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Abstract

Squeal noise is an important issue in the automotive industry since it is one of the main reasons for the
return of vehicles to the customer service. Hence, it is essential to predict it in the design stage of a brake
system. The Complex Eigenvalue Analysis (CEA) remains the most widely used method to predict squeal
noise. The numerical cost associated to this method is important enough to make impossible the use of
parametric studies. The present study proposes the use of the kriging method to surrogate the eigenvalues
computed by the CEA by taking into consideration different uncertain parameters, namely the friction
coefficient and two small masses added to the caliper that correspond to a classical choice of structural
modifications used in the final phase of a brake design to avoid squeal noise. Thus, it is possible to assess
the influence of the structural modifications on the stability of the brake system and to get information to
choose the best brake design. Finally, uncertainty propagation is performed to get a robust design of the
brake.

Keywords Squeal noise, Complex Eigenvalue Analysis, Finite Element Model, Kriging, Meta-modelling, Un-
certainty propagation

1 Introduction

In the automotive industry, squeal noise is one of the main reasons for the return of vehicles to the customer
services, representing high costs. Indeed, in the collective imagination this noise is associated to a technical
failure of the brake system. For this reason, squeal noise is predicted early in the design stage to avoid it.

Hence, squeal has been a subject of research for a few decades. The first studies were dedicated to the
mechanisms that originate squeal. In a first time, tribological origins were considered with the stick-slip phe-
nomenon [1]. Then Spurr [2] proposed a model where the vibrations come from a geometrical modification of the
system and finally the concept of mode coupling appears which explains the squeal instability by the coupling
between two modes of the structure because of friction. By means of phenomenological models [3, 4], one can
demonstrate that the friction brings non-symmetric terms in the stiffness matrix bringing complex eigenvalues
and so instabilities may appear for some values of the friction coefficient. Hence, an increase of the friction
coefficient may lead to a mode coupling phenomenon. In other words, two frequencies merge while the two
associated real parts of the eigenvalues bifurcate. When one of those becomes positive, the system becomes
unstable. This analysis, called CEA for Complex Eigenvalue Analysis, is based on the determination of the
eigenvalues of the system around its non-linear static sliding equilibrium. However, this analysis may lead to
an under- or over-estimation of the number modes involved in the non-linear dynamic response of the brake
system and cannot predict all the complexity of the non-linear signature of transient and stationary squeal
events [5]. Indeed, a dynamic transient analysis has to be perform in addition to the stability analysis to predict
the non-linear behaviour of the squeal events [6–9]. However, the time integration methods or the alternative
non-linear methods may have a high computational cost and need complex implementation which make them
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unaffordable or difficult to use in an industrial context. For these reasons, the CEA remains the privileged
method in an industrial context, and more particularly in the automotive industry.

Deterministic codes incite a one input - one output vision where the parameters are often summarized to
their mean values. For very influential parameters, some parametric studies might be considered. However,
the consideration of uncertainty associated to some parameters may improve significantly the prediction of
squeal [10]. Before considering the propagation of the uncertainty, it is necessary to identify it and to quantify
it. Different kinds of uncertainty exist such as the uncertain parameters, for which the exact value is unknown;
the parametric variables, which can be design parameters; the model bias, since the equations are an approxi-
mation; etc. More generally, uncertainties are classified into two classes: aleatory and epistemic. An aleatory
uncertainty corresponds to an uncertainty related to the inherent character of the variable considered. This
kind of uncertainty is often described by a Probability Density Function (PDF). The epistemic uncertainty is
due to a lack of knowledge.

Hence, statistical approaches have been considered to study brake squeal. Numerically, probabilistic or non-
probabilistic methods can be used to consider uncertainty. Monte Carlo Simulations (MCS) have been conducted
in a first time [11] to propagate the uncertainty of the contact instability. Because the MCS strategy is quite
inefficient, other strategies have been considered such as first-order perturbation method [12] or Polynomial
Chaos Expansion (PCE) [13]. Whilst these methods provide interesting results, they require a high number
of computation and are not always adapted to a large number of parameters. Thus, developments on the
use of meta-modelling methods have been found since recently with the use of the linear regression [14–16],
neural networks or the kriging method [17, 18]. Nobari et al. [17], used kriging to predict the evolution of the
eigenvalue of one unstable mode of an automotive brake system by considering the uncertainty associated to
the Young modulus of different components and the friction coefficient. Nechak et al. [18] proposed to used
kriging to study the impact of four uncertain parameters (namely the Young modulus of both the pad and
disc, the friction coefficient and the contact stiffness at the friction interface between pad and disc) on the
squeal propensity for a simplified brake system. The authors are then interested only in the study of instability
due to friction from a global point of view. However, none deep study is performed to discuss the drawbacks
and the difficulties of using meta-models for prediction of the occurrences of brake systems subjected to multi-
instabilities. The problem of meta-modelling with multi-instabilities (with a high number of unstable modes
and not only one or two instabilities) can be a difficult subject because of the presence of many unstable
modes in a restricted frequency range and of the possibility of crossing phenomenon between the stable and
unstable modes. This makes it difficult to track the evolution of each mode versus the evolution of physical
parameters. Indeed, the construction of relevant and representative meta-models and tracking the evolution of
each unstable mode versus the evolution of physical parameters can be very difficult from a numerical point
of view. So the originality of this paper is not only to propose a deep discussion and a complete study on
this subject for an automotive brake system with multi-contact interfaces, but also to propose a new specific
methodology to correctly use meta-modelling for an industrial brake system for which many unstable modes
may appear in the frequency range of interest. The ultimate goal is to be able to use meta-models to bring a
deep understanding and a whole description of the global stability behaviour of the brake system as well as the
evolution of each unstable mode in the design interval of interest. To demonstrate the feasibility of the proposed
strategy different types of uncertain parameters will be considered in the present study. They correspond to
structural modifications conventionally used in the automotive industry to reduce brake squeal. Thus, the
objective of the meta-modelling will be to assess the impact of each structural modification on each unstable
mode and more generally on the propensity of brake squeal. More concretely, the methodology presented here
will be tested to discuss the design of an automotive brake system regarding squeal.

The paper is organized as follows. First, the finite element model of the automotive brake system under
study is presented as well as the numerical strategy used for the squeal prediction and the different uncertain
parameters. Then, the theoretical aspects of kriging will be given, and the global strategy applied. In the
third part of the study, some difficulties related to the creation of the experimental design are highlighted
and the new adopted strategy presented. Finally, the kriging methodology is used to create the meta-models.
They are first validated and then used to study the impact of the different parameters on the stability of the
system. Uncertainty propagation is then performed to assess a robust description of the stability behaviour of
the system.

