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Abstract
We consider the bandit-based framework for diversity-preserving recommendations introduced
by Celis et al. (2019), who approached it mainly by a reduction to the setting of linear bandits.
We design a UCB algorithm using the specific structure of the setting and show that it enjoys
a bounded distribution-dependent regret in the natural cases when the optimal mixed actions put
some probability mass on all actions (i.e., when diversity is desirable). Simulations illustrate this
fact. We also provide regret lower bounds and briefly discuss distribution-free regret bounds.
Keywords: Multi-armed bandits; UCB strategy; diversity; regret bounds: upper and lower bounds

1. Setting and literature review

We consider stochastic bandit models with finitely many arms. All of them are desirable actions,
though some lead to higher payoffs. Effective (regret-minimizing) algorithms are bound to play
the optimal arm(s) an overwhelming fraction of time. Celis et al. (2019) refer to this effect as
polarization and introduce a model to avoid it. We suggest the alternative terminology of preserving
diversity. A general formulation of the diversity-preserving bandit model is provided below and is
summarized in Protocol 1. Our aim in this article is to deepen and improve on the results obtained
by the mentioned reference; see Sections 1.2 and 1.3 for details.

Extended literature review. A general discussion of the notions of diversity and fairness in
stochastic and adversarial bandits is provided in Appendix B.

Diversity-preserving bandits As in traditional K–armed bandits, K probability distributions
ν1, . . . , νK associated with each arm are considered, with expectations denoted by µ1, . . . , µK .
These distributions are unknown to the learner but belong to a known set of possible distributions,
called a model D. In this article we consider mainly the bandit model D[0,1] of all probability
measures supported on [0, 1], that is, we assume that rewards can be distributed according to any
distribution bounded in [0, 1]. An exception to this is the lower bound in Section 3, which we
formulate on a generic model D satisfying a mild assumption.

The learning protocol is the following. An arm At ∈ [K] is picked among K choices at each
round, where we denote by [K] the set {1, . . . ,K}. The learner then obtains a payoff Yt drawn at
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random according to νAt given that choice. This is the only observation made (the learner does not
know what it would have obtained with a different choice). However, the distinguishing feature of
the bandit model by Celis et al. (2019) is that the choice ofAt is made in two steps, as follows. First,
a distribution p

t
over the arms is picked, in some known closed set P , which quantifies diversity

(specific examples are given below); then, the armAt is drawn at random according to p
t
. Following

game-theoretic terminology, we will call a ∈ [K] pure actions or ams, and p ∈ P mixed actions or
probabilities.

We measure performance in terms of expected payoffs. The expected payoff at round t may be
computed by repeated applications of the tower rule:

E[Yt | At, pt] = µAt , thus E
[
Yt | pt

]
=
∑
k∈[K]

pt,k µk
def
=
〈
p
t
, µ
〉
, thus E[Yt] = E

[〈
p
t
, µ
〉]
.

Maximizing the cumulative expected payoff of a policy amounts to minimizing the expected regret
defined as

RT = T max
p∈P

〈
p, µ

〉
− E

[
T∑
t=1

〈
p
t
, µ
〉]
.

In the definition of the regret, the comparison is made with respect to the expected payoff that would
have been obtained by picking at each round a best diversity-preserving distribution over the arms.

Protocol 1 summarizes the setting and aim.

Protocol 1 Diversity-preserving stochastic bandits (Celis et al., 2019)
Known parameters

Arms 1, . . . , K and model D of distributions for the arms
Closed set P of diverse enough probability distributions over the arms

Unknown parameters
Probability distributions ν = (ν1, . . . , νK) in D, with expectations µ = (µ1, . . . , µK)

for t = 1, 2, . . . do
Pick a distribution p

t
= (pt,1, . . . , pt,K) ∈ P over the arms

Draw at random an arm At ∼ pt
Get and observe a payoff Yt ∼ νAt

drawn at random according to νAt
given At

end for

Aim
Minimize the expected regret RT = T max

p∈P

〈
p, µ

〉
− E

[
T∑

t=1

〈
p
t
, µ
〉]

1.1. Examples of diversity-preserving sets P of distributions over the arms

Simplest example. The simplest requirement is that each arm should be played with some mini-
mal probability ` > 0, which corresponds to P =

{
p : ∀a ∈ [K], pa > `

}
. This constraint makes

sense in online advertisement: all offers need to be displayed a significant fraction of the time and
get a significant chance to be selected.

More generally, Celis et al. (2019) indicate that one could group arms intro groups G1, . . . , GN
of similar arms and impose minimal probabilities `1, . . . , `N > 0 as well as maximal probabilities
u1, . . . , uN < 1 for each group defined as:
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P =

{
p : ∀g ∈ [N ],

∑
a∈Gg

pa ∈ [`g, ug]

}
.

Note that the sets P considered above are finite polytopes1.

Maintaining a budget. The last example can be generalized as follows: every pure action a

is associated with N costs c(1)
a , . . . , c

(N)
a in R, accounting for limited resources or environmental

costs like the amount of carbon emissions generated from taking the action. The model can handle
negative costs (e.g., negative carbon emissions). When a player picks a pure action At according to
the mixed action p = (p1, . . . , pK), the N expected costs associated with her choice are∑

a∈[K]

pac
(1)
a , . . . ,

∑
a∈[K]

pac
(N)
a .

In this case, a reasonable objective for the player is to maximize her payoff under the constraints
that, for all n ∈ [N ], the n–th expected cost of her actions be kept under a certain level un ∈ R.
This amounts to playing under Protocol 1 with the probability set

P =

{
p : ∀n ∈ [N ],

K∑
a=1

pac
(n)
a 6 un

}
.

This set is again a finite polytope. Note that the name “diversity-preserving” was inspired by the
example of the previous paragraph and is perhaps less relevant in the present example.

1.2. Algorithms considered and regret bounds achieved by Celis et al. (2019)

Celis et al. (2019) approach the setting considered above by seeing it a special case of linear
stochastic bandits. Indeed, we showed that the expected payoff obtained at each round equals
E
[
Yt | pt

]
=
〈
p
t
, µ
〉
, which is a linear function of the probability p

t
picked. This observation

opens the toolbox of algorithms to deal with stochastic linear bandits (with action set A = P , see
Appendix C for more details) to solve the considered problem; this is exactly what Celis et al. (2019)
do. For instance, they use the LinUCB (linear upper confidence bound), also known as OFUL (opti-
mism in the face of uncertainty for linear bandits), strategies introduced by Li et al. (2010) and Chu
et al. (2011) and further studied by Abbasi-Yadkori et al. (2011). They obtain regret bounds of order
at bestK(lnT )2/∆, with the notation of Theorem 1, which is of the same order as our most general
bound (Case 1 of Theorem 1). However, their algorithm is less computationally efficient, and the
lower order terms, as well as the numerical factors in the bounds are worse than ours. The case of a
bounded regret is also not covered, while it constitutes our main contribution; see Section 1.3 below.

The main reason behind these suboptimal bounds is related to a loss of information, due to
discarding the pure action At picked, which is known, and relating the reward Yt ∼ µAt to p

t
and

not to At. The considered setting can thus be described as a stochastic linear bandit setting with
augmented feedback. See Appendix C for more details on these statements, including an intuition
on why sharper regret bounds are achieved with the additional information of which arm At was
picked and a literature review on bandit models with augmented feedback (and thus, improved regret
bounds), discussing contributions like the ones by Caron et al. (2012) and Degenne et al. (2018).

1. In this article, we define finite polytopes as convex hulls of a finite set of points (definitions of polytopes vary by
articles and there is no universal terminology).
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1.3. Summary of our contributions and outline of the article

Section 2 introduces our main algorithm, a diversity-preserving variant of UCB, which is computa-
tionally efficient. Theorem 1 provides several regret bounds, the most interesting ones guaranteeing
a bounded regret in the natural cases when some probability mass is put on all arms either just by the
optimal mixed actions (non-explicit bound) or by all actions (closed-form bound); this corresponds
to the cases when diversity is indeed desirable. Section 3 discusses lower bounds: Theorem 2,
which relies on the approach introduced by Graves and Lai (1997), indicates that lnT rates are
unavoidable in the case when some arms receive zero probability mass by optimal actions, if in
addition the means of the distributions in D are not bounded from above. Section 4 illustrates the
dual behavior of either a bounded regret or a lnT regret for our variant of UCB. Most of our claims
are proved in the main body of this article. However, an appendix collects an extended literature
review and technical considerations used in the proofs of Sections 2 and 3. It also briefly discusses
distribution-free regret bounds (which are less challenging in this diversity-preserving setting), see
Appendix A.

