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This study focuses on the kriging based metamodeling for the prediction of parameter-dependent mode coupling instabilities.
The high cost of the currently used parameter-dependent Complex Eigenvalue Analysis (CEA) has induced a growing need for
alternative methods. Hence, this study investigates capabilities of kriging metamodels to be a suitable alternative. For this aim,
kriging metamodels are proposed to predict the stability behavior of a four-degree-of-freedom mechanical system submitted to
friction-induced vibrations. This system is considered under two configurations defining two stability behaviors with coalescence
patterns of different complexities. Efficiency of kriging is then assessed on both configurations. In this framework, the proposed
kriging surrogate approach includes a mode tracking method based on the Modal Assurance Criterion (MAC) in order to follow
the physical modes of the mechanical system. Based on the numerical simulations, it is demonstrated by a comparison with the
reference parameter-dependent CEA that the proposed kriging surrogate model can provide efficient and reliable predictions of
mode coupling instabilities with different complex patterns.

1. Introduction

Studies of mechanical systems subjected to friction-induced
vibrations benefit from a growing interest due to the large
amount of applications in the field of mechanical engi-
neering. The different and complex mechanisms that can
be responsible for undesirable dynamic characteristics and
appearance of instabilities in many mechanical systems have
been extensively studied in the last decades [1–5]. There are
typically two different analyses and categories of mechanisms
available for defining the origin of friction-induced system
instability: the first one is mainly due to tribological proper-
ties whereas the second one relies on geometrical conditions.
While the variation of the friction coefficient is considered
as one of the most important factors for the emergence of
instability in the first category (i.e., in the case of a tribological
approach), the origin of friction-induced vibrations is rather

related to kinematic constraints or sprag-slip phenomenon
[6] and modal coupling in the second case (i.e., in the case
of a structural dynamics approach based on geometrical
conditions). In this last case, the emergence of instability can
be detected even with a constant friction coefficient. In the
present study, this last approach that is based on structural
coupling mechanism will be discussed.

Nowadays, two kinds of analysis are classically used
to undertake numerical studies of friction-induced vibra-
tions and dynamic instabilities on mechanical systems: the
Complex Eigenvalue Analysis (CEA) to detect unstable fre-
quencies [7, 8] and time analysis to determine self-excited
vibrations [9, 10]. As explained in previous papers [9, 11, 12],
both approaches have their pros and cons. However CEA
based methods and the calculations of self-excited vibrations
may become too costly when parametric analysis and/or
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uncertainty propagation are needed for engineering design
problems [13]. In these cases, it may be worthwhile to work
towards the development of sophisticated methods based on
surrogate models in order to perform design optimization
or design space approximation (i.e., emulation). The main
aim is to substitute any complex model by a suitable surro-
gate model which offers a convenient compromise between
the accuracy of its predictions and the cost related to its
implementation. In the present study, one is interested in
estimating the occurrence of instability in a predefined design
space approximation. In this context, themain purpose of the
surrogate modeling is the generation of a surrogate that is as
accurate as possible for the prediction of the occurrence of
instabilities in the complete design space of interest, using as
few simulation evaluations as possible. Such approximation
models, known as metamodels or emulators, mimic the
behavior of the simulation model (i.e., estimation of all the
real and imaginary parts of eigenvalues in our case) as closely
as possible while being computationally cheaper to evaluate.
It may be noted that the accuracy of the surrogate depends
on the number and location of samples in the design space of
interest required for its implementation. Moreover, surrogate
models are characterized by some tuning parameters that
control their accuracy.