2 Presentation of the mechanical system under study

This section is devoted to the presentation of the Finite Element Model (FEM) of the automotive brake system
under study as well as the numerical strategy adopted for the prediction of squeal occurrences. Finally, the
different uncertain parameters used for validating the efficiency of the kriging methodology are presented.
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Figure 1: View of the Finite Element Model of the brake developed with Abaqus - Assembled view (left) and
exploded view (right)

Element Material Young Modulus (GPa) Poisson’s coefficient Density (kg/m3)

Disc Grey cast iron 113 0.275 7075
Caliper Ductile cast iron 175 0.275 7200
Bracket Ductile cast iron 175 0.275 7200
Pad (support) Steel 210 0.29 7800
Brake lining GA7504 10.66 0.09 4870

10.66 0.14
2.610 0.56

Table 1: Material properties of the elements of the brake system

2.1 The finite element model of the brake system

The system under study is displayed Figure 1. It corresponds to an automotive brake system with a floating
caliper technology. The main components are the disc, the floating caliper, the outer and inner pads, the hub
knuckle, the piston and the wheel. A braking action consists in the following steps: a hydraulic pressure is
applied on the piston during the breaking action and the inner pad is pushed until it touches the disc. Then,
the reaction forces pull back the caliper and so the outer pad against the opposite side of the disc. This action
creates friction between the pads and the disc. During this event, brake squeal may appear and even if it does
not affect the braking efficiency, it is highly unpleasant for the user.

The implementation of the FEM is performed on Abaqus. A volume mesh is realized with 10-node quadratic
tetrahedron, it represents 103,444 elements and 182,337 nodes. The FEM is validated with a convergence study
with regards to the eigenvalues and mode shapes. The latter is not presented here for the sake of concision. The
material properties of the different components of the brake system are given in Table 1, the brake lining is an
orthotropic material so each line corresponds to the characteristics of the material in one direction. A classical
Coulomb’s law is used for the frictional interfaces between the pads and the disc and a linear penalty method
is used for the contact constraint enforcement. Braking pressure and disc rotation velocity are constant, and
the hydraulic pressure is modelled with an effort applied on the back of the piston and on the caliper surface.
The dynamic equation of the brake system can be written as :

MẌ + CẊ + KX + Fnl(X) = Fext (1)

where M, K and C are the mass, stiffness and damping matrices without contact and friction at the
pads/disc interfaces, respectively. X defines the vector of the generalized displacements and the dot denotes the
derivative with respect to the time. The vector Fext corresponds to the external efforts applied on the brake
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system, namely the pressure applied on the piston and the caliper. The vector Fnl represents the contribution
of both the non-linear contact forces and frictional forces at the pad/disc interfaces. At this stage of the paper
it is important to underline the fact that nine different contact interfaces of internal and external pads are also
considered for the automotive brake system under study (in addition to the pad/disc interfaces). The complete
description of the FEM brake system as well as the influence of various contact interfaces between pads, piston,
bracket and caliper are not the objective of the present study. The interested reader can refer for more details
in [19].

2.2 Numerical prediction of the squeal propensity: Complex Eigenvalue Analysis

As previously explained, the CEA is the method mainly used to predict squeal in the automotive industry
because of its low numerical cost compare to the other methods despite its over- or under-predictive nature of
the unstable modes. It consists in the determination of the eigenvalues of the brake system around its non-linear
sliding equilibrium since they characterize the possible appearance of an initial growing oscillatory behaviour.

The full CEA procedure is briefly detailed below. The first step of the CEA consists in the determination of
the non-linear static sliding equilibrium US of the system (i.e. KUS +FnlUS = Fext). Then, the local stability
is studied by considering a small perturbation around this equilibrium position. The associated eigenvalues
problem is defined by: (

λ2M + λC + (K + Jnl)
)
Ψ = 0 (2)

where Jnl denotes the Jacobian matrix of the non-linear forces Fnl at the point US. It is worth to note that
the non-linear contribution of the two pad/disc interfaces as well as the nine different contact interfaces of
internal and external pads are considered (see [19] for more details). λ is an eigenvalue and Ψ the associated
eigenvector. The global stiffness matrix (i.e. K + Jnl) becomes non-symmetric due to the friction terms in Jnl,
so the eigenvalues are complex as well as the eigenvectors. Considering the jth eigenvalue λj = aj + iωj and the
associated eigenvector Ψj , ωj defines the pulsation of the jth mode and aj the associated real part. If all the
real parts of eigenvalues are negative, then the local equilibrium point is considered as stable but if at least one
of them is positive, then the local equilibrium point is considered as unstable. It is worth to notice that the real
part aj corresponds to the initial growth rate of the dynamic response due to the appearance of one instability.
So the higher is the real part, the higher is the growth rate of the dynamic response of the perturbed system
while the system remains in the neighbourhood of the equilibrium position.

2.3 Uncertain parameters of the brake system

In the design of an automotive brake system, the robustness against brake squeal must be validated. It is
admitted that the friction coefficient at the pad/disc interface µ has a strong influence on the stability of the
system. For this reason, in the design stage, the stability of the brake system is investigated for different
values of this friction coefficient. When a brake system appears to have a too high squeal propensity, structural
modifications are investigated to cope with this issue. In the automotive industry, the classical first way to
reduce brake squeal is to investigate the effect of different designs of pads, calipers or discs on the squeal
propensity. Sometimes, the idea is to make very small modifications on an existing brake system, without
design modification of the different components of the brake system. This second choice generally resides in a
concern to find a solution to reduce brake squeal for a brake system that is already on the market or in the
final phase of conception, so that it is impossible to do a new complete design of all the brake components. In
this second case, the structural modifications can be the addition of small masses on different components of
the system for example. This choice will be proposed to illustrate the present study and the efficiency of the
kriging methodology in this context.

Thereby, three uncertain parameters are considered in the present study. The first one corresponds to the
friction coefficient µ at the pads/disc interfaces. More precisely two modelling choices will be made on this
parameter. Initially, studies will be conducted for a fixed value of the friction coefficient ranging from 0 to 1 in
order to get information on the whole stability behaviour of the brake system (Sections 4 and 5.3). In a second
time, different probability laws for the friction coefficient will be considered. This second choice of modelling
is based on the fact that the friction can vary between two braking actions because of the environment and so
it is unknown and can be described with an experimental distribution law [20]. This will be described in more
detail in the Section 5.4.

