASEP-LK model, as has been done in [37]). Back-
stepping of motors can be addressed in the same
framework (also covered in [38]). More complex
microscopic behaviour at the crossing would re-
quire differentiating transition rates for switching
between filaments, such as a bias (as in [35]) or par-
ticular stepping rates at the crossing itself (as in
[39]). Further aspects which would be interesting
to study comprise bi-directional transport [46] and
the impact of motors switching between protofila-
ments even far away from the crossing [47, 48], or
several motors pulling a cargo [23], all of which may
arise in biological systems.

On a more exploratory note, it may be worth
pointing out that crossings between cytoskeletal fil-
aments are in fact dynamic structures. Indeed, var-
ious protein complexes intervene in many ways in
the sophisticated assembly, and affect or initiate
processes such as filamental growth, branching and
disassembly, as well as modify transport along the
filaments themselves [49, 50, 51, 52]. As we have
seen that crossings affect the dynamics of the col-
lective transport process in non-trivial manners, one
may thus wonder to which extent regulating these
protein complexes could also be a means of dynam-
ically programming this formidable transport ma-
chinery, in order to implement the need of routing
and re-routing biological cargos within the cell.
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A Appendix on 3-fold vertices

In this section we review a generic method for constructing the mean-field phase diagram of TASEP
segments interconnected at a branching point, based on the approach of effective rates [34, 35]. In
order to do so, we denote the density on the branching point ρ̃ and then consider each TASEP segment
individually. The idea is that the density ρ̃ sets effective entrance/exit rates for the joining segments,
so that we can then exploit the phase diagram of a single TASEP segment (see section 3.1.1). For the
branched system, we must list all possible phase combinations, as each segment may potentially be found
in either a LD, HD or MC phase. Among these phase combinations, only those are to be retained which are
compatible with current conservation through the crossing, for ranges of α and β which are not mutually
exclusive.

For the purpose of illustration we focus on the 3-fold vertex V(1:2) and we detail the calculation of
the phase LD:2LD. We hence decompose this branched structure comprising a 3-fold branching point into
three individual TASEP segments. We aim, for example, to achieve that segment A (upstream from the
crossing) as well as both segments B1,2 (downstream from the crossing) be in the LD state.

In terms of the density at the branching point ρ̃ (see Figure 5), the effective rates to be considered are
[35]

{

βeff = 1− ρ̃

αeff = ρ̃
2 .

(10)

In essence, a particle can exit from the upstream segment A into the branching point requiring only to
find that site unoccupied (probability 1−ρ̃), which sets the rate βeff . A particle on the branching point
(present with probability ρ̃) can be supplied to either of the downstream segments B (probability 1/2),
which sets the rate αeff . Based on these effective rates at the branching point, as well as the boundary
rates α and β, we can now characterise each segment through its entry and exit rates, just as for a single
TASEP segment. Therefore, the conditions required for setting a LD phase both on the segment A and
the segments B1,2 can now be read off the standard phase diagram of a single TASEP segment (see Figure
4(b)).

We find that, since segment A is required to be in the LD phase, its entry rate α must obey
{

α < βeff

α < 0.5
Eq. (10)⇐===⇒

{

α < 1− ρ̃
α < 0.5 .

(11)

In addition, the density in a low density phase being equal to the entry rate, we thus have ρA = α and
JA = α(1 − α) (see section 3.1.1).

Similarly, for the downstream segments B1 and B2 to be in a LD phase, the conditions for the effective
entrance and exit rates are

{

αeff < β
αeff < 0.5

Eq. (10)⇐===⇒
{

ρ̃ < 2β
ρ̃ < 1 ,

(12)

Like for segment A, this implies that ρB = αeff = ρ̃
2 and JB = ρ̃

2 (1−
ρ̃
2 ) (see section 3.1.1).

We can now deduce the remaining unknown of the system, the density at the branching point ρ̃, by
imposing current conservation at the branching point

JA = 2JB ⇔ ρ̃ = 1−
√

1− 2α(1− α) , (13)

where the latter condition is always true, since the negative branch must be chosen to respect ρ̃ < 1, and
always offers a real solution for α < 0.5.

Finally, we deduce the domain of existence of the phase LD:2LD in the parameter plane (α,β) by
combining all conditions on the rates α and β, as they are specified by Eqs. (11) and (12). Expressing
this in terms of the density ρ̃ at the crossing point via Eq. (13), the condition for the phase LD:2LD
requires rates α and β such that

{

α < 0.5

β >
1−

√
1−2α(1−α)

2 .
(14)

The reasoning is entirely analogous for all other phases.
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B Mock-up
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(TOP)

Figure 13: Mock-up of the 3-dimensional crossing of parallelepiped-like microtubules. To build it,
simply cut along the dashed lines, fold along the dotted lines, and paste the two parallelepipeds
such that the two grey arrows match. By orienting the face labelled with "(TOP)" towards the
top, the unwrapping of the paths along the microtubules into vertices, following the Figure 2,
becomes apparent immediately.
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