2. Diversity-preserving UCB: distribution-dependent regret upper bounds

To state our main algorithm, we first introduce estimations of the means µa of the arms a ∈ [K].
We define

Na(t) =
t∑

s=1

1{As=a} and µ̂a(t) =


1 if Na(t) = 0

1

Na(t)

t∑
s=1

Ys1{As=a} if Na(t) > 1

Note that in the diversity-preserving setting, we cannot ensure that arm a be picked even once.
Therefore, contrary to the vanilla bandit setting, it is important to handle the case when Na(t) = 0.
We thus set a default value of 1 (the maximal average reward) for µ̂a(t) in this case. For the
same reason, we put a maximum in the denominator of the upper confidence bounds Ua(t), see
Algorithm 1 below.

We assume that P is a finite polytope (see Footnote 1): it is the convex hull of a finite set of
points Ext(P). The natural extension of the UCB algorithm to our setting is stated next. Note that
the maximum of the linear functional p ∈ P 7→

〈
p, U(t− 1)

〉
is reached for some p in Ext(P).

The requirement that p
t

be chosen among Ext(P) only is made for technical reasons.

Algorithm 1 Diversity-preserving UCB for rewards in [0, 1] and when P is a finite polytope

1: Initialization: U(0) = (1, . . . , 1)
2: for rounds t = 1, . . . , do
3: Select (ties broken arbitrarily) and play p

t
∈ argmax

p∈Ext(P)

〈
p, U(t− 1)

〉
4: Play the pure action At ∼ pt
5: Get and observe the reward Yt ∼ νAt

6: Compute the upper confidence bound vector U(t) =
(
U1(t), . . . , UK(t)

)
according to

∀a ∈ [K], Ua(t) = µ̂a(t) +

√
2 ln t

max
{
Na(t), 1

}
7: end for
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The analysis relies on the suboptimality gaps. To define them, we first define the optimal ex-
pected payoff and the set of optimal mixed actions as

M(µ,P) = max
p∈P

〈
p, µ

〉
and Opt(ν) = argmax

p∈P

〈
p, µ

〉
. (1)

The suboptimality gap of a given mixed action p ∈ P and the suboptimality gap of the set Ext(P)
are in turn defined as

∆(p) = M(µ,P)−
〈
p, µ

〉
and ∆ = min

{
∆(p) : p ∈ Ext(P), ∆(p) > 0

}
. (2)

(We assume that at least one p ∈ Ext(P) is such that ∆(p) > 0, otherwise, all strategies have a null
regret.) In the analysis, it will be handy to consider, for p ∈ Ext(P) and t > 1,

Np(t) =

t∑
s=1

1{p
s
=p} , so that (by the tower rule) RT (ν) =

∑
p∈Ext(P)

∆(p)E
[
Np(T )

]
.

(3)
In this setting, that decomposition of the regret in terms of gaps of mixed actions p is more useful
than the classical decomposition in terms of gaps for each pure action a ∈ [K].

To state our main bound, we define some minimal values of probabilities of playing each arm a,
as far as optimal mixed actions and all mixed actions are concerned, respectively:

p?min(ν) = min
p∈Opt(ν)

min
a∈[K]

pa and ` = min
p∈P

min
a∈[K]

pa .

The fact that p?min(ν) > 0 (respectively, ` > 0) corresponds to the case when Opt(ν) (respectively,
P) is in the relative interior of the simplex. The assumption ` > 0 of Case 3 in the theorem below is
more stringent than the assumption p?min(ν) > 0 of Case 2 (and Case 1 comes with no assumption).

Theorem 1 Assume that the diversity-preserving set P is a finite polytope and the bandit model
is D[0,1], the set of all distributions over [0, 1]. Then, the regret of diversity-preserving UCB (Algo-
rithm 1) is bounded as follows, for all bandit problems ν:

1. In all cases, RT (ν) 6
24K

(
ln(1 + T )

)2
+K + 2

∆
.

2. If P and ν are such that p?min(ν) > 0, then the regret is bounded, lim
T→∞

RT (ν) < +∞ .

3. If P is such that ` > 0, then the regret is bounded by the closed-form bound

RT (ν) 6
24K

∆
ln

(
1 +

32

∆2`
ln

(
16

∆2`

))
+

7K + 3

min{∆, `2}
.

The theorem is proved in the rest of this section. For now, we issue two series of comments.
Comment 1: The assumption of Case 2, which reads p?a > 0 for all a ∈ [K] and all optimal mixed
actions p?, is a natural assumption, which models the fact that preserving diversity is desirable (all
arms are somewhat useful). We show that bounded regret is possible in this case.
Comment 2: Of course, running a classical UCB on the mixed actions in Ext(P) would guarantee
a regret bound of order

(∑
p∈Ext(P) 1/∆(p)

)
lnT . This would even improve asymptotically over

the (lnT )2 rate of Case 1. However it would come at a price of huge impractical constants when P
has many vertices, and would not cover the case of bounded regret. Importantly, our algorithm is
also more elegant and computationally slightly more efficient.
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2.1. Common part of the proofs

We consider the events

E(t) =

{
For all a ∈ [K],

∣∣µa − µ̂a(t)∣∣ 6√ 2 ln t

max
{
Na(t), 1

}} (4)

and E ′(t) =

{
For all a ∈ [K],

√
2 ln t

max
{
Na(t), 1

} < ∆

2

}
.

When both E(t) and E ′(t) hold, for any suboptimal p ∈ Ext(P) and any optimal mixed action p?,
we have the following chain of inequalities, where we use ∆ 6 ∆(p):

〈
U(t), p

〉
=
〈
µ̂(t), p

〉
+

K∑
a=1

pa

√
2 ln t

max
{
Na(t), 1

} 6
〈
µ, p

〉
+ 2

K∑
a=1

pa

√
2 ln t

max
{
Na(t), 1

}
<
〈
µ, p

〉
+∆ 6

〈
µ, p

〉
+∆(p) =

〈
µ, p?

〉
6
〈
µ̂(t), p?

〉
+

K∑
a=1

p?a

√
2 ln t

max
{
Na(t), 1

} =
〈
U(t), p?

〉
.

In that case, by construction of our algorithm as an index policy, no suboptimal mixed action is
picked; put differently, and writing B for the complement of any event B,{

pt+1 /∈ Opt(ν)
}
⊆ E(t) ∪ E ′(t) .

Since the (non-expected) instantaneous regrets rt = 〈p? − p
t
, µ〉 are always smaller than 1 given

that the considered bandit problem lies in D[0,1], and for a time t0 > 1 to be defined by the analysis,

RT (ν) = Rt0(ν) +

T∑
t=t0+1

E[rt] 6 Rt0(ν) +

T∑
t=t0+1

P
{
pt /∈ Opt(ν)

}
6 Rt0(ν) +

T−1∑
t=t0

P
(
E(t)

)
︸ ︷︷ ︸
62Kt−3

+

T−1∑
t=t0

P
(
E ′(t)

)
6 Rt0(ν) + 3K +

T−1∑
t=t0

P
(
E ′(t)

)
, (5)

where, for the final inequality, we used Lemma 4 of Appendix D (which is a direct application of
Hoeffding’s inequality together with a union bound) to get P

(
E(t)

)
6 2Kt−3 for t > 2 (true also

for t = 1), together with the fact that the series of the 1/t3 sums up over t > 1 to ζ(3) < 1.21.

2.2. Proof of Case 3 of Theorem 1

Let t0 = max
{
t ∈ {2, 3, 4, . . .} : (8 ln t)/∆2 > t`/2

}
, which is well defined since (8 ln 2)/∆2 > 1

and (ln t)/t→ 0 as t→ +∞. We have, for t > t0 + 1,

E ′(t) =

{
∃a ∈ [K] : Na(t) 6

8 ln t

∆2

}
⊆
⋃
a∈[K]

{
Na(t) 6

t`

2

}
⊆
⋃
a∈[K]

{
Na(t)−

t∑
s=1

ps,a 6 −
t`

2

}
,

6
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where we used, for the last inclusion, the fact that ps,a > ` by definition of `. By the Hoeffding-
Azuma inequality (see, e.g., Lemma A.7 in Cesa-Bianchi and Lugosi 2006), for all t > 1 and all
ε > 0,

P

{
Na(t)−

t∑
s=1

ps,a 6 −ε

}
6 exp

(
−2ε2/t

)
.

Therefore,
+∞∑
t=t0

P
(
E ′(t)

)
6 1+

+∞∑
t=t0+1

∑
a∈[K]

exp

(
−2

t

(
t`

2

)2
)

6 1+K

+∞∑
t=t0+1

exp

(
− t`

2

2

)
6 1+

K

1− e−`2/2
.

We substitute the above bound into (5) together with Rt0 6 24K
(
ln(1 + t0)

)2
/∆ + (2 + K)/∆,

which follows from Case 1 of Theorem 1 (later proved in Appendix D.3); we get

RT (ν) 6
24K

(
ln(1 + t0)

)2
∆

+ 3K +
2 +K

∆
+ 1 +

K

1− e−`2/2
.

The proof of Case 3 is concluded by proving (see Appendix D.1)

t0 6
32

∆2`
ln

(
16

∆2`

)
(6)

and by performing crude boundings to improve readability, like 1/(1− e−u) 6 1 + 1/u for u > 0.