The two other parameters correspond to design parameters and more precisely to the addition of two small
masses on two opposite sides of the brake caliper. Here they are modelled with a modification of the material
density of two volumes displayed in red and blue in Figure 2. It corresponds to an addition of mass ranging
between 0 g and 250 g on each side and they are denoted M1 (red one) and M2 (blue one). The consideration
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Figure 2: Structural modification of the brake system

Parameter Notation Nature Min. value Max value

Friction coefficient µ random 0 1
Mass 1 M1 parametric 0 g 250 g
Mass 2 M2 parametric 0 g 250 g

Table 2: Uncertain parameters

of these two parameters comes from different reasons. First, from an industrial point of view, they correspond
to two design parameters used to improve the efficiency of a brake with respect to squeal. Usually, a maximum
of 250 g in total is added but in this study, it is possible to consider that all the mass is concentrated on one
side. Then, from a scientific point of view, these two masses have a strong influence on the mode shapes of the
caliper which is often involved in the mode coupling phenomena and so on the stability behaviour of the brake
system, as it will be demonstrated in Section 4. Thus, this set of parameters will make it possible to verify
the effectiveness of the kriging method on a difficult and complex example in relation to the strong variability
of squeal frequencies (i.e. unstable modes) in relation to the parameters considered. The different uncertain
parameters and their characteristics are summarized Table 2.

3 The kriging methodology

A strategy based on meta-modelling method consists in the approximation of a function with a mathematical
model that is constructed with a set of input/output determined with the complete model. Once the mathe-
matical model is constructed, it simulates the behaviour of the complete model and for a same input, it gives
the same output.

In this section, the mathematical aspects of kriging are quickly presented. For more information, the reader
can refer to [21–24].

3.1 Mathematical formulation

Kriging is an interpolation method where interpolated values are modelled by a Gaussian process. In other
words, the objective is to create a function M between an input vector x and an output scalar y. If the
dimension of the output is superior to 1, then a kriging model is build for each dimension. To create a surrogate

model, a set of inputs/outputs
{(

x(i), yi
)
i=1,...,N

}
, called Experimental Design (ED), is generated by the user.

The kriging approach consists in approximating the real process by a surrogate process M written as:

M(x) =

q∑
j=1

gj(x)βj + Z(x) (3)

where the (gj)j=1,...,q are q known real-valued functions, β is a vector of coefficients to be determined and Z is

a stationary Gaussian process of zero mean. Its covariance function is given by C(x,x′) = σ2R(x,x′) where σ2
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Kernel k(d,θ)

Gaussian k(d, θ) = exp(− d2

2θ2 )

Exponential k(d, θ) = exp(− |d|θ )

General exponential k(d, θ) = exp(−( |d|θ )p)

Matérn ν = 5/2 k(d, θ) =
(

1 +
√
5|d|
θ + 5d2

3θ2

)
exp(−

√
5|d|
θ )

Matérn ν = 3/2 k(d, θ) =
(

1 +
√
3|d|
θ

)
exp(−

√
3|d|
θ )

Linear k(d, θ) = max
(

0, 1− |d|θ
)

Spherical k(d, θ) =

{
1− 3

2
|d|
θ + 1

2

(
|d|
θ

)3
, if |d| < θ

0 , otherwise

Cubic k(d, θ) =

{
1− 3

(
|d|
θ

)2
+ 2

(
|d|
θ

)3
, if |d| < θ

0 , otherwise

Spline k(d, θ) =


1− 15

(
|d|
θ

)2
+ 30

(
|d|
θ

)3
, if 0 ≤ |d|θ < 0.2

1.25
(

1− |d|θ
)3

, if 0.2 < |d|
θ < 1

0 , otherwise

Table 3: Example of covariance functions in dimension 1

is the unknown variance of the process and R(x,x′) is the correlation function which is known. The functions
(gj)j=1,...,q are chosen according to the a priori knowledge of the phenomenon to model, they are often taken
as polynomial functions of order 0, 1 or 2. Usually, the function R is unknown but is often constructed with a
family of kernel functions parametrized by a parameter θ.

By assuming Z as a Gaussian process, then the best unbiased predictor is linear. The regression matrix G
is defined as the matrix Gij = gj(x

(i)) and the correlation matrix R is given by Rij = C(x(i),x(j))). If one
wants to predict the response y0 at the point x0, then g0 is defined as the vector of gj(x0) and r0 as the vector
of C(x0,x

(i)). The predictor of x0 is given by:

M(x0) = y0 = gT
0 β̃ + rT0 R−1

(
y−Gβ̃

)
(4)

where β̃ =
(
GTR−1G

)−1
GTR−1y and the mean square error is:

MSE(x0) = σ2

(
1− gT

0 R−1g0 +
(
g0 −GTR−1r0

)T (
GTR−1G

)−1 (
g0 −GTR−1r0

))
(5)

The reader can notice that the predictions are exact at the design points and that the variance is zero at
these points. It is also interesting to notice that the variance depends only of the inputs and not of the outputs.

The choice of the correlation function is crucial in the creation of the kriging meta-model and previous
developments are only valid if the matrix R is positive-definite. A classical way to construct it, is to choose a
kernel function family parametrized by θ to be determined from the available data by maximizing the likelihood
function or by minimizing the cross-validation error. Stationary kernel are often considered, i.e. they depends
from (x−x′). In dimension 1, several families are available, some examples are given Table 3. If the dimension
is superior to 1, then the tensorial product of these functions is considered, so:

R(x,x′) =

d∏
j=1

k(dj , θj) (6)

where dj = xj − x′j and d the dimension of the input space. The θj must be determined. The estimation of θ
is performed by solving a complex optimization problem and different algorithm can be used [21, 22, 24].

3.2 Global strategy

The global strategy is the following:

6

https://doi.org/10.1016/j.jsv.2019.114938


E. Denimal et al., 10.1016/j.jsv.2019.114938

1. the input set of the experimental design is generated with an optimized Latin Hypercube Sampling (LHS)
in order to have a homogeneous repartition of the points in the space,

2. the corresponding CEA are performed,

3. each eigenvalue is tracked with respect to the evolution of the different input parameters to generate the
different output sets of the experimental design,

4. for each eigenvalue, two meta-models are created: one on the real part and one on the frequency,

5. the different meta-models are validated,

6. the meta-models are used to analyse the stability of the brake system assuming a variation of the param-
eters and uncertainty propagation is performed for random parameters.

To performed these different steps, two packages of R are used: DiceDesign, for the creation of the ex-
perimental design and DiceKriging for the creation and the validation of the different meta-models [21]. The
different steps of kriging as well as the main drawbacks and difficulties of use in the context of an industrial
brake system subjected to multi-instabilities are developed in the following.