In the field of friction-induced vibrations, numerous
formalisms have been developed to define surrogate models
for the prediction of mode coupling instabilities. Surro-
gate models that are based on the Generalized Polynomial
Chaos (GPC) formalism [14] have been proposed this last
decade to deal with the stability of mechanical systems
subjected to friction-induced vibrations under uncertainties
[15–18]. This approach has been proposed for propagating
uncertainties described by probability density functions in
systems submitted to friction-induced instabilities, a task
which is prohibitive when performed by using the Monte
Carlo method. The latter was exploited for estimating of
the probability of squeal occurrence in [19] and in several
other studies as a reference method [15–17]. So the main
idea governing the GPC formalism consists of expressing
the system’s degrees of freedom or eigenvalues within a
functional space built from polynomials that are orthogonal
with respect to probabilistic measures associated with the
system’s design parameters. The chaos order is the most
important tuning parameter which is fixed to a suitable value
from a convergence study.This probabilistic surrogate model
has shown an interesting efficiency in propagating and quan-
tifying uncertainties on the stability behavior of such systems.
However, it may present some limits when the number of
uncertain parameters is relatively high and/or when high
chaos orders are required in particular for functions that are
strongly nonlinear in the random space. In this last case,
surrogate models based on the multielement GPC can be
useful [20]. The response surface methodology (RMS) is also
proposed in [21] to deal with the stability, reliability, and
sensitivity analysis of brake systems submitted to interval
and random uncertainties. The proposed surrogate model
consists of using basis functions (defined by monomials in
the uncertain parameters) to express the system eigenvalues.

The same surrogate model is proposed in [22] for the opti-
mization design of brake system under interval and random
uncertainties. Another approach consists of constructing
surrogate models based on the perturbation principle [23].
In this specific case, the main principle consists in expressing
system’s eigenvalues by means of Taylor expansions near the
mean value of uncertain parameters. For example, the first-
order perturbation method has been proposed by Butlin
and Woodhouse [24] to quantify sensitivity of friction-
induced instabilities to the design parameters. Moreover the
recent study of Nobari et al. [25] proposes a second-order
Taylor expansion to estimate statistical properties of eigen-
values characterizing mode coupling instabilities. Despite
its efficiency, this approach has limitations, especially when
standard deviations of parameters are important.

Another type of surrogate models can be constructed
based on the kriging method [26, 27]. This approach exploits
spatial correlations between a small number of function
values at some samples generated from a suitable experience
plan to predict unknown values of the function within its
design space of interest. The kriging based model consists in
two main parts; the regression model roughly represents the
global tendency of the analyzed function while the second
part is defined by a stochastic process representing the spatial
correlations in the design space of interest. Extensive reviews
of krigingmetamodeling in simulation and other applications
as in the sensitivity analysis and optimization in design
process can be found in [28, 29].

In the recent past, the prediction of squeal instability in
brake systems via surrogate modeling has been introduced
by Nobari et al. [30] and Nechak et al. [13] in order to
construct a predictor of squeal instability. However, these
two interesting studies were limited to the estimation of
unstable frequencies without considering the prediction of
all the stable modes or the behavior of the system before the
emergence of squeal instability. Extension of the prediction of
both stable and unstable behaviors (i.e., estimation of all the
real parts and imaginary parts of eigenvalues) for mechanical
systems subjected to friction-induced vibrations via surrogate
modeling is proposed in the present study. Furthermore,
the construction of a surrogate model for each separated
mode is carried out with a careful selection of output data,
due to the evolution of the complex eigenvalues and the
order of the modes when some specific parameters change.
If the surrogate model is not constructed by paying attention
to this point, errors due to an improper surrogate model
will appear. To overcome this difficulty, a tracking process
based on the Modal Assurance Criterion (MAC) is proposed
in conjunction with the generation of kriging surrogate
models characterized by their tuning parameters, namely,
the order of the regression model, the spatial correlation
model, and the size of the experience plan. The two previous
studies [13, 30] have not analyzed exhaustively the effects
of these tuning parameters on the accuracy of kriging for
instability predictions of mechanical system subjected to
friction-induced vibrations.

So the main objective and originality of the present paper
lies in the analysis of performances (in terms of accuracy
and cost) of kriging surrogate models with respect to their
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Figure 1: Mechanical model under study.

tuning parameters, when dealing with the prediction of
not only mode coupling instabilities but also the complete
approximation of the real and imaginary parts of both stable
and unstable modes. To undertake such a study and to
validate the methodology of constructing kriging surrogate
models with a tracking process, numerical simulations will
be performed on a minimal four-degree-of-freedom model.
Two specific numerical cases will be investigated: the first
one will be a classical baseline with “a simple mode coupling
mechanism” (i.e., coalescence of two modes, one being
unstable and the other unstable). The second case deals
with more complex modes coupling mechanisms with the
successive appearances and disappearances of instabilities,
and the crossing phenomenon between modes.