2.3. Proof of Case 2 of Theorem 1

Based on (5) with t0 = 1, we only need to prove that the sum of the P
(
E ′(t)

)
over t > 1 is finite.

To do so, we denote, for t > 1,
N?(t) =

∑
p∈Opt(ν)

Np(t)

the number of times up to round t an optimal mixed action was pulled. We decompose events based
on whether N?(t) is larger or smaller than t/2: by several applications of the union bound,

P
(
E ′(t)

)
6 P

({
N?(t) >

t

2

}
∩ E ′(t)

)
+ P

{
N?(t) 6

t

2

}
=

K∑
a=1

P
({

N?(t) >
t

2

}
∩
{
Na(t) 6

8 ln t

∆2

})
+ P

{
N?(t) 6

t

2

}
. (7)

We prove in Appendix D.2 that optimal mixed actions are pulled an overwhelming fraction of the
time, typically more than half of the time:

+∞∑
t=1

P
{
N?(t) 6

t

2

}
< +∞ . (8)

As for the other sum, we fix a ∈ [K] and first note that by the Hoeffding-Azuma inequality, for each
t > 1 and all δt ∈ (0, 1],

P

{
Na(t)−

t∑
s=1

ps,a 6 −
√
t

2
ln

1

δt

}
6 δt .

7
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Note that ps,a > 1{p
s
∈Opt(ν)} p

?
min(ν) by definition of p?min(ν). Therefore, choosing δt = 1/t2,

P
{
Na(t)− p?min(ν)N?(t) 6 −

√
t ln t

}
6 1/t2 .

Now, as−
√
t ln t > (8 ln t)/∆2−tp?min(ν)/2 for all t larger than some t′0, we finally get, for t > t′0,

P
({

N?(t) >
t

2

}
∩
{
Na(t) 6

8 ln t

∆2

})
6 P

{
Na(t)− p?min(ν)N?(t) 6

8 ln t

∆2
− tp?min(ν)

2

}
6 1/t2 .

This shows that the first sum in (7) is also bounded, which concludes the proof of this case.

2.4. Proof of Case 1 of Theorem 1

It follows closely the standard proof scheme for linear bandits, see Lattimore and Szepesvári (2020,
Chapter 19) and earlier references therein; thanks to the knowledge of the pure actions At played
we are able to simplify the proof and get a more readable bound, see Appendix D.3.

3. Distribution-dependent lower bounds for finite polytopes P

This section considers general models D for the distributions of the considered bandit problems
ν = (ν1, . . . , νK), with finite first moments, and satisfying a mild assumption (see below). Our aim
is to discuss the optimality of the regret upper bounds exhibited in the previous section. To do so,
we rely on and adapt the approach introduced by Graves and Lai (1997).

We first describe the assumptions that we make in this section. We only consider diversity-
preserving sets P given by finite polytopes, i.e., sets which are the convex hull of a finite set of
points denoted by Ext(P). Recall from (1) that Opt(ν) refers to the set of optimal mixed actions
of a bandit problem ν. We will assume that there is a unique optimal mixed action: Opt(ν) ={
p?(ν)

}
; this mixed action then necessarily belongs to Ext(P). This assumption is common in

bandit analyses (it is also made, e.g., in Lattimore and Szepesvári, 2017, Combes et al., 2017),
and it is arguably harmless as generic problems will typically have a unique optimal mixed action.
Another, harmless, assumption is that P , or equivalently, Ext(P), puts some probability mass on
each arm a ∈ [K], that is: for each a ∈ [K], there exists a mixed action p ∈ Ext(P) with pa > 0. If
this is not the case, then no mixed action in P puts a positive mass on a and a will never be played,
thus should be discarded.

Finally, we make the following technical assumption on D, where the set of confusing alterna-
tive problems ALT(ν) is defined in (9) below.

Assumption 3.1 For all ν in D, the set ALT(ν) defined in (9) is either empty or contains some ν ′′

such that KL(νa, ν
′′
a ) < +∞ for all a ∈ [K].

This technical assumption is immediately satisfied in many common situations: when D is a con-
vex subset of the set of all probability distributions on the real line (see Appendix E.3 for a proof)
or when D is such that KL(ν0, ν

′′
0 ) < +∞ for all distributions ν0 and ν ′′0 in D, as is the case,

for instance, for canonical exponential families indexed by an open interval (this follows from the
closed-form expression of KL in that case, see, e.g., Garivier and Cappé, 2011, Lemma 6).

8
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Given the regret upper bounds exhibited in Section 2, it is natural to restrict our attention to uni-
formly fast convergent [UFC] strategies over D given the diversity-preserving set P: by definition,
such strategies ensure that for any bandit problem ν ′ in D, their diversity-preserving regret satisfies
RT (ν ′) = o(Tα) for all α > 0.

In this section (and its corresponding Appendix E), we index the regret by the underlying bandit
problem ν for the sake of clarity and write RT (ν). Whenever needed, we also index expectations E
by the underlying bandit problem ν, by writing Eν .

Theorem 2 Assume that the diversity-preserving set P is a finite polytope, generated by the finite
set Ext(P), and that it puts some probability mass on each arm a ∈ [K]. For all models D
with finite first moments and satisfying Assumption 3.1, for all strategies that are uniformly fast
convergent [UFC] over D given P , for all bandit problems ν = (ν1, . . . , νK) in D with a unique
optimal mixed action p?(ν),

lim inf
T→∞

RT (ν)

lnT
> c
(
Ext(P), ν

)
,

where c
(
Ext(P), ν

)
∈ [0,+∞) is defined below in Definition 3 as a constrained infimum.

If p?(ν) is such that p?a(ν) > 0 for all a ∈ [K], then c
(
Ext(P), ν

)
= 0. The converse implica-

tion, that is, the fact that p?a(ν) = 0 for some a ∈ [K] entails c
(
Ext(P), ν

)
> 0, also holds when

the means of the distributions in D are not bounded from above.

The most interesting part of this theorem is its second part. We know from Case 2 of Theorem 1
that bounded regret is achievable when D = D[0,1] and p?a > 0 for all a ∈ [K], which is consistent
with c

(
Ext(P), ν

)
= 0. Theorem 2 indicates that the lnT rates are unavoidable in the case when

p?a = 0 for some a ∈ [K] and when the means of the distributions inD are not bounded from above,
which is not the case for the model D[0,1]. Theorems 1 and 2 could cover a common case given by a
model Dσ2−SG composed sub-Gaussian distributions with known variance factor σ2 with no upper
bound on the means; we indeed feel that Theorem 1 could be extended to also cover that case. If so,
we would have a true dual behavior for the regret: either bounded or growing as lnT .

3.1. Proof of Theorem 2

We provide a rather detailed sketch of proof; two omitted arguments may be found in Appendix E.

Reduction argument. The first step of the proof consists in noting that any strategy picking mixed
distributions in the finite polytope P can be converted into a (randomized) strategy picking mixed
distributions in the finite set Ext(P) only and providing the same expected cumulative reward,
thus suffering the same expected regret RT . This is achieved by an extra randomization step and
crucially relies on the fact that any strategy ultimately needs to play a pure action At at each step
(this reduction would not work in linear bandits). Details are to be found in Appendix E.1. We
therefore only need to prove the lower bound for (possibly randomized) strategies playing in the
finite set Ext(P).

First part of the theorem: à la Graves and Lai (1997). Some of the notation used below was
defined earlier in the article, e.g., Opt(ν ′) and ∆(p) were defined in (1) and (2), respectively.

We introduce the set of confusing alternative problems associated with the bandit problem ν,
denoted by ALT(ν). Problems in ALT(ν) are the ones in which p?(ν) is suboptimal, but that the

9
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player cannot discriminate from ν by only playing p?(ν). Formally, for each arm a, either p?a(ν) = 0
and selecting the optimal probability p?(ν) never results in picking arm a, or νa = ν ′a and observing
a reward associated with a does not provide discriminative information:

ALT(ν) =
{
ν ′ in D

∣∣∣ p?(ν) /∈ Opt(ν ′) and ∀ 1 6 a 6 K, p?a(ν) = 0 or νa = ν ′a

}
. (9)

Thanks to Theorem 1, we know that the correct scaling of the suboptimal pulls is at most logarith-
mic; we therefore define the normalized allocations, for all p ∈ Ext(P),

nT (p) =
Eν
[
Np(T )

]
lnT

, so that
RT
lnT

=
∑
p∈P

∆(p)
Eν
[
Np(T )

]
lnT

=
∑
p∈P

∆(p)nT (p) . (10)

A UFC algorithm facing the problem ν will eventually focus on the unique optimal mixed action
p?(ν). Because of this, most of its observations will correspond to pure actions a ∈ [K] such that
p?a(ν) > 0, which provide no information that is useful to distinguish ν from problems ν ′ ∈ ALT(ν).
A measure of this useful information is the Kullback-Leibler divergence between the distributions
of arms A1, . . . , AT picked and the rewards Y1, . . . , YT obtained in the first T rounds, Pν,T and
Pν′,T , when the underlying problems are ν and ν ′, respectively. It may be computed thanks to a
chain rule, see Equation (9) in Garivier et al. (2019) for the first equality below, followed by an
application of the tower rule for the second equality:

IT = KL
(
Pν,T ,Pν′,T

)
=

T∑
t=1

Eν
[
KL(νAt , ν

′
At

)
]

=
T∑
t=1

Eν

[
K∑
a=1

pt,a KL(νa, ν
′
a)

]
. (11)

This quantity can be factored as a sum over the mixed actions p ∈ Ext(P):

IT =
∑

p∈Ext(P)

Eν
[
Np(T )

] ∑
a∈[K]

pa KL(νa, ν
′
a) = (lnT )

∑
p∈Ext(P)

nT (p)
∑
a∈[K]
p?a(ν)=0

pa KL(νa, ν
′
a) , (12)

where the final equality holds as by definition, problems ν ′ ∈ ALT(ν) are such that ν ′a = νa when
p?a(ν) > 0. Asymptotically, the algorithm must maintain this amount of information above lnT in
order to satisfy the UFC assumption, see details in Appendix E. This puts a constraint on the limit
of nT (p) for all p, which may be read in Equation (13) below. Given the rewriting (10) of the regret
we then get the following definition for the quantity c

(
Ext(P), ν

)
contemplated in Theorem 2.

Definition 3 The constrained infimum c
(
Ext(P), ν

)
in Theorem 2 is defined as:

inf
n∈RExt(P)

+

∑
p∈Ext(P)

∆(p)n(p) under the constraint that

∀ ν ′ ∈ ALT(ν),
∑

p∈Ext(P)

p6=p?(ν)

n(p)
∑
a∈[K]
p?a(ν)=0

pa KL(νa, ν
′
a) > 1 . (13)

We conveyed some intuition on the lower bound indicated by the first part of Theorem 2 and
could state the definition of c

(
Ext(P), ν

)
. The rest of the proof, which follows standard techniques

introduced by Graves and Lai (1997), may be found in Appendix E.2. We now turn to the second
part of Theorem 2.

10
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Second part of the theorem: checking whether ALT(ν) is empty or not. We rely on the fol-
lowing equivalence: in the setting and under the conditions of Theorem 2,

c
(
Ext(P), ν

)
= 0 ⇐⇒ ALT(ν) = ∅ . (14)

Proof of (14). Indeed, if ALT(ν) = ∅, then the linear program (13) is unconstrained and yields
c
(
Ext(P), ν

)
= 0. If ALT(ν) is non-empty, by Assumption 3.1, there exists at least one ν ′′ ∈

ALT(ν) such that KL(νa, ν
′′
a ) < +∞ for all a ∈ [K], which we fix. For a vector n ∈ RExt(P)

+ to
satisfy the constraint (13), it is necessary that∑

p∈Ext(P)

p 6=p?(ν)

n(p)
∑
a∈[K]
p?a(ν)=0

pa KL(νa, ν
′′
a ) > 1 . (15)

Since ∑
p∈Ext(P)

p6=p?(ν)

n(p)
∑
a∈[K]
p?a(ν)=0

pa KL(νa, ν
′′
a ) 6 Cν,ν′′

∑
p∈Ext(P)

p 6=p?(ν)

∆(p)n(p) ,

where Cν,ν′′ = max
p∈Ext(P)

p 6=p?(ν)

1

∆(p)

∑
a∈[K]
p?a(ν)=0

pa KL(νa, ν
′′
a ) 6

1

∆
max
a∈[K]

KL(νa, ν
′′
a ) < +∞ ,

the constraint (15) entails that ∑
p∈Ext(P)

∆(p)n(p) >
1

Cν,ν′′
> 0 ,

proving that c
(
Ext(P), ν

)
> 1/Cν,ν′′ > 0.

Exploitation of (14). If p?a > 0, then the only ν ′ such that p?a = 0 or νa = ν ′a for all a ∈ [K] is ν
itself; that is, ALT(ν) = ∅ and therefore, by (14), we have c

(
Ext(P), ν

)
= 0 as stated in the second

part of Theorem 2.
We now assume that the means of the distributions in D are not bounded from above and show

that p?a(ν) = 0 for some a ∈ [K] entails that ALT(ν) is non-empty, thus c
(
Ext(P), ν

)
> 0 by (14).

We fix such an a. By assumption, P thus Ext(P) put some probability mass on this arm a: there
exists p ∈ Ext(P) with pa > 0. Since p?(ν) is the unique optimal arm of ν, the gap ∆(p) is
positive. Now, by the assumption of unbounded means in D, there exists a distribution ν ′a ∈ D with
expectation µ′a > µa + ∆(p)/pa. We denote by ν ′ the bandit problem such that ν ′k = νk for all
k 6= a, and whose a–th distribution is ν ′a. The mixed action p?(ν) is suboptimal for ν ′: we have
indeed, by construction of all quantities, by definition of ∆(p), and since p?a(ν) = 0 while ν and ν ′

only differ at a,

〈
p, µ′

〉
=
〈
p, µ

〉
+(µ′a−µa) pa >

〈
p, µ

〉
+

∆(p)

pa
pa =

〈
p, µ

〉
+∆(p) =

〈
p?(ν), µ

〉
=
〈
p?(ν), µ′

〉
.

That is, p?(ν) /∈ Opt(ν ′). We thus proved that ν ′ ∈ ALT(ν), so that ALT(ν) is non-empty.

11
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4. Some experiments on synthetic data

In this section, we perform some experiments that illustrate the dual behavior of the regret: either
bounded or growing at a lnT rate. More precisely, we consider bandit problems ν with a unique
optimal mixed action p?(ν) and illustrate that in the Bernoulli model considered, either a lnT rate
for regret is suffered when p?a(ν) = 0 for some arm a ∈ [K], while a bounded regret is achieved
when p?a(ν) > 0 for all arms a ∈ [K].

Setting considered. We consider K = 3 arms and the diversity-preserving set

P` =
{

(p1, p2, p3) ∈ S : p1 > ` and p2 > `
}
,

where ` ∈ (0, 1/2) is a parameter. The set P` is a finite polytope generated by

p(1) =
(
`, 1− `, 0

)
, p(2) =

(
1− `, `, 0

)
, and p(1,2) =

(
`, `, 1− 2`

)
.

The model D is given by Bernoulli distributions. We will consider bandits problems να in D,
each of them indexed by α ∈ (−1/6, 1/6). For α < 0, the unique optimal mixed action will be
p(1,2), which satisfies p(1,2)

a > 0 for all a ∈ [3], and bounded regret will be achieved. For α > 0,
the unique optimal mixed action will be p(2), which satisfies p(2)

3 = 0, and a lnT regret will be
illustrated. More precisely,

να =
(
Ber(1/2 + α), Ber(1/3), Ber(1/2− α)

)
, with µ

α
= (1/2 + α, 1/3, 1/2− α) .

The mixed action p(1) is always dominated by p(2) and p(1,2): for all α ∈ (−1/6, 1/6),

〈
p(2) − p(1), µ

α

〉
= (1− 2`)

(1

2
+ α

)
+ (2`− 1)

1

3
+ 0 = (1− 2`)

(1

6
+ α

)
> 0 ,〈

p(1,2) − p(1), µ
α

〉
= 0 + (2`− 1)

1

3
+ (1− 2`)

(1

2
− α

)
= (1− 2`)

(1

6
− α

)
> 0 .

We now compare the mixed actions p(2) and p(1,2):

〈
p(1,2) − p(2), µ

α

〉
=
(
2`− 1

)(1

2
+ α

)
+ 0 +

(
1− 2`

)(1

2
− α

)
= −2α(1− 2`) .

Numerical experiments. We set ` = 0.1 and let α vary in {−0.1, −0.05, 0.05, 0.1}. We run
the diversity-preserving UCB algorithm (Algorithm 1) on each of these four problems να, over
T = 20,000 time steps, forN = 75 runs. The expected regret suffered by the algorithm is estimated
by the empirical pseudo-regrets observed on the N = 75 runs:

R̂T (να) =
1

N

N∑
i=1

R̂T (να, i) , where R̂T (να, i) =
T∑
t=1

〈
p?(να)− p

t
(α, i), µ

α

〉
,

and where we denoted by p
t
(α, i) the mixed action chosen at round t, during the i–th run, and for

problem να. The figures below report the estimations obtained (solid lines); we also shaded areas
corresponding to±2 standard errors of the estimates. As expected, the algorithm yields logarithmic
regret when α < 0 (the optimal mixed action is on the border of the simplex) and bounded regret
when α > 0 (the optimal mixed action lies in the interior of the simplex).
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Outline of the appendix

Appendix A discusses distribution-free regret upper bounds.
Appendix B provides an extended literature review on the notions of diversity and fairness in ban-
dits.
Appendix C is an extended comparison to the linear bandit setting used by Celis et al. (2019) and
also provides a literature review on structured stochastic bandits.
Appendix D includes all remaining parts of the proofs of the regret upper bounds of Theorem 1.
Appendix E does so for the lower bound of Theorem 2.