4 Creation of the Experimental Design (ED) and discussion on the difficulty of
the mode tracking

Some developments about the creation of the experimental design are given here. Indeed, once the input set is
generated and the associated CEA performed, it is then necessary to track each eigenvalue in order to create
their own experimental design. According to previous works made on a phenomenological model in [25], a MAC
criterion can be used to track the evolution of the different mode shapes with respect to the evolution of the
design parameters, this step is crucial to create the different experimental design for each eigenvalue. However,
the industrial system presented here involves a large number of modes compared to the phenomenological model,
making the system more complex. The aim of this part is first to discuss on the difficulty of the mode tracking
based on the MAC criterion and then to extend the strategy proposed in [25] to the industrial brake system.

4.1 Preamble - illustration on the difficulty of the use of mode tracking

For this study, only the friction coefficient µ at the pad/disc interfaces is retained as variable. The two additional
masses M1 and M2 are zero. This choice is based on the fact that the influence of the friction coefficient on the
stability behaviour of the brake system is of first order. Therefore, this preliminary study will help answer the
question of whether it is possible to track the variation of each mode of the system when one parameter varies.
In the following, a CEA is performed for a range of friction coefficient values from 0.05 to 0.9 with a step of
0.05. Nine mode couplings are observed, as illustrated in Figure 4. In the following the focus is put on the mode
coupling that appears at µ = 0.55 for a frequency equals to 1118 Hz. Thanks to the small scanning step, it is
possible to track ”by hand” the evolution of the two modes before the coalescence and the appearance of the
instability. In the following, the mode 1 will denote the stable mode for which the real part becomes strictly
negative and whose frequency varies between 1080 Hz and 1120 Hz. The mode 2 will denote the unstable mode
for which the real part becomes strictly positive and whose frequency varies between 1170 Hz and 1100 Hz.

The strategy presented in [25] consists in tracking the eigenvectors associated to the eigenvalues by comparing
two sets of mode shapes computed in p and in p + ∆p where p is the vector of the input parameters and ∆p a
small variation of it. The comparison between the mode shapes is realized with a MAC criterion and paired are
made from the largest values. In order to test this strategy on the FEM, the different MAC matrices obtained
by comparing the mode shapes of the modes 1 and 2 between µ and µ+ ∆µ are determined. At this level, all
the points of the model are used to compute the MAC. The different MAC matrices are given Figure 4. It is
possible to notice that before the coalescence (i.e. before µ = 0.5), the extra-diagonal terms of the different
MAC matrices are low. It means the mode shapes of the two modes are very different. However, the closer the
coalescence is, the higher the extra-diagonal terms are, and they become equal to 1 at the bifurcation point.
Indeed, the MAC matrix between the mode shapes at µ = 0.5 and µ = 0.55 is only composed of 1. After
the coalescence, the extra-diagonal values decrease a little until 0.75 which means the mode shapes of the two
coupling modes are similar. In other words, it is impossible to distinguish the two modes not only after the
coalescence pattern but also at the bifurcation point. For example, in the case considered here, when µ = 0.1,
the mode shape of the mode 2 is a mode that involves the caliper and the outer pad whereas the mode shape 1
involves only the disc. After the bifurcation, the two modes are visually identical and involves only the caliper
and the outer pad.
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Figure 3: Eigenvalues for different values of the friction coefficient (µ ∈ [0.05, 1]) in the complex plan
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Figure 4: Evolution of the different MAC matrices between the mode shapes of 1 and 2 between the successive
values of µ
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Figure 5: AutoMAC matrices of the different modes shapes of mode 1 and 2 for the different values of the
friction coefficient µ

The last important point is the choice of the step for the friction coefficient µ. Indeed, a a small scan
step was chosen to get minor variations of the mode shapes between two points to track them. However, the
objective is to have the ED with as few points as possible to have the lowest possible cost. It is then necessary
to find the maximal step on µ that allows to track the eigenvectors. In order to evaluate the influence of the
step of discretization on µ, the different mode shapes of the modes 1 and 2 are concatenated and the AutoMAC
matrix is determined. It is displayed Figure 5. Red lines correspond to the separation between the different
MAC matrices for the different values of µ. Hence, the block on line i and column j corresponds to the MAC
matrix of the mode shapes obtained for the ith value of µ and the modes obtained for the jth value of µ. The
blocks on the diagonal are the different AutoMAC matrices and the blocks just under or over the diagonal are
the different MAC matrices determined for two successive values of µ, in other words the matrices presented
previously Figure 4. The first observation that can be made is that the MAC matrix of the bloc (µ = 0.55,
µ = 0.55) is only composed of MAC values equal to the unity, so the mode shapes are identical. Moreover,
according to the evolution of the blocks located on the first row, only the mode 2 has its mode shape at µ = 0.05
that correlates with mode shapes observed after the coalescence. Whereas, the mode 1 has a mode shape at
µ = 0.05 that does not correlate with mode shapes observed after the coalescence. Hence, the two coupled
modes have, after the coalescence, a mode shape that is similar to only one of the two mode shapes observed
before the coalescence. Moreover, it appears that after the coalescence, by comparing the MAC matrices for
µ > 0.55, the diagonal terms are always really closed to 1 whatever the variation on µ. The extra-diagonals
terms are high but inferior to 1 which makes possible to differentiate the two modes. However, by comparing
the two first blocks of the bottom line for µ < 0.55, it can be noticed that a too high variation of µ implies a
decrease in the extra-diagonal terms up to 0.3 or even 0.1 for one of the two modes (see the block (µ = 0.05,
µ = 0.5)). The choice of the step on the friction coefficient must be done in order to ensure the tracking of
the mode shape, and so can not be too large. This conclusion is partly incompatible with considerations of
pre-design study via kriging methods for which the discretization of each design variables cannot be chosen as
refined.

These different remarks and observations prove that the mode tracking with a MAC criterion seems to be a
complicated task in an industrial context for a system with a large number of potential unstable modes. Indeed,
it would have been preferable to be able to build an ED of a small size to have a low global numerical cost for
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the construction of the meta-models. However, a too small number of points makes it more difficult to track
the modes, particularly in the coalescence zone. In fact, a high discretization in this area should be necessary,
more particularly on µ because of the high sensitivity to this parameter. This strategy is a dead-end since it
implies adding too many points in each coalescence zones, which can be numerous and distinct.

Other strategies have been investigated based on the study of the sub-vector space generated by the different
unstable mode shapes as proposed in [26, 27] but no better conclusion appears and the two coupled complex
modes seem to tend toward the same real mode. Because the mode shapes are highly sensitive with regards
to a controlled parameter (i.e. the friction coefficient µ in the present case), the mode tracking step will be
a tedious task since the MAC criterion will be quickly deteriorated. The choice of the ED and its size is of
major importance to ensure a correct mode tracking. Moreover, because it is not possible to track the two real
modes behind the mode coupling, the final strategy will be a restriction of the strategy proposed in [25] and
the mode shapes will be tracked only when the real parts of the eigenvalues are non-zero. The initial objective
was to characterize the system when it is unstable, so this restriction is not in contradiction with this objective.
Consequently, the meta-models will be constructed only on the unstable configurations of the brake system.
From an industrial point of view, this amounts to focusing on meta-modelling and predicting only squeal events
(i.e. the propensity of brake squeal), without seeking to predict the behaviour of the brake system when it is
stable. This restrictive objective is in perfect agreement with the expectations of engineers of the automotive
industry on the subject of brake squeal.