This study is organized as follows. First, the mechanical
system under study is presented and the classical stability
analysis (i.e., CEA) is briefly discussed. Then, the methodol-
ogy for constructing kriging surrogate models is developed.
The proposed procedure allows not only the prediction of
mode coupling instabilities but also the prediction of all
the complex eigenvalues of the mechanical system (i.e., the
real parts and imaginary parts for both stable and unstable
modes) by performing a selection and arrangement of the
modes via a suitable MAC criterion. The last part of the
present study is devoted to the presentation and discussion
of the numerical results.

2. Mechanical System and Stability Analysis

2.1. Description of the Phenomenological Model. Figure 1
shows the minimal four-degree-of-freedom model to be
used in the present study. This phenomenological model
has its origins in the previous two-degree-of-freedom model
proposed by Hultén [31, 32] and was used to point out the
role of the damping and the destabilization paradox [33] and
for the prediction of mode coupling instabilities submitted
to parameter uncertainties [15–17, 34]. In the present study,
an extension of this minimal Hultén model is proposed in
order to investigate the case of multi-instabilities. The model
consists of two masses𝑚1 and𝑚2 held against moving bands
disposed as shown in Figure 1. Contacts between masses
and bands are modeled by plates supported by springs and
damping. The masses 𝑚1 and 𝑚2 are linearly coupled by
a spring (i.e., stiffness 𝑘𝑎) and the associated damping 𝑐𝑎.

For the sake of simplicity, it is assumed that the two masses
and the three band surfaces are always in contact due to a
preload applied to the mechanical system. Considering the
friction forces between the four plates and the three bands,
the coefficient of friction𝜇 is assumed to be constant. Its value
is the same for all contacts and the classical Coulomb law
is applied. The velocity of the moving bands is considered
as constant. Moreover, the relative velocities between the
band speed and the displacements of masses are assumed
to be positive so that the direction of the tangential friction
force 𝐹𝑡 does not change. According to the Coulomb law,
the tangential friction force is assumed to be proportional to
the normal force 𝐹𝑛 (i.e., 𝐹𝑡 = 𝜇𝐹𝑛, where 𝜇 is the friction
coefficient).

Equation of motion for the four-degree-of-freedom
model can be expressed as

MẌ + CẊ + (K + K𝜇)X = 0, (1)

where X is the displacement vector defined by X =(𝑋1 𝑋2 𝑋3 𝑋4)𝑇. Ẍ and Ẋ are the associated acceleration
and velocity vectors, respectively. M, C, and K are, respec-
tively, the mass, damping, and structural stiffness matrices
of the mechanical system. The matrix K𝜇 corresponds to the
frictional contributions between the four plates and the three
bands. Expressions of themassmatrixM, the dampingmatrix
C, the structural stiffness matrix K, and the stiffness matrix
K𝜇 due to frictional forces are given by

M = [[[[[[

𝑚1 0 0 00 𝑚1 0 00 0 𝑚2 00 0 0 𝑚2
]]]]]]

C = [[[[[[

𝑐12 + 𝑐𝑎 0 −𝑐𝑎 00 𝑐11 0 0−𝑐𝑎 0 𝑐22 + 𝑐𝑎 00 0 0 𝑐21
]]]]]]

K = [[[[[[

𝑘12 + 𝑘𝑎 0 −𝑘𝑎 00 𝑘11 0 0−𝑘𝑎 0 𝑘22 + 𝑘𝑎 00 0 0 𝑘21
]]]]]]

K𝜇 = [[[[[[

0 𝜇𝑘11 0 0−𝜇𝑘12 0 0 00 0 0 𝜇𝑘210 0 −𝜇𝑘22 0
]]]]]]
.