Appendix A. Distribution-free regret upper bounds

We say that a strategy enjoys a distribution-free regret bound B(D,P, T ) on the model D given the
diversity-preserving set P when it guarantees, for all T > 1,

sup
ν in D

RT (ν) 6 B(D,P, T ) .

All claims that follow are extracted from Hadiji (2020, Chapter 5).
The diversity-preserving UCB (Algorithm 1) enjoys a distribution-free regret bound of order√

KT lnT , while a variant based on the MOSS strategy of Audibert and Bubeck (2010) achieves a√
KT bound.

A follow-the-regularizer-leader [FTRL] approach, similar to the one considered by Chen et al.
(2020) and relying on a regularization function

H(p) =
∑
a∈[K]

pa ln pa ,

achieved a distribution-free regret bound of order√
diamH(P)KT , where diamH(P) = max

{
H(p)−H(q) : p, q ∈ P

}
is the diameter of P for the regularizer H . (It is in particular smaller than lnK.) This FTRL bound
actually also holds for adversarial bandits. Our results are incomparable with the ones by Chen
et al. (2020): on the one hand, we consider more general diversity-preserving sets (they essentially
consider the first and simplest example of Section 1.1, with minimal probabilities); on the other
hand, they consider a contextual bandit setting.

A distribution-free regret lower bound of order

LP
√
KT , where LP =

(
1

K

K∑
i=1

max
p∈P

pi −
1

K

)2

,

may be proved, using standard techniques from Auer et al. (2002).

Statement of an open question. The optimal dependency of the distribution-free regret bounds
on K and T is therefore

√
KT for worst-case P . However we were unable so far to identify the

optimal dependency on the geometry of P in general.
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Appendix B. Literature review on the notions of diversity and fairness in bandits

Diversity. Closest to our work is the recent article of Chen et al. (2020), that studies a particular
case of the diversity-preserving setting, which essentially corresponds to our example called “Main-
taining a budget” described in Section 1. While their framework is the same as ours, they only study
distribution-free bounds and provide numerical experiments, making their focus orthogonal to our
one. Note also that their algorithm, inspired by the mirror descent framework, actually applies to
the rewards generated in an adversarial manner.

In the domain of stochastic bandits, we may cite the contributions of Patil et al. (2019) and Claure
et al. (2019). They derive bandit algorithms that ensure that the proportion of times each action is
selected is lower bounded, i.e., with our notation that Na(T )/T > α almost surely. Although the
objective is similar in spirit, this constraint leads to design issues for the algorithm that are quite
different from ours, and are arguably less mathematically elegant. Our setting enforces similar
guarantees while bypassing these issues. Finally, Li et al. (2019) consider a problem called combi-
natorial sleeping bandits, in which the player may pick multiple actions among the K available at
every step. The authors also impose that their algorithms satisfy some diversity preserving condition
on the choice of the actions, but this condition is only asymptotical.

Note that all these articles refer to “fairness”, although we prefer the term “diversity-preserving”
to distinguish them from the stream of work discussed below.

Fairness. The framework of individual fairness from Dwork et al. (2012) relies on the idea that
“similar individuals should be treated similarly” (there, actions correspond to individuals). This was
modeled in stochastic bandits by imposing constraints on the unknown problem, with constraints
dictated by the very nature of the problem, hence, being unknown as well. Therefore, the algorithms
will need to explore some more in order to learn the constraints while playing the bandit game. The
usual tradeoff between exploration and exploitation is therefore modified. We may cite contributions
by Joseph et al. (2016), Amani et al. (2019), Liu et al. (2017) and Gillen et al. (2018). This approach
is mathematically quite different from the setting considered in this article.
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Appendix C. Extended comparison to the linear bandit setting used by Celis et al.
(2019) and literature review on structured stochastic bandits

Celis et al. (2019) suggest using linear bandit algorithms in the diversity-preserving setting, unlock-
ing a wide array of methods and regret guarantees. Indeed, they observe that one can discard the
knowledge of the true played action At and only play using the observation of the rewards Yt and
of the mixed action p

t
. Doing so, the player plays a game where the expected reward associated

with the played action p
t

depends linearly on the said action: this setting is known as linear bandits
and is recalled below. An exception to this approach is their CONSTRAINED-ε-GREEDY algorithm,
which does use the knowledge of At but suffers from two limitations: its regret bound scales as
1/∆2 instead of 1/∆ and, more importantly, it requires a lower bound on the unknown minimal gap
∆, which makes it quite impractical compared to other knowledge-independent algorithms.

In this appendix, we recall the setting of linear bandits and provide a brief account of the relevant
literature on it. We also review the existing literature on other structured bandit settings and bandits
with augmented feedback. We then provide intuitions on the limitations of using a reduction to
linear bandits for the diversity-preserving bandit game.

C.1. The setting of linear bandits

We refer the interested reader to the monograph by Lattimore and Szepesvári, 2020, Chapter 19 for
a longer description. An action set A ⊂ Rd is given to the learner. Some parameter µ ∈ Rd is set
but remains unknown to the learner. The latter selects at each step an action Xt ∈ A and gets and
observes a random reward Yt such that E[Yt |Xt] = 〈Xt, µ〉. The expected regret is defined as

Rlin
T = T max

x∈A
〈x, µ〉 − E

[
T∑
t=1

〈Xt, µ〉

]
.

Reduction. The diversity-preserving bandit protocol described in Section 1 can be put in this
setting, by having the chosen probability vector p

t
play the role of Xt. The ambient dimension is

then essentially d = K. (Notice in particular that the notions of regret coincide.) Therefore, the
learner can choose to ignore completely the observation of At and use a linear bandit algorithm
of her choice, thus transferring the regret guarantees to the diversity-preserving setting. We now
discuss the typical regret guarantees achieved in linear bandits.

Standard linear bandit results. A first stream of the literature focuses on generalizations of the
UCB algorithm called LinUCB (linear upper confidence bound) or OFUL (optimism in the face of
uncertainty for linear bandits); they were introduced by Li et al. (2010) and Chu et al. (2011) and
studied by Abbasi-Yadkori et al. (2011). They consider the set L of bandit models such that the
parameter µ satisfies 〈x, µ〉 ∈ [−1, 1] for all x ∈ A and the noise Yt − E[Yt|Xt] is sub-Gaussian
(with constant less than 1/4, say). They obtain finite-time distribution-dependent bounds in the case
where A is finite or is a finite polytope; we denote by Afinite a finite set of points generating A when
it is a finite polytope and let Afinite = A when A is finite. These finite-time distribution-dependent
bounds are of the form: there exists a numerical constant C such that for each bandit problem in L,

Rlin
T 6 C

m2

∆

(
ln2 T + d lnT + d2 ln lnT

)
,
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where m2 is a known upper bound on ‖µ‖22, and where the gap ∆(x) of an action x ∈ A and the
overall gap ∆ among suboptimal actions are defined as

∆(x) = max
y∈A
〈y − x, µ〉 and ∆ = min

{
∆(x) : x ∈ Afinite s.t. ∆(x) > 0

}
.

Note that for a fair comparison with our bounds, we should take m2 = d = K, as we assume that
‖µ‖∞ 6 1, which only implies ‖µ‖2 6

√
d.

A second stream of the linear bandit literature improves asymptotically on the treatment of the
situation where A is finite or is a polytope and obtains optimal distribution-dependent bounds that
only scale with lnT , but at the cost of computational efficiency. Of course, lnT bounds could have
been obtained by playing a plain UCB onAfinite, but they would not involve optimal constant in front
of the lnT . The results of Lattimore and Szepesvári (2017), Combes et al. (2017) and Hao et al.
(2020) fall in this category.

C.2. Other reductions? Literature review on bandits with augmented feedback.

Actually, linear bandits are a particular case of structured bandits, in which observing the reward
associated with an action may provide information about the reward of other actions. This is to be
opposed to the vanilla K-armed bandit setting. A lot of recent work (discussed below) has been de-
voted to general structured bandits, sometimes obtaining bounded regret. Since all these approaches
apply to the linear bandit setting, they can also be applied to the diversity-bandit setting. However,
each come with some limitations, which may be avoided as the diversity-preserving setting is in fact
an easier setting than linear bandits. We may cite the works by Hao et al. (2020), Jun and Zhang
(2020), Tirinzoni et al. (2020), and Lattimore and Munos (2014): they all exhibit models (natural
exploration in linear contextual bandits and worst-case structures, respectively) in which the intro-
duced algorithms yield bounded regret. However, when applied to the linear bandit problems that
emerge from the linear bandit setting, these approaches cannot give bounded regret.