4.2 New strategy

Finally, the results presented here are obtained with all the points of the finite element model for the mode
shapes. But for storage reasons, this strategy is not relevant for the ED creation. Hence, a set of 500 points
homogeneously distributed on the system is retained. They are chosen to minimize the extra-diagonal terms of
the AutoMAC matrix of the unstable modes on a configuration of the system.

The new strategy consists in the unstable mode tracking when one instability appears for a specific chosen
frequency range. In the following, the part of the design space where at least one unstable mode appears will
be refereed by the term unstable zone. It is worth noting that damping was neglected in this study for a better
understanding and investigating of the proposed methodology. However, all the proposed analysis and the
kriging methodology based on the restriction of meta-modelling of unstable modes (i.e. modes with a positive
real part) is also applicable without any additional difficulty if damping is added.

For each eigenvalue (so for each mode), two meta-models will be created from this unstable zone. One
for the real part, denoted Ma, and one for the frequency, denoted Mω. However, this unstable zone does not
correspond to a regular Cartesian product of intervals of the design space, so it is necessary to get a test function
that tells if the two meta-models Ma and Mω are in their validity zone or not. To perform this, a new ED
is considered for the real part. On the points of the total ED where no pairing was performed, the value 0 is
assigned for the real part. This can be justified by the fact that the mode was tracked when it is unstable, and
so, on the other points of the total ED, the mode is stable (i.e. the real part of the eigenvalue is zero). From
this new ED, a third meta-model is created, denoted Ma0. If for an input, the absolute value of the output
Ma0 is superior to a threshold, then the meta-models Ma and Mω are valid and can be used. It is important
to notice that the attribution of a zero value where no pairing was performed can be dangerous. Indeed, the
mode tracking strategy can ”miss” a few points and these points does not have to be assigned to a zero value.
To avoid this problem, the different ED are always checked and aberrant points are removed.

5 Application for the squeal prediction

In this section the relevance and effectiveness of the proposed methodology is investigated for the prediction
of squeal propensity on an industrial brake system. As previously explained explained in Section 2.3 three
uncertain parameters are considered in the present study: the first one corresponds to the friction coefficient µ
at the pads/disc interfaces and the two other parameters correspond to the addition of two small masses M1

and M2 on two opposite sides of the brake caliper as illustrated in Figure 2. The associated characteristics for
each uncertain parameter are given in Table 2 can vary.

This section is organized as follows: first, the different experimental designs for the unstable modes are
created. Then, the different meta-models are created and validated. Finally, the meta-models are used to
analyse the influence of the different parameters on the stability of the system and to perform uncertainty
propagation.
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Figure 6: Experimental design after mode tracking

5.1 Creation of the experimental design

To generate the input points of the ED, an optimized Latin Hypercube Sampling (LHS) is created [21]. The
points are regularly distributed in the design space which increase the precision of the meta-model [28]. 250
points are so generated, and the interval boundaries are also added (i.e. 8 additional points). This leads to
a final input set of the ED with 258 points. The corresponding CEA are performed, and a MAC criterion is
used to distinguished the different mode shapes in the unstable zones as explained previously. The results are
displayed Figure 6 where the different eigenvalues are represented in the complex plan. Each color corresponds
to the evolution of an unstable or a stable mode for a specific mode coupling. It can be noted that the use of a
MAC criterion makes it possible to differentiate between the different modes of the brake system as illustrated
around 4500 Hz where several mode coupling are present.

Moreover, a set of 50 points, denoted validation set, is generated as reference results. This validation set will
be used to perform comparisons between the reference results and the kriging predictions in order to discuss
and demonstrate the relevance of the proposed strategy. It is worth to notice that each mode has its own
experimental design according to the part of the space where the real part of its eigenvalue is non-zero. For
each mode, the different ED are observed and aberrant points removed as previously explained in Section 4.

Finally, the kriging strategy will be used for nine coupling modes. The retained stable and unstable modes
are summarized Table 4 where the maximum of the real part, the associated frequency, the number of points
available for each ED and the number of validation points are given. It is important to note that only modes
with a sufficiently large number of points are retained (i.e. with more than 25 points in the ED) to build meta-
models with enough learning points. This fact corresponds to one of the limitations of using a meta-modelling
strategy. In other words, if one instability is not sufficiently well described in the design space via the input
points of the ED (i.e. the number of input points of the ED for which the instability appears is small enough)
then the latter will not be considered for the study. From an industrial point of view, this implies that the
propensity of brake squeal to such instability in the design space is low enough to be neglected.

5.2 Creation of the kriging meta-models and validation

For each mode, the three meta-models Ma, Mω and Ma0, previously defined in Section 4.2, are created. The
package DiceKriging available on the software R is used to create the different meta-models [21]. Two important
choices must be made by the user to build efficient meta-models: the type of regression function and the family
of kernel functions for the covariance determination. Three types of polynomial regression are considered here,
namely the 0 order, 1st order and 2nd order with the first interaction term. Three types of kernel are considered
here, namely Matérn 5/2, Matérn 3/2 and exponential kernel. As previously seen in [25], the best combination
differs according to the eigenvalue so for each meta-model, the combination of regression function and kernel
function that minimizes the Leave-One-Out (LOO) error is chosen. The latter is explained in the following with
the validation indicators.
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Mode no Nature Real part Frequency (Hz) Number of ED points Number of validation points

1 Unstable 30.4 877.5 27 7
2 Unstable 268.5 1885.5 129 24
3 Unstable 339.1 2311.7 29 4
4 Unstable 146.0 2832.8 47 9
5 Unstable 145.8 3468.9 203 36
6 Unstable 868.2 3896.3 186 34
7 Unstable 2687.4 4281.3 215 42
8 Unstable 309.0 4871.7 128 19
9 Unstable 48.9 5550.4 26 5
10 Stable -30.4 877.5 27 7
11 Stable -268.5 1885.5 129 24
12 Stable -339.1 2311.7 30 4
13 Stable -146.0 2832.8 47 9
14 Stable -145.8 3468.9 203 38
15 Stable -868.2 3896.3 186 34
16 Stable -2687.4 4281.3 215 42
17 Stable -309.0 4871.7 128 19
18 Stable -48.9 5550.4 26 5

Table 4: Characteristics of the main modes

Once the different meta-models are constructed, it is important to validate them. Two strategies are adopted
here. The first one is based on the comparison of the kriging prediction to the reference values from the
validation set. This approach has the advantage of being simple to understand and intuitive. However, it has
the disadvantage of requiring additional sample points that are not used for the construction of the meta-models.
This leads to the need for additional calculations, which is not in line with a strategy to reduce calculation times.
In order to avoid this, a second strategy will be used to validate the different meta-models without additional
points. This strategy is based on three classical indicators [21] to validate meta-models only from the data used
(without the need of additional validation points) will be used and explained in a second time.