(2)

2.2. Prediction of Instabilities Based on the Complex Eigenval-
ues Analysis. From the literature, it is admitted that there are
typically two different and complementary methodologies in
order to predict instabilities of mechanical systems subjected
to friction-induced vibrations: the CEA and the dynamic
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transient and stationary analysis. Both methodologies have
their advantages and disadvantages and they can be per-
formed separately. As previously explained by Sinou et al.
[9, 10], the calculation of the nonlinear transient or/and
stationary self-excited vibrations and the estimation of the
acoustic noise [35, 36] define the most relevant process to
detect the presence or absence of instabilities in mechanical
systems subjected to friction-induced vibrations. However,
the approach is often unfortunately too expensive compu-
tationally. From this point of view, methods based on the
CEA are often used in order to predict instabilities in a given
frequency range. Even if it may lead to an underestimation
or an overestimation of the unstable modes observed in the
nonlinear time simulation, it is nowadays of common use in
industry. One of the main limitations of CEA lies in the fact
that the predictions of the onset of instability are valid just
locally (i.e., in the neighborhood of a given static equilibrium
point).

The prediction of friction-induced instabilities using the
well known CEA is based on the numerical analysis of the
system’s eigenvalues. Assuming a solution of the form X(𝑡) =
Φ𝑒𝜆𝑡 (where 𝜆 corresponds to the complex eigenvalues of
the system and Φ is the associated eigenvector), system (1)
becomes

(𝜆2M + 𝜆C + K + K𝜇)Φ = 0. (3)

So stability of the system can be investigated by performing
an eigenvalue analysis of the characteristic equation

det (𝜆2M + 𝜆C + K + K𝜇) = 0. (4)

Due to the contribution of the nonsymmetric stiffness matrix
K𝜇, the mechanical system may become unstable. The stabil-
ity analysis based on the CEA is then based on the system’s
eigenvalues given by the complex roots 𝜆𝑗 = 𝑎𝑗 + 𝚤𝑏𝑗 of the
characteristic polynomial. Indeed, according to the Lyapunov
theory, the asymptotic stability of system (1) is stated if
all eigenvalues are with strict negative real parts while the
system is said to be unstable (i.e., appearance of one or more
instabilities) if at least one eigenvalue has a positive real part𝑎𝑗.The corresponding imaginary part 𝑏𝑗 defines the pulsation
of the unstable mode. The number of unstable modes (i.e.,
instabilities) is related to the number of eigenvalues with a
positive real part.

3. Kriging Models for Stability Analysis

In this section, the use of surrogate models in the context of
the prediction of complex eigenvalues formechanical systems
subjected to friction-induced vibration will be presented.
The construction of a surrogate model will enable us to
reproduce all the outputs of expensive simulation (i.e., the
prediction of all the eigenvalues based on the CEA in the
present case) while requiring a limited number of simulations
and thereby avoiding considerable resources in terms of both
computation time and data storage.

In the next parts of this section, the mathematical
formulation of kriging for the prediction of eigenvalues

will be first presented. Secondly, the need to implement a
tracking process based on aMACcriterion for all the complex
eigenvalues will be discussed.

3.1. Mathematical Formulation of Kriging. The kriging, also
named Gaussian process, is an interpolation method that
permits estimating a response surface of a function just
from a relatively small number of simulations performed at
sample points generated randomly or pseudorandomly from
the parameter space of the function. The exploited principle
is based on the correction of a rough approximation given
by a linear or nonlinear regression model by using a zero-
mean Gaussian process characterized by a spatial correlation
function which estimates the similarity of two points in the
parameter space. The essential ideas of kriging are presented
in the sequel through the considering of estimating of the
response surface of eigenvalues. In this perspective, let us
consider 𝑁 sample points p = (p(𝑘))𝑘=1,...,𝑁 in the 𝑚-
dimensional space parameter and the𝑁 associated eigenval-
ues 𝜆(𝑘). Each output 𝜆(𝑘) is obtained from the solution of the
parameter-dependent characteristic equation:

det (𝜆2M(𝑘) + 𝜆C(𝑘) + K(𝑘) + K(𝑘)𝜇 ) = 0, (5)

where M(𝑘), C(𝑘), K(𝑘), and K(𝑘)𝜇 are the system’s matrices
evaluated at the 𝑘th sample of parameter p.