Indeed, and this is the fundamental caveat of applying linear bandit methods, when neglecting
the knowledge of At, the problem faced by the player becomes exactly a linear bandit problem.
Therefore, these methods are subject to the linear bandit lower bounds. In particular, for typical
(fixed) finite action sets, the lower bound of Lattimore and Szepesvári (2017) implies that the regret
incurred by linear bandit algorithms must grow logarithmically as T → ∞ on any problem. By
contrast, we show that our approach which, uses the knowledge of At, can yield finite regret. Note
also that Caron et al. (2012) and Degenne et al. (2018) consider K-armed bandit models with some
extra feedback and provide bounded regret guarantees then. In the rest of this section, we provide
some more insights and intuitions on the nature of the improvements obtained when taking this extra
piece of information into account.

C.3. Intuitions on why taking At into account helps

We provide two intuitions, one linked to lower bounds on the regret and the other one linked to the
upper bounds on the regret.

As far as lower bounds are concerned. As is clear from the proofs in Section 3, see, e.g., Equa-
tion (11), lower bounds rely on the ability to discriminate between two bandit problems ν and ν ′.
Under the problem ν and conditionally to the choice of a distribution p

t
over the arms, the learner
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sees the payoff Yt as distributed according to some unconditional distribution when At is not taken
into account, and the conditional distribution νAt when At is taken into account:

Yt ∼
∑
a∈[K]

pt,aνa and Yt |At ∼ νAt ,

respectively. Conditionally to the choice of p
t
, the Kullback-Leibler divergences between the distri-

butions of Yt under ν and ν ′ are therefore given by

KL

∑
a∈[K]

pt,aνa,
∑
a∈[K]

pt,aν
′
a


︸ ︷︷ ︸

without At

6 E
[
KL(νAt , ν

′
At

)
]︸ ︷︷ ︸

with At

=
∑
a∈[K]

pt,a KL(νa, ν
′
a) ,

where the inequality is by convexity of KL. We of course prefer the larger quantity to derive the
largest possible limiting constant.

As far as upper bounds are concerned. Here, we discuss more concretely how the knowledge
of At can improve our algorithms: using At helps building tighter confidence bounds on µ. As a
reminder, the confidence region considered in Section 2 is the hyper-rectangle{

(µ1, . . . , µK) ∈ RK : ∀a ∈ [K], |µ̂a(t)− µa| 6

√
2 ln t

max(Na(t), 1)

}
(16)

obtained from the Hoeffding–Azuma inequality and by treating each coordinate separately. Now,
LinUCB for linear bandits (see references above) rather relies on an ellipsoid of confidence, con-
structed as indicated below in (17). Figure 1 compares the confidence regions (16) and (17) on some
simulated data.

Figure 1: Comparison of confidence sets for Bernoulli observations generated from the three
probability vectors p

1
= (0.1, 0.9), p

2
= (0.2, 0.8), p

3
= (0.4, 0.6) and true mean vector

(µ1, µ2) = (0.2, 0.3). Each p
i
, for i ∈ {1, 2, 3}, was selected 100 times to draw actionsAt ∈ {1, 2},

after which rewards Yt ∼ Ber(µAt) were generated; this thus provided T = 300 observations. The
true mean vector is shown as a cross. The red area depicts the ellipsoid defined in (17) without the
knowledge of the At, whereas the green rectangle is the one from (16) and relies on the At.
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We denote by Xt the matrix whose rows are the mixed actions used over time, p>
1
, . . . , p>

t
, and

let Y1:t = (Y1, . . . , Yt)
> be the column vector of rewards obtained. Then, for a parameter λ > 0,

we define
V λ
t = λId + X>t Xt and µ̂lin

t
=
(
V λ
t

)−1 X>t Y1:t .

The ellipsoid considered is then of the form{
µ ∈ Rd :

√〈
µ− µ̂lin

t
, V λ

t

(
µ− µ̂lin

t

)〉
6 f√ln(t) + λ

√
d

}
, (17)

where f√ln(t) is some closed-form function of order
√

ln t.

21



DIVERSITY-PRESERVING K–ARMED BANDITS, REVISITED

Appendix D. Full proof of the upper bounds

For the common part of the proofs of Cases 2 and 3, the following lemma was used. It is standard
in the literature of vanilla K–armed bandits: we simply note that it also holds in our setting. As we
have no direct control on arms pulled, we cannot ensure in a deterministic manner that Na(t) > 1
a.s., hence we take the maximum between Na(t) and 1.

Lemma 4 Consider a bandit problem ν in D[0,1]. For t > 2, if the actions A1, . . . , At and rewards
Y1, . . . , Yt were generated according to Protocol 1, then

P
(
E(t)

)
= P

{
For all a ∈ [K],

∣∣µa − µ̂a(t)∣∣ 6√ 2 ln t

max
{
Na(t), 1

}} > 1− 2Kt−3 .

Proof By optional skipping2 (see Theorem 5.2 of Doob, 1953, Chapter III, p. 145, see also Chow
and Teicher, 1988, Section 5.3), we can replace the random quantities depending on the observations
from a fixed arm by their i.i.d. analogue. More precisely, for each arm a ∈ [K], by defining µ̂a,n as
an empirical average of n i.i.d. random variables with distribution νa, we have

P

{∣∣µa − µ̂a(t)∣∣ >√ 2 ln t

max
{
Na(t), 1

}}

6 P

{
∃n ∈ {0, 1, . . . , t} :

∣∣µa − µ̂a,n∣∣ >
√

2 ln t

max{n, 1}

}

6
t∑

n=1

P

{∣∣µa − µ̂a,n∣∣ >
√

2 ln t

max{n, 1}

}
6

t∑
n=1

2t−4 = 2t−3 ,

where the case n = 0 was dropped for reasons explained below, where the second inequality follows
from a union bound and the third inequality, from Hoeffding’s inequality. Note indeed that n = 0
and t > 2 are incompatible given the event considered: we defined µ̂a,0 to be 1; when n = 0, the
event considered amounts to |1− µa| >

√
2 ln t, where

√
2 ln t is larger than

√
2 ln 2 > 1 when

t > 2. The claimed inequality follows from a final union bound over a ∈ [K].

D.1. Case 3: Proof of the upper bound (6) on t0
We actually also prove a lower bound on t0:

16

∆2`
− 1 6 t0 6

32

∆2`
ln

(
16

∆2`

)
.

This result is a special case of the following more general result, with a = ∆2`/16 < ln(2)/2.

Lemma 5 Let a ∈
(
0, ln(2)/2

)
. Define

x0 = sup
{
x ∈ (0,+∞) : lnx > ax

}
and n0 = max

{
n ∈ {1, 2, 3, . . .} : lnn > an

}
.

Then x0 − 1 6 n0 6 x0 and
1

a
< x0 <

2

a
ln

(
1

a

)
.

2. Sometimes called optional sampling.
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Proof First note that n0 and x0 are well defined since ln(2) > 2a (by assumption) and the function
ψ : x 7→ ax− lnx satisfies ψ(x) → +∞ as x → +∞. Note also that ψ is continuous, decreasing
on (0, 1/a], and increasing on [1/a,+∞).

The inequality x0 > 1/a follows from ψ(1/a) = 1 + ln a < 0 (since a < ln(2)/2 < 1/e) and
by continuity of ψ.

For the stated upper bound on x0, we first note that

ψ

(
2

a
ln

1

a

)
= a

2

a
ln

1

a
− ln

(
2

a
ln

1

a

)
= 2 ln

1

a
− ln

1

a
− ln

(
2 ln

1

a

)
︸ ︷︷ ︸
<ln(1/a)

> 0 ,

where we used that 2 lnu < u for all u > 0. Given that a < 1 and thus that (2/a) ln(1/a) > 1/a,
and since ψ is continuous and increasing on [1/a,+∞), the inequality above indeed shows that
x0 < (2/a) ln(1/a).

The inequality n0 6 x0 is straightforward by definitions. We now prove that x0 − 1 6 n0.
By definition, n0 is the largest integer n > 1 such that ψ(n) < 0, so that ψ(n0) < 0 while
ψ(n0 + 1) > 0. Given the variations of ψ, we therefore have that n0 + 1 is on the increasing branch
of ψ, that is, n0 + 1 > 1/a. Again since ψ increases on [1/a,+∞) and given that x0 > 1/a, as
well as ψ(x0) = 0 by continuity of ψ, we proved that x0 6 n0 + 1.

D.2. Case 2: Proof of the finite sum (8)

We will actually prove a stronger result, namely

P
{
N?(t) 6

t

2

}
= O(1/t2) .

We first tie the number of optimal pulls N?(t) to the (non-expected) instantaneous regret: by defi-
nition of the minimal gap ∆,

t∑
s=1

〈
p?−p

s
, µ
〉
> ∆

t∑
s=1

1{p
s
6∈Opt(ν)} = ∆

(
t−N?(t)

)
, thus N?(t) > t− 1

∆

t∑
s=1

〈
p?−p

s
, µ
〉
,

where p? denotes any optimal mixed action. Therefore, we only need to prove that

P

{
t∑

s=1

〈
p? − p

s
, µ
〉
>

∆t

2

}
= O(1/t2) . (18)

This is a weak high-probability bound on the non-expected cumulative regret: we only want to show
that it grows, with high probability, slower than the linear quantity ∆t/2. We consider to that end
the following lemma (which will also be used for the proof of Case 1).