As a first strategy of validation, the prediction of the kriging meta-models Ma and Mω are compared to
reference values of the validation set. The strategy is the following, a set of 50 points is generated on the whole
input space and the corresponding CEA are performed. Thanks to a MAC criterion, the different modes are
tracked. But as previously explained, this tracking process is only possible when the real parts of the eigenvalues
are different from zero. Thus, each mode has its own validation set with a different number of validation points.
Then, for each mode, the prediction of the kriging meta-modelsMa andMω are compared to the prediction of
the reference values of its validation set. Results are displayed Figure 7 for the real parts and for the frequencies.
Kriging predictions are in orange and reference CEA results in blue. For each mode, the predictions are really
close to the reference results even when strong variation are observed as for the frequency of mode 7 or for
the real part of modes 5 and 2 for example. If this way of validating the relevance of the meta-models has the
advantage to give visual results that are easy to understand and help to have a confidence in the meta-models, it
requires the evaluation of additional points that might be computationally expensive. Indeed, a CEA calculation
takes in average 45 min on the whole model. If a 50-points validation set is considered, then about 37 hours
are required for the generation of the validation set.

Thereby, three classical indicators [21] based on the calculated statistics will be now briefly described and
used to validate the relevance of the kriging meta-models. These indicators serve as diagnostics to indicate
whether the meta-modelling and its associated parameter values are relevant and reasonable. In other words,
they give some idea of how well the meta-model predicts the values at unknown locations before producing the
final surface by using only the points that have already been computed for the creation of the meta-models.
They do not require the use of additional computations, as is the case for the first strategy of validation. More
specifically, these indicators will be illustrated on the meta-models of the real part of modes 4 and 6, the results
being similar for the other meta-models. The first indicator is based on the Leave-One-Out (LOO) strategy.
The LOO method is a classical method used to validate a meta-model without additional point. This validation
removes part of the data, classically call the test dataset, and uses the rest of the data, classically called the
training dataset, to validate the relevance of the kriging meta-models by using the trend and autocorrelation
models to be used for prediction. Thereby, as a validation procedure, the LOO might be used as follow for each
point i of the experimental design. A new meta-model M∼i is built from the ED without the point i. Then,
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Figure 7: Comparison of the real parts (a) and the frequencies (b) of the different modes : kriging prediction
(∗) and reference (•)
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Figure 8: Validation of kriging meta-models for mode 4 (a) and mode 6 (b) - Leave-one-out validation (top) -
standardize residuals (middle) - Quantiles comparison (bottom)

the prediction of M∼i at xi is compared to the reference value from the ED, namely yi. If the meta-model is
of high quality of prediction, then it is expected to have M∼i(xi) = yi. This comparison is performed for each
point of the ED used to create the meta-models, it is illustrated on the top graphics of Figure 8. This figure
gives the scatterplot of predicted values via the LOO strategy (i.e. the circles in the plot) versus the true values.
We expect the points to be on the line y = x (i.e. the line in the plot) which means the fitted values are equal
to the exact values. For the validation of kriging meta-models for mode 4 and mode 6, whether there are few or
many points, the fitted values are extremely close to the exact values which is highly satisfactory. The second
indicator is the observation of the standardized residuals computed in the LOO process, they are given in the
middle graphics of Figure 8.

yi −M∼i (xi)

σ∼i (xi)
(7)

where yi is the exact output value at point i. M∼i (xi) defines the kriging prediction at point i when the
point i is removed of the ED and σ∼i (xi) the associated kriging standard deviation. Here, in both cases (i.e.
for kriging meta-models of mode 4 and mode 6), the standard deviations remain low (inferior to 3 in absolute
value), which is satisfactory. The last indicator consists in the comparison of the quantiles of the kriging
meta-model to the theoretical quantiles (i.e. the corresponding quantiles from a standard normal distribution).
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Indeed, the kriging method consists in approximating the output with a Gaussian process, but it is important
to validate this assumption. For this reason, the quantiles of the process of each kriging meta-model are then
compared to the theoretical quantiles of a Gaussian process. This is performed by using the classical Normal
Quantile-Quantile plot graph (Normal QQ-plot), as illustrated on the bottom graphics of Figures 8(a,b). For
the reader comprehension, the general QQ-plot is a graphical technique for determining if two data sets come
from populations with a common distribution. In the present study, the Normal QQ-plot when both sets of
quantiles come from normal distributions is used. So, if the errors of the predictions from their true values are
normally distributed, it is expected that the quantiles of the kriging meta-models (i.e. the circles in the plot)
should be equals to the theoretical ones (i.e. the line y = x in the plot) or at least lie roughly along this line.
For the two illustrative cases presented here, it is verified here.

Based on the proposed methodology for the meta-model validation, all the meta-models created have been
validated using these different indicators. It is important to note that this preliminary analysis is a critical and
necessary step for an engineering study. This makes it possible to validate the relevance and robustness of the
meta-models, and thus to be able to trust the prediction of the squeal propensity from the latter.

5.3 Squeal prediction

Once the meta-models are created and validated it is possible to use them to predict the squeal propensity of
the brake system. As an illustration, the evolution of the real parts and of the frequencies of five modes, namely
modes 2, 4, 5, 6 and 8, are given Figure 9 and Figure 10 respectively. The evolutions versus the two masses M1

and M2 are given for three different values of µ, namely 0.3, 0.5 and 0.7. White zones correspond to the area
for which the real part of the eigenvalues is equal to zero, and it only reflects that the system is stable. The
meta-model does not predict the frequency evolution for this zone due to the fact that no instability is present.
Therefore Figure 10 gives only the evolution of the frequency of unstable modes.

First of all, it is very clear that the results on the squeal propensity of the brake system are not intuitive.
The impact of adding these two masses can lead to changes in the brake’s behaviour that are sometimes complex
and require a fine analysis of the results and the role of these additional masses. Indeed, it is observed that
the influence of the masses M1 and M2 on the stability of the system depends of the considered mode and of
the value of the friction coefficient µ. Increasing the friction coefficient may lead to an increase, decrease or no
significant change of the instability area (see and compare for example the squeal propensity for modes 2, 6 and
8).