Based on the kriging theory [26, 27, 37], a parameter-
dependent eigenvalue can be expressed as

𝜆 (p) = f (p)T𝛽 + 𝑧 (p) , (6)

where the first term is 𝑞 basis polynomial functions 𝑓𝑖 that
are weighted by the regression parameters 𝛽𝑖. It describes
the global tendency of the approximated function against
parameters p.The second term 𝑧 is a realization of a Gaussian
process that is assumed to have a zero-mean value and a
covariance function given by

𝐸 [𝑧 (s) 𝑧 (p)] = 𝜎2R (𝜃, s, p) , (7)

where 𝜎2 is the process variance andR(𝜃, s, p) ∈ [0, 1] is the
spatial correlation function with the scaling parameter 𝜃, 𝐸[⋅]
being the expectation operator. The correlation function is a
monotone function depending on the distance between p and
s. This function is build such that two identical points have a
unitary correlation when two infinitely separated points have
zero correlation. It has the following form:

R (𝜃, s, p) = 𝑚∏
𝑗=1

R𝑗 (𝜃𝑗, 𝑠𝑗 − 𝑝𝑗) . (8)

Basic functions are given in Table 1.
Three parameters have to be determined to define the

kriging model (6), namely, the regression parameter 𝛽, the
process variance 𝜎, and the scaling parameter 𝜃. Since 𝛽 and𝜎 are 𝜃-dependent, the latter has to be first estimated. This
is performed by solving the following maximum likelihood
function:

min
𝜃

= |R|1/𝑁 𝜎2, (9)
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Table 1: Basic kriging correlation functions.

Name R𝑗 (𝜃, 𝑑𝑗)
EXP exp (−𝜃𝑗 󵄨󵄨󵄨󵄨󵄨𝑑𝑗󵄨󵄨󵄨󵄨󵄨)
EXPG exp (−𝜃𝑗 󵄨󵄨󵄨󵄨󵄨𝑑𝑗󵄨󵄨󵄨󵄨󵄨𝜃𝑛+1) , 0 < 𝜃𝑛+1 ≤ 2
GAUSS exp (−𝜃𝑗𝑑2𝑗)
LIN max (0, 1 − 𝜃𝑗 󵄨󵄨󵄨󵄨󵄨𝑑𝑗󵄨󵄨󵄨󵄨󵄨)
SPHERICAL 1 − 1.5𝜉𝑗 + 0.5𝜉3𝑗 , 𝜉𝑗 = min (1, 𝜃𝑗 󵄨󵄨󵄨󵄨󵄨𝑑𝑗󵄨󵄨󵄨󵄨󵄨)
CUBIC 1 − 3𝜉2𝑗 + 2𝜉3𝑗 , 𝜉𝑗 = min (1, 𝜃𝑗 󵄨󵄨󵄨󵄨󵄨𝑑𝑗󵄨󵄨󵄨󵄨󵄨)
SPLINE 𝜍 (𝜉𝑗) =

{{{{{{{{{{{

1 − 15𝜉2𝑗 + 30𝜉3𝑗 for 0 ≤ 𝜉𝑗 ≤ 0.2
1.25 (1 − 𝜉𝑗)3 for 0.2 < 𝜉𝑗 < 1
0 for 𝜉𝑗 ≥ 1

, 𝜉𝑗 = 𝜃𝑗 󵄨󵄨󵄨󵄨󵄨𝑑𝑗󵄨󵄨󵄨󵄨󵄨

where |R| is the determinant of the correlation matrix R
whose entries are given by 𝑅𝑖𝑗 = R(𝜃, p(𝑘), p(𝑙)) with 𝑘 =1, . . . , 𝑁 and 𝑙 = 1, . . . , 𝑁. Then, by considering the 𝑁 × 𝑞
training matrix F defined from the evaluation of regression
functions at the generated 𝑁 samples and one of the entries
defined by 𝐹𝑖𝑗 = 𝑓𝑖(p(𝑗)) (with 𝑖 = 1, . . . , 𝑞 and 𝑗 = 1, . . . , 𝑁),
the regression parameter vector 𝛽 is defined by

𝛽
∗ = (F𝑇R−1F)−1 F𝑇R−1Λ (10)

as the least square solution of the following regression
problem:

F𝛽 ≃ Λ, (11)

where Λ comprises the𝑁 eigenvalue samples obtained from
the 𝑁 solutions of the parameter-dependent characteristic
equation (5) associated with the generated samples p(𝑘) with𝑘 = 1, . . . , 𝑁. The associated variance 𝜎2 is given by

𝜎2 = 1𝑁 (Λ − F𝛽∗)𝑇R−1 (Λ − F𝛽∗) . (12)

Hence, according to [26], the best linear unbiased predictor
of an eigenvalue can be obtained as follows:

𝜆̂ (p) = fT (p)𝛽∗ + r (p)T R−1 (Λ − F𝛽∗) , (13)

where r(p) = [R(𝜃, p(1), p) ⋅ ⋅ ⋅R(𝜃, p(𝑁), p)]𝑇 is the vector
containing values of the correlation between each of the 𝑁
input sample points p(𝑘) with 𝑘 = 1, . . . , 𝑁 and the parameter
variable p.

In the present study, the surrogate kriging model is
constructed by using the toolboxMatlab DACE developed by
Sondergaard et al. [27].

3.2. Efficient Surrogate Modelling for Squeal Instability Based
on Mode Shape Criterion. Because the evolution of the
complex eigenvalues and the order of the associated modes
can change when the parameters change, it is necessary to
follow the evolution of all separated eigenvalues and the
associated eigenvectors computed via the CEA in order to
construct a reliable surrogate model on complex eigenvalues.

One of the most efficient ways to allow an accurate
tracking of the mode evolution is to compare two sets of
modes and perform the pairing between these sets of modal
vectors using a MAC. The MAC that corresponds to a
measure of the degree of linearity or consistency between one
modal and another reference modal vector is given by

MAC (Φ1,Φ2) = ( 󵄨󵄨󵄨󵄨Φ∗1Φ2󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩Φ1󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩Φ2󵄩󵄩󵄩󵄩)
2 , (14)

where ∗ designate the conjugate transpose of a complex
vector. Φ1 and Φ2 define the mode shape (i.e., eigenvector)
of the baseline system and the mode shape of the modified
system. This criterion can be used for both real-valued and
complex-valued vector and is insensitive to the phase and to
the norm of Φ1 and Φ2. It is also appropriate to the case of
monophased vectors. Due to the fact that the MAC criterion
is based upon the minimization of the squared error between
two vector spaces, one of the main drawbacks on the use of
the MAC criterion is its sensibility to components of large
value in the mode shapes (i.e., eigenvectors). Moreover, its
low sensibilitywhendecreasing the number of components in
the eigenvectors is another potential limitation to performing
pairing between two sets.

This classical MAC has been previously used successfully
by Nobari et al. [30] in order to be sure that the same
unstable modes are used for constructing a predictor. The
authors proposed to correlate the modified unstable mode
shapes of the randomized inputs (due to randomizing the
material properties of the reference system) with the baseline
deterministic design.

4. Numerical Results

This section discusses performances of kriging metamodels
with respect to their tuning parameters (i.e., the order of
the regression function, the spatial correlation function, and
the size of the experience plan) in the prediction of the
parameter-dependent stability and instability regions in the
design space. In this perspective, two configurations are
considered with the set of parameters presented in Table 2.



6 Shock and Vibration

Table 2: Set of parameters under study for the mechanical model.

𝑚1 𝑚2 𝑘11 𝑘12 𝑘21 𝑘22 𝑘𝑎 𝑐11 𝑐12 𝑐21 𝑐22 𝑐𝑎
(kg) (kg) (N⋅m−1) (N⋅m−1) (N⋅m−1) (N⋅m−1) (N⋅m−1) (N⋅s⋅m−1) (N⋅s⋅m−1) (N⋅s⋅m−1) (N⋅s⋅m−1) (N⋅s⋅m−1)

Config. 1 1 1 3 000 6 000 1 000 3 000 100 1 1 1 1 1
Config. 2 1 000

The two studied configurations differ from each other
with respect to the complexity of the phenomenon observed
in the coupling modes that is mainly due to the coupling
degree defined by the stiffness parameter 𝑘𝑎 between the two
masses𝑚1 and𝑚2. The first configurationmay be considered
as a classical baseline with “a simple mode coupling mecha-
nism”: it corresponds to two decoupled coalescences of two
modes (for each coalescence one mode is unstable and the
other is stable).The second configuration gives rise to a more
complex coalescence pattern including more complex modes
coupling mechanisms with the successive appearances and
disappearances of instabilities and the crossing phenomenon
between stable and unstable modes. These behaviors are
mainly due to the “high coupling” between the twomasses𝑚1
and𝑚2. Themain aim in the consideration of the two config-
urations is to observe the effect of the growing complexity of
the proposed system on the kriging performances.