Lemma 6 For s > 2, under the event E(s− 1) defined in (4),

〈
p? − p

s
, µ
〉
6 2

∑
a∈[K]

ps,a

√
2 ln(s− 1)

max
{
Na(s− 1), 1

} .
23



DIVERSITY-PRESERVING K–ARMED BANDITS, REVISITED

Proof By definition of the algorithm, we have
〈
p? − p

s
, U(s− 1)

〉
6 0, so that〈

p? − p
s
, µ
〉

=
〈
p?, µ− U(s− 1)

〉
+
〈
p? − p

s
, U(s− 1)

〉︸ ︷︷ ︸
60

+
〈
p
s
, U(s− 1)− µ

〉
.

Now, under E(s− 1),

∀a ∈ [K], 0 6 Ua(s− 1)− µa = µ̂a(s− 1) +

√
2 ln(s− 1)

max
{
Na(s− 1), 1

} − µa
6 2

√
2 ln(s− 1)

max
{
Na(s− 1), 1

} .
Therefore, under E(s− 1), substituting in the first bound of this proof, we get〈

p? − p
s
, µ
〉
6
〈
p?, µ− U(s− 1)

〉
+
〈
p
s
, U(s− 1)− µ

〉
6 0 + 2

∑
a∈[K]

ps,a

√
2 ln(s− 1)

max
{
Na(s− 1), 1

} .
Recall the aim (18). Since the events E(s− 1) in Lemma 6 might have a non-negligible prob-

ability for small values of s, we leave out the first τt := b∆t/4c rounds (note that τt > 1 for
t > 4/∆). More precisely, in order to prove (18), noting that

〈
p? − p

s
, µ
〉

lies in [−1, 1] as ν lies
in D[0,1], it suffices to show that

P

{
t∑

s=τt

〈
p? − p

s
, µ
〉
>

∆t

4

}
= O(1/t2) .

By Lemma 6, and noting that τt > 2 for t > 8/∆, we thus only need to prove that

P

(
t⋃

s=τt

E(s− 1)

)
+ P

2
t∑

s=τt

∑
a∈[K]

ps,a

√
2 ln(s− 1)

max
{
Na(s− 1), 1

} >
∆t

4

 = O(1/t2) .

By a union bound and given the fact that P
(
E(s)

)
6 2Ks−3 by Lemma 4, the first probability

above is at most of K(τt − 1)−2 = O(1/t2). Therefore, it suffices to prove that:3

P

2
t∑

s=2

∑
a∈[K]

ps,a

√
2 ln(s− 1)

max
{
Na(s− 1), 1

} >
∆t

4

 = O(1/t2) . (19)

We apply the Hoeffding-Azuma inequality (see, e.g., Lemma A.7 in Cesa-Bianchi and Lugosi 2006)
to the martingale

Mt
def
= 2

t∑
s=2

∑
a∈[K]

(
ps,a − 1{As=a}

)√ 2 ln(s− 1)

max
{
Na(s− 1), 1

}
3. Adding the (nonnegative) terms from s = 2 to s = τt − 1 in the sum makes the goal only harder.
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with (predictable) increments lying in a range of width smaller than 2
√

2 ln t and by picking a risk
level of δt = t−4; we obtain:

P
{
Mt > 2

√
2 ln t

√
2t ln t

}
6 t−4 . (20)

Now, for each a ∈ [K], asNa(s−1) only increases (by 1) whenAs = a, and sinceNa(t−1) 6 t−1,
we have the deterministic (crude) bound

Ct
def
= 2

t∑
s=2

1{As=a}

√
2 ln(s− 1)

max
{
Na(s− 1), 1

} 6 2
√

2 ln t
t∑

s=2

1{As=a}√
max

{
Na(s− 1), 1

}
6 2
√

2 ln t

t−1∑
n=0

1√
max{n, 1}

6 2
√

2 ln t
(
1 + 2

√
t− 1

)
.

(21)

All in all, with the processes Mt and Ct introduced above,2
t∑

s=2

∑
a∈[K]

ps,a

√
2 ln(s− 1)

max
{
Na(s− 1), 1

} >
∆t

4

 =

{
Ct +Mt >

∆t

4

}
.

The sum
2
√

2 ln t
√

2t ln t+ 2
√

2 ln t
(
1 + 2

√
t− 1

)
= O

(√
t ln t

)
of the high-probability bound exhibited on Mt and of the deterministic bound exhibited on Ct is
smaller than ∆t/4 after some step t0. Hence, for t > t0, the value ∆t/4 cannot be achieved unless
the high-probability bound on Mt does not hold:{

Ct +Mt >
∆t

4

}
⊆
{
Mt > 2

√
2 ln t

√
2t ln t

}
.

This remark, together with the deviation bound (20), proves that the sufficient aim (19) is true. This
concludes the proof of Case 2.

D.3. Case 1: Complete proof

The beginning of this proof follows a standard proof scheme for linear bandits. For t > 1, we denote
by

rt =
〈
p? − p

t
, µ
〉

the (non-expected) instantaneous regret; it was already considered in Lemma 6. The regret to be
controlled corresponds to

RT (ν) = E

[
T∑
t=1

rt

]
.

We requested in the definition of Algorithm 1 that mixed actions be selected only in Ext(P). Doing
so, the (non-expected) instantaneous regret suffered from playing p

t
∈ Ext(P) is either 0, if p

t
is

optimal, or at least ∆ if p
t

is suboptimal. This simple observation leads to the crude upper bound

rt 6
r2
t

∆
.

25



DIVERSITY-PRESERVING K–ARMED BANDITS, REVISITED

Now, under E(t− 1), Lemma 6 followed by an application of the Cauchy-Schwarz inequality yield

r2
t 6

2
∑
a∈[K]

pt,a

√
2 ln(t− 1)

max
{
Na(t− 1), 1

}
2

6 8

∑
a∈[K]

pt,a

max
{
Na(t− 1), 1

}
∑

a∈[K]

pt,a ln(t− 1)


6 8

∑
a∈[K]

pt,a

max
{
Na(t− 1), 1

}
 lnT .

Since At is drawn at random given p
t
, which is determined by the information available at the

beginning of round t, just as Na(t− 1) is, the tower rule indicates that for all t > 1 and a ∈ [K],

E

[
pt,a

max
{
Na(t− 1), 1

}] = E

[
1{At=a}

max
{
Na(t− 1), 1

}] .
Taking into account the fact that when E(t − 1) is not satisfied, we have r2

t 6 1 as ν lies in D[0,1],
we proved so far

E
[
r2
t

]
6 P

(
E(t− 1)

)
+ 8

∑
a∈[K]

E

[
1{At=a}

max
{
Na(t− 1), 1

}] lnT.

Lemma 4 shows that P
(
E(t− 1)

)
6 2K(t− 1)−3 for t > 3 (and we resort to the trivial bound 1 for

t = 1 or t = 2).
Now come the final steps of the proof: they are specific to our diversity-preserving setting and

short-cut the classical proof scheme. The same kind of deterministic argument as used in (21) shows
that for each a ∈ [K],

T∑
t=1

1{At=a}

max
{
Na(t− 1), 1

} =

Na(T−1)∑
n=0

1

max{n, 1}
6 2 + ln

(
max

{
Na(T − 1), 1

})
6 2 + ln

(
1 +Na(T − 1)

)
,

where we used that 1 + 1/2 + . . . + 1/N 6 1 + lnN for N > 1. Collecting all bounds together,
we proved

T∑
t=1

E
[
r2
t

]
6 2 + 2K

T∑
t=3

(t− 1)−3

︸ ︷︷ ︸
<1/2

+8
∑
a∈[K]

(
2 + E

[
ln
(
1 +Na(T − 1)

)])
lnT .

By concavity of the logarithm,

1

K

∑
a∈[K]

ln
(
1 +Na(T − 1)

)
6 ln

(
1 +

1

K

∑
a∈[K]

Na(T − 1)

︸ ︷︷ ︸
=T−1

)
6 ln(1 + T/K) .
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We summarize all calculations performed so far into:

RT (ν) = E

[
T∑
t=1

rt

]
6

1

∆

T∑
t=1

E
[
r2
t

]
6

1

∆

(
2 +K + 16K lnT + 8K ln(1 + T/K) lnT

)
.

The final bound is transformed into the stated
(

2+K+24K
(
ln(1+T )

)2)
/∆ for better readability.
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Appendix E. Full proof of the lower bound

E.1. Proof of the reduction

We first note that in Protocol 1, whether a strategy picks a deterministic mixed action p
t

(based on
the past) or a distribution ρt over mixed actions in P is irrelevant, as the strategy needs to draw an
arm At and only observes the payoff obtained by picking At. In the first case, At is drawn in a
one-step randomization, while in the second case, At is drawn in a two-step randomization which
is equivalent to picking the deterministic mixed action

p
t

=

∫
P
p dρt(p) .