More specifically some comments can be made to illustrate the complexity of the results and the analysis
that can be carried out on the influence of these two additional masses:

• In the case of the mode 2, the stability area is more complex and is made of several distinct zones.
Increasing the friction coefficient µ induces an expansion of the unstable area. Moreover, the mass M2 has
a low influence on the real part of the system whereas the increase of M1 tends to stabilize the system.
Hence, when the value of the mass M1 is superior to 150 g and µ = 0.3, then the system is always stable.
When µ = 0.7, if M1 is superior to 220 g, the mode is always unstable;

• The mode 4 is almost always stable when µ = 0.3. Increasing the friction coefficient increases the instability
area for mode 4: the mode becomes unstable when M1 and M2 increase simultaneously. For this mode,
the location of the unstable zone is always obtained when both the additional masses are important;

• In the case of the mode 5, two stable zones are detected for µ = 0.3. For µ = 0.7 the system is unstable.
The ”most unstable zone” (i.e. the design area where the real part is the highest) is located for a low
value of M1.

• the mode 6 is always unstable (i.e. for µ = 0.3, µ = 0.5 and µ = 0.7). The ”most unstable zone” is not
the same for these three cases. For µ = 0.3, this zone corresponds to a high value of the mass M1 while
it is identified for a zero mass M1 in the cases of µ = 0.5 and µ = 0.7;

• the mode 8 is always stable when µ = 0.3 and always unstable when µ = 0.5. For µ = 0.7, the mode has
a stable and an unstable area. However, the maximum value of the real part is observed for µ = 0.7 (and
not for µ = 0.5). The addition of a mass M1 tends to increase the real part of the unstable mode. For
µ = 0.7, if the mass M2 is always superior to 150 g, then the mode is always stable. The design area where
the mode is the most unstable for µ = 0.5 and µ = 0.7, in the sense of the highest real part, remains the
same: it is located around the point M1 = 225 g and M2 = 20;

All these remarks demonstrate the different sensitivities of each mode to the modifications of the two additional
masses M1 and M2. If in some cases, the addition of mass has a stabilization effect, in other cases it can
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Figure 9: Evolution of real parts of the 1st, 3nd, 4th, 6th and 8th unstable modes versus M1 and M2 for different
values of the friction coefficient µ: from left to right: µ = 0.3, µ = 0.5 and µ = 0.7 - In white, the areas for
which the system is stable (i.e. null real part).
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Figure 10: Evolution of the frequency of the 1st, 3nd, 4th, 6th and 8th unstable modes versus M1 and M2 for
different values of the friction coefficient µ: from left to right: µ = 0.3, µ = 0.5 and µ = 0.7 - In white, the
areas for which the system is stable (i.e. null real part) and so frequencies are not estimated
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destabilize some modes, and the location of the ”most unstable zone” (i.e. the design area where the real part
is the highest) is not the same for all the unstable modes. It is worth noting that the phenomenon of mode
coupling (i.e. its generation and evolution), as well as the two modes involved in a coalescence of modes can
also be impacted by such structural modifications. This fact has not be observed in this particular case.

Similar conclusions can be made by analysing the frequency evolution of each unstable mode. The addition
of mass M1 and/or M2 modifies more or less the frequencies of each mode. Some modes are more impacted by
a modification of M1, as the mode 2, whereas other are more impacted by a modification of both M1 and M2,
as the mode 4. Finally, in some cases the influence of the masses is highly dependent to the value of the friction
coefficient µ. For example, for the mode 6, when µ = 0.3, the frequency is sensitive to a modification of M1

whereas when µ = 0.7, the two masses are influential.
These observations can be translated by the Sobol indices [29]. The first order indices are defined as follows:

Si =
V ar[E[Y |Xi]]

V ar[Y ]
(8)

and the total order indices are given by:

STi = 1− V ar[E[Y |X∼i]]
V ar[Y ]

(9)

where V ar(Y ) is the variance of the aleatory variable Y defined by f(X1, . . . , Xd) where (X1, . . . , Xd) are d
aleatory variables. And Xĩ = X1, X2, . . . , Xi−1, Xi+1, . . . , Xd. Figure 11 illustrates the results for the real
parts and the frequencies. First order indices are given in light grey and are an indicator of the influence of
the parameter lonely. Total indices are given in dark grey and correspond to the influence of the associated
parameters and its coupling with other parameters. A low Sobol indices means the influence of the parameter
is low, a high Sobol indices (i.e. almost equals to 1) means the influence is strong. These kinds of analysis give
indications about the influence of the different parameters and their coupling effect. Hence, the real part of the
mode 6 only depends of the friction coefficient µ and is not sensitive to masses M1 and M2. In the case of the
mode 2, the first order indices related to M1 is largely higher than the indices of µ and M2. It means the real
part of the mode 2 is more sensitive to a modification of the mass M1. This is confirmed by results displayed
Figure 9(d-f) where variations of µ and M2 have a low impact on the real part whereas a variation of M1 has a
larger influence on it. In the case of the mode 4, the three first order indices are relatively close. Indeed, they
are all located between 0.19 and 0.4, meaning all the parameters have an influence on the real part. However,
the difference between first order indices and total indices is quite large, so the effects are mostly coupled. The
influence of the different parameters on the frequencies are often different of the influence on the real parts.
For example, for the mode 1 the friction coefficient µ is the parameter with the larger impact on the real part
whereas its influence on the frequency is almost null. The latter is more sensitive to variations of M1 and M2.

In conclusion, all these results on squeal propensity demonstrate the complex influence of the different
parameters on the system stability. It proves the necessity to perform deep studies on the prediction of squeal
propensity for an industrial brake system. The unstable zones generated by the different modes are not trivial.
From a practical and industrial point of view, this clearly highlights the difficulty for an engineer to find
intuitively the set of parameters that decreases the squeal occurrences of a brake system. Moreover, the large
number of parameter to deal with and the complexity of the problem highlight the advantage of the strategy
presented here, based on a meta-modelling method. This strategy results in obtaining the influence of the
various parameters for a controlled numerical cost. Indeed, less than 250 CEA are required here, whereas 1003

CEA would have been required to get the same level of precision with a parametric study.

5.4 Extension to the inclusion of uncertainty propagation

As previously explained in Section 2.3, the friction coefficient µ can be described by a distribution law instead of
a deterministic fixed value. This choice aims to propose a more realistic modelling of the coefficient of friction.
The problem posed is then to be able to provide an answer on the impact of the friction law chosen on the
squeal occurrences.