Moreover, two- and three-dimensional parameter spaces
are considered in order to analyze the influence of the dimen-
sion of the parameter space on the kriging performance. So
two studies with p = {𝜇, 𝑘11} and p = {𝜇, 𝑘11, 𝑘22} are
performed, respectively.

For the reader comprehension, the following proposed
studies and the associated results are conducted as follows:

(i) The “reference” is computed without any surrogate
model. A classical parametric study in connection
with a stability analysis based on the CEA method
is performed with both configurations and both sets.
The obtained results constitute the database used
to assess the validity and the performances of the
constructed kriging metamodels. They are obtained
by considering the friction coefficient 𝜇 ∈ [0, 1]
and the stiffness coefficients 𝑘11 and 𝑘22 around their
nominal values with dispersions of 10%.

(ii) Calculations are performed using kriging metamod-
els for the predicting of the complex eigenvalues. In
this case, the selected samples for the construction
of kriging models are taken homogeneously in the
design space. This choice is not necessarily optimal
but ismade to studymore specifically different regres-
sion models in term of order (zero, one, and two) and
different spatial correlation models (linear, Gaussian,
exponential, cubic, and spherical).

(iii) Calculations based on kriging surrogatemodels using
Latin Hypercube Sampling (LHS) are conducted.The
main aim of this study is to analyze efficiency of
krigingmetamodels combined with a reduced sample
data set.

4.1. ReferenceModel. Asmentioned previously, stability anal-
ysis based on the CEA method is performed by sampling the𝑚-dimensional space parameter (i.e., generating the set of
samples p(𝑘) for 𝑘 = 1, . . . , 𝑁 and by solving, for each sample,
the characteristic equation (5)). The main drawback of this
method is related to its high cost induced by the high number𝑁 of solutions required to cover the whole parameter space
and thus to ensure confident stability analysis. It must also
be noted that this cost is much more important when dealing
with large scale systems (see [13]). In this study, the number
of samples is fixed to 𝑁 = 10000 if 𝑚 = 2 (i.e., p = {𝜇, 𝑘11}
with a discretization of 100 values for both parameters 𝜇 and𝑘11) and 𝑁 = 1000000 if 𝑚 = 3 (i.e., p = {𝜇, 𝑘11, 𝑘22} with a
discretization of 100 values for each of the parameters 𝜇, 𝑘11,
and 𝑘12).

First of all, evolutions of the system’s eigenvalues (both
real and imaginary parts) against the two parameters 𝜇
and 𝑘11 are plotted in Figure 2 for the two configurations.
Two different behaviors of the mechanical system are clearly
observed. As shown in Figures 2(a) and 2(c), the first
one gives rise to two independent classical mode coupling
phenomena (i.e., two decoupled single mass Hultén systems).
Two independent pairs of eigenvalues can be observed. For
each pair, the corresponding frequencies approximate each
other when the friction coefficient increases until coales-
cence. Near this point the real parts of the eigenvalues
separate. First instability is detected for 𝜇 > 0.3 whereas
the second instability appears for 𝜇 > 0.58. The associated
frequencies of the unstable modes are 65.3Hz and 41.7Hz,
respectively. Each coalescence pattern appears to be not
affected by the other mode coupling. It is also observed that
increasing the value of the stiffness parameter 𝑘11 brings
forward the apparition of the coalescence point. Figure 3(e)
shows the evolutions of the real and imaginary parts versus 𝜇
and 𝑘11 in the complex plan. For the reader comprehension, it
is worth remembering that all the numerical results obtained
via the CEA do not use the tracking process based on the
MAC criterion for these first case studies. However, we chose
to use the MAC criterion in order to draw four different
color maps for both the real and imaginary parts. In this
framework, the MAC criterion is used only for the sake of
graphical representation of results.