When a strategy picks mixed actions in P , whether it is deterministic or randomized is irrelevant.
Based on the same intuition, we now show that it suffices to restrict one’s attention to strategies

playing in the finite set Ext(P) generating P . Any mixed action q = p
t

may be decomposed as a
convex combination of elements of Ext(P). We may define a function

Φ : q ∈ P 7−→ Φ(q) =
(
Φp(q)

)
p∈Ext(P)

∈ [0, 1]Ext(P)

such that all images Φ(q) are actually convex weights and

∀q ∈ P, q =
∑

p∈Ext(P)

Φp(q) p .

We may interpret convex weights Φ(q) as probability distributions over Ext(P). With this in mind,
we note that a (deterministic) strategy ψ picking mixed actions p

t
(based on the information avail-

able: past actions As and rewards Ys, with s 6 t − 1) gets the same expected payoffs as the (ran-
domized) strategy ψΦ that first picks a mixed action P t in Ext(P) at random according to Φ(p

t
),

and then draws the action At according to P t. This, again, holds because only the choice of the
pure action At matters. In particular, if the strategy ψ is UFC over D given P , then so is ψΦ.

The final issue to clarify is that the proof of Theorem 2 following this reduction holds for deter-
ministic and randomized strategies ψΦ (again because only the actions At drawn matter).

E.2. Rest of the proof of the first part of Theorem 2

This proof scheme is standard and was introduced by Graves and Lai (1997).

Part A: The divergence IT is larger than lnT in the limit. We prove that IT = KL
(
Pν,T ,Pν′,T

)
is asymptotically larger than lnT .

Lemma 7 For all models D with finite first moments, for all diversity-preserving sets P , for all
strategies that are uniformly fast convergent [UFC] over D given P , for all bandit problems ν in D
with a unique optimal action p?(ν), for all bandit problems ν ′ in D for which p?(ν) is suboptimal,

lim inf
T→∞

KL
(
Pν,T ,Pν′,T

)
lnT

> 1 .

28



DIVERSITY-PRESERVING K–ARMED BANDITS, REVISITED

Proof We denote by kl(p, q) = p ln(p/q) + (1 − p) ln
(
(1 − p)/(1 − q)

)
the Kullback-Leibler

divergence between two Bernoulli distributions with parameters p and q. By the data-processing
inequality for [0, 1]–valued random variables (see Section 2.1 in Garivier et al., 2019) and by the
standard inequality kl(p, q) > p ln(1/q)− ln 2,

KL
(
Pν,T ,Pν′,T

)
> kl

(
Eν

[
Np?(ν)(T )

T

]
, Eν′

[
Np?(ν)(T )

T

])

> Eν

[
Np?(ν)(T )

T

]
ln

 T

Eν′
[
Np?(ν)(T )

]
− ln 2 .

The strategy is UFC, we therefore have RT (ν)/T → 0. Given the decomposition (3) of the regret
and given that ∆(ν) > 0 for all ν ∈ Ext(P) with ν 6= p?(ν) since p?(ν) is the only optimal action
for ν, we have, on the one hand,

Eν

[
Np?(ν)(T )

T

]
−−−−→
T→∞

1 .

On the other hand, given that p?(ν) is suboptimal for ν ′, the suboptimality gap ∆ν′
(
p?(ν)

)
of p?(ν)

in the bandit problem ν ′ is positive and

RT (ν ′) > ∆ν′
(
p?(ν)

)
Eν′
[
Np?(ν)(T )

]
, or equivalently, Eν′

[
Np?(ν)(T )

]
6

RT (ν ′)

∆ν′
(
p?(ν)

) .
The strategy being UFC, we have RT (ν ′) = o(Tα) for all α > 0; in particular, for all ε > 0, for all
T large enough, Eν′

[
Np?(ν)(T )

]
6 T ε. Putting all inequalities together, we proved

KL
(
Pν,T ,Pν′,T

)
lnT

> Eν
[
Np?(ν)(T )

T

]
︸ ︷︷ ︸

−→1

ln

(
T

Eν′
[
Np?(ν)(T )

]
︸ ︷︷ ︸

>T 1−ε

)
1

lnT
− ln 2

lnT︸︷︷︸
−→0

.

Therefore, as T →∞, we have

lim inf
T→∞

KL
(
Pν,T ,Pν′,T

)
lnT

> 1− ε ,

and the claimed result follows by taking ε→ 0.

Part B: Considering cluster points. We conclude the proof of the first part of Theorem 2. Let c
be a cluster point of the sequence RT / lnT . If c = +∞ is the only value, then RT / lnT → +∞
and the result is proved. Otherwise, take a finite c. We denote by (Tm)m>1 an increasing sequence
such that RTm/ lnTm → c. In view of the decomposition (10) and since ∆(p) > 0 and nTm(p) > 0
for all p ∈ Ext(P) with p 6= p?(ν), these sequences nTm(p) are bounded. Hence, we may extract
a subsequence (Tmk

)k>1 from (Tm) such that all sequences nTmk
(p) converge as k →∞, to limits
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denoted by n(p). This only holds for p ∈ Ext(P) with p 6= p?(ν). The final component n
(
p?(ν)

)
is defined in some arbitrary way (its value will be irrelevant).

Now, given ν ′ ∈ ALT(ν), the quantity IT defined in (11) and rewritten in (12) satisfies, in view
of Lemma 7:

lim inf
T→+∞

∑
p∈Ext(P)

nT (p)
∑
a∈[K]
p?a(ν)=0

pa KL(νa, ν
′
a) = lim inf

T→+∞

IT
lnT

> 1 .

Note that because of the inner summation over the a such that p?a(ν) = 0, the summation in the
left-most term can be restricted to p ∈ Ext(P) with p 6= p?(ν):∑

p∈Ext(P)

nT (p)
∑
a∈[K]
p?a(ν)=0

pa KL(νa, ν
′
a) =

∑
p∈Ext(P)

p 6=p?(ν)

nT (p)
∑
a∈[K]
p?a(ν)=0

pa KL(νa, ν
′
a) .

All in all, considering rather the subsubsequence (Tmk
)k>1, we get, by identity of the lim inf ,∑

p∈Ext(P)

p 6=p?(ν)

n(p)
∑
a∈[K]
p?a(ν)=0

pa KL(νa, ν
′
a) > 1 .

This holds for all ν ′ ∈ ALT(ν) and shows that the vector
(
n(p)

)
p∈Ext(P)

thus satisfies the con-
straints (13).

In conclusion and in view of the decomposition (10), we have just shown that all finite cluster
points c of RT / lnT are of the form∑

p∈Ext(P)

∆(p)n(p) for some
(
n(p)

)
p∈Ext(P)

∈ RExt(P)
+ satisfying the constraints (13).

Note that the value for n(p?) is irrelevant as ∆
(
p?(ν)

)
= 0. Hence, the lim inf is in particular

larger than or equal to the infimum over these quantities, which is exactly the quantity c
(
Ext(P), ν

)
defined in Definition 3.

E.3. Proof that Assumption 3.1 holds true when D is convex

In this section we assume that D is a convex subset of the set of all probability distributions on the
real line, and show that Assumption 3.1 holds true.

Let ν be a bandit problem in D, assume that the set ALT(ν) is non-empty, and consider any
ν ′ ∈ ALT(ν). Next we show that for λ ∈ (0, 1) sufficiently small, the modified problem

ν ′′ = (1− λ)ν ′ + λν (22)

(which still belongs to D by convexity of D) meets the requirements of Assumption 3.1. Indeed,
first note that for all λ ∈ (0, 1) and all a ∈ [K], the Radon-Nikodym derivative dνa/dν

′′
a is bounded

by 1/λ, so that
KL(νa, ν

′′
a ) 6 ln(1/λ) < +∞ .
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To conclude, it suffices to show that ν ′′ ∈ ALT(ν). First, for all actions a ∈ [K] such that p?a(ν) > 0,
we have νa = ν ′a = ν ′′a since ν ′ ∈ ALT(ν) and given the definition (22). Second, p?(ν) /∈ Opt(ν ′′)
for λ small enough: as ν ′ ∈ ALT(ν), we have by definition p?(ν) /∈ Opt(ν ′), which means that
there exists p ∈ P such that〈

p, µ′
〉
>
〈
p?(ν), µ′

〉
, while

〈
p, µ

〉
6
〈
p?(ν), µ

〉
.

However, taking λ ∈ (0, 1) small enough will still guarantee
〈
p, µ′′

〉
>
〈
p?(ν), µ′′

〉
for λ. We

thus showed that ν ′′ ∈ ALT(ν) for λ > 0 small enough. All the above entails that ν ′′ meets the
requirements of Assumption 3.1, which concludes the proof.
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