Because the numerical cost of the meta-models is low, it is possible to performed Monte Carlo Samplings
(MCS) on the meta-models to propagate the uncertainty associated to µ. Hence, three different probability laws
are considered for the friction coefficient: two beta laws of shape parameters (2,8) and (8,2), denoted B(2,8)
and B(8,2) respectively, and an uniform distribution. The three distribution laws are displayed Figure 12 on
the left column. A grid of size (10 × 10) is considered for masses M1 and M2 and for each couple (M1,M2),
1000 Latin Hypercube Sampling (LHS) on µ are considered. This is done for each law on µ. Two kind of results
are considered: the mean number of instabilities and the mean of the sum of the positive real parts, displayed
on Figure 12 in the middle and right column respectively.
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Figure 11: Sobol indices of real parts (a) and frequency (b) of the different modes determined from the meta-
models Ma and Mω respectively - Light grey: first order indices - Dark grey: total indices
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Figure 12: Probability law (left), mean number of instabilities (middle) and mean of the sum of the positive
real parts (right) for the different probability laws: B(2,8) (top) - B(8,2) (middle) - Uniform (bottom)

First, the high impact of the probability law chosen for µ can be noted. Hence, for a B(2,8) law, the system
has in mean, a maximum of 4 instabilities and a minimum of 1.5 instabilities. Whereas with a B(8,2) law,
the system has, in mean, a maximum of 6 instabilities and a minimum of 3 instabilities. The influence on the
mean of the sum of the positive real parts is also important. In the case of the B(2, 8) law, the mean varies
between 200 and 600 whereas with a B(8, 2) law, it varies between 1250 and 2000. Moreover, the variations of
the mean number of instabilities and the mean of the sum of the positive real parts also depends of the chosen
distribution. For example, in the case of a B(2, 8) law, the mean number of unstable modes is minimal and
equal to 1.5 if M1 = 50 g and M2 = 200 g. If it is a B(8, 2) law or a uniform law, this minimum is reached
for M1 = 100 g and M2 = 225 g. Similarly, for the mean of the sum of the positive real parts, the minimum
is reached for M1 = 110 g and M2 = 250 g when µ follows a B(2, 8) law and variations around this points are
low. In the case of a B(8, 2) distribution or a uniform distribution, this minimum is located at M1 = 80 g and
M2 = 250 g with more important evolutions around this point.

These results coupling with the results presented on Figures 9 and 10 also show the difficulty to select the
best design for the masses in order to suppress or to reduce squeal in the current system. It is recalled that
it is necessary to determine the non-linear dynamic response of the brake system (i.e. the determination of
self-excited vibrations) in order to select the best design to reduce brake squeal. The proposed methodology
based on a kriging strategy only provides the optimal design versus the occurrences of brake squeal.

As a conclusion, these results illustrate the importance to identify as soon as possible and the more precisely
as possible the probability laws of the physical parameters considered as uncertain during a squeal study. This
study also shows the interest of the use of meta-models that allow to perform additional parametric studies
with a reasonable calculation cost.

6 Conclusion

The present study proposed the use of the kriging methodology to predict the stability behaviour of an auto-
motive brake system subjected to a lot of potential unstable modes. The main objective is to illustrate the
relevance of this approach for predicting the evolution of each unstable modes of the brake system with respect
to structural modifications of the system.
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Hence, the CEA procedure is used to predict the stability of the finite element model of an automotive brake
system. Three uncertain parameters are considered in the present study, namely the friction coefficient and two
small masses added to the caliper. The addition of two small masses corresponds to a classical choice in the
field of the automotive industry for structural modifications used in the final phase of a brake design to avoid
squeal noise.

The first part of the study highlights the difficulty to track the evolution of unstable modes at the coalescence
point, so the eigenvalues can be tracked only when their real parts are non zero and so the meta-models are
built only on this area. Once the meta-models are validated, it is possible to predict the squeal behaviour of
the brake system.

Results show the high impact of the two additional small masses on the squeal propensity of each mode.
Above all, it appears that each mode has a completely different behaviour versus squeal occurrences and the
impact of these additional masses depends of the considered mode. This result can be explained by the fact
that adding small masses can drastically modify the mode shapes of the caliper which is often involved in the
mode coupling phenomena and so on the stability behaviour of the brake system. Thereby, all the proposed
analyses highlight the complex behaviour of an automotive brake system that has many unstable modes and
the difficulty to identify the best design in regard to brake squeal. The results obtained tend to suggest that
the kriging method can be considered to identify the best design with a lower number of simulations and/or
with a larger number of parameters.

Finally, an extension of the proposed approach with the inclusion of uncertainty propagation is performed to
assess a robust analysis of the propensity of brake squeal. Results show the importance of a correct identification
of the input distribution laws before performing uncertainty propagation, the latter ones having a very strong
impact on the results of brake squeal.

Acknowledgments
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[15] H. Lü and D. Yu. Optimization design of a disc brake system with hybrid uncertainties. Advances in Engineering Software,
98:112–122, 2016.

[16] M. Treimer, B. Allert, K. Dylla, and G. Müller. Uncertainty quantification applied to the mode coupling phenomenon. Journal
of Sound and Vibration, 388:171–187, 2017.

[17] A. Nobari, H. Ouyang, and P. Bannister. Uncertainty quantification of squeal instability via surrogate modelling. Mechanical
Systems and Signal Processing, 60:887–908, 2015.

21

https://doi.org/10.1016/j.jsv.2019.114938


E. Denimal et al., 10.1016/j.jsv.2019.114938

[18] L. Nechak, F. Gillot, S. Besset, and J-J. Sinou. Sensitivity analysis and kriging based models for robust stability analysis of
brake systems. Mechanics Research Communications, 69:136–145, 2015.

[19] E. Denimal, J-J.Sinou, S. Nacivet, and L. Nechak. Squeal analysis based on the effect and determination of the most influential
contacts between the different components of an automotive brake system. International Journal of Mechanical Sciences,
151:192–213, 2019.

[20] S. Oberst and J.C.Ss Lai. Statistical analysis of brake squeal noise. Journal of Sound and Vibration, 330(12):2978–2994, 2011.
[21] O. Roustant, D. Ginsbourger, and Y. Deville. Dicekriging, diceoptim: Two r packages for the analysis of computer experiments

by kriging-based metamodeling and optimization. 2012.
[22] S.N. Lophaven, H.B. Nielsen, and J. Søndergaard. DACE: a Matlab kriging toolbox, volume 2. Citeseer, 2002.
[23] F. Bachoc. Parametric estimation of covariance function in Gaussian-process based Kriging models. Application to uncertainty

quantification for computer experiments. PhD thesis, Université Paris-Diderot-Paris VII, 2013.
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