Then, Figures 2(b) and 2(d) illustrate the coalescence
patterns for the second case. Evolutions of the real and
imaginary parts versus 𝜇 and 𝑘11 in the complex plan are
also shown in Figure 3(f). Although a “classical simple
mode coupling phenomenon” was observed for the first
configuration, this second case study presents more complex
coalescence patterns.Three mode couplings are detected: the
first one appears for 𝜇 = 0.13 with the frequency of the
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Figure 2: Evolution of real parts (a, b) and imaginary parts (c, d) of eigenvalues versus 𝜇 and 𝑘11 for configurations 1 (a, c) and 2 (b, d).

unstable mode equal to 59.3Hz; the second and third mode
couplings are detected for 𝜇 > 0.48 and 𝜇 > 0.81, respectively.
The frequencies of the associated unstable modes are equal
to 66.6Hz and 45.1Hz, respectively. Moreover, it is observed
that the modes are involved in several successive coupling
coalescences (see, e.g., the two modes represented by the
orange and yellow maps). At last, a crossing phenomenon
between stable and unstable modes is also observed around𝜇 = 0.55 (see the two modes represented by the orange and
yellow maps in Figure 2(d)).

In order to investigate the efficiency of kriging surrogate
models and to offer easy viewing of metamodels for both real
and imaginary parts in comparison with the reference based

on CEA, we propose to draw envelopes (i.e., the minimum
and maximum values) for each real and imaginary part of
eigenvalues while keeping the representation of variations
according to the control parameter 𝜇. For example, Figures
3(a)–3(d) show the representation of each envelope for
both real and imaginary parts for the two previous cases.
Moreover, evolutions of all eigenvalues in the complex plane
are used to compare results obtained by kriging surrogate
models and the reference. These results for the reference
model are plotted in Figures 3(e) and 3(f) while the number of
unstable modes characterizing the stable and unstable design
spaces is also displayed versus the two design parameters in
Figure 4 for the two considered configurations.
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Figure 3: Two-dimensional parameter space: real (a, b) and imaginary (c, d) parts of eigenvalues versus 𝜇 and evolution in the complex plan
(e, f) for configurations 1 (a, c, e) and 2 (b, d, f).
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Figure 4: Number of unstable modes versus 𝜇 and 𝑘11 for configurations 1 (a) and 2 (b).

Moreover, a numerical study by tracking the system’s
eigenvalues against three design parameters is performed
in order to investigate the potential of constructing kriging
surrogate models: the friction coefficient 𝜇 in [0, 1] and
the stiffness 𝑘11 and 𝑘22 of 10% around their mean values
are considered. Results displayed in Figures 5(e) and 5(f)
represent the evolution of eigenvalues in the complex plan
assuming the variation of 𝜇, 𝑘11, and 𝑘22. Evolutions of the
envelopes (i.e., the minimum and maximum values) versus
the control parameter 𝜇 are shown in Figures 5(a)–5(d).
All these results that are performed via the CEA will be
used as the reference data in order to assess the accuracy
of the constructed kriging surrogate models in the following
studies.

4.2. Kriging Surrogate Model. Performances of kriging based
metamodels in the prediction of mode coupling instabilities
are assessed with respect to their tuning parameters, namely,
the regression order, the spatial correlation model, and the
size of the training data. Both configurations with the two
parameter sets used previously are also considered.Moreover,
two experience plans are used to generate the training data.
The first one is a linear grid. The objective of this first part
is to conduct a study rather dedicated to the impact of the
tuning parameters by considering homogeneous input data
on the design space. The second experience plan is based on
the LHS that is a widely used method to generate controlled
random samples.The final goal here is to analyze the capacity
of krigingmetamodels to deal with different complexity levels
induced by the dimension of the input parameters space and
various coalescence patterns.

4.2.1. Study with p = {𝜇, 𝑘11}: Training Data from a Linear
Grid. A 2D linear sample grid (20 × 50) is generated to cover
the 2D parameter space defined by the friction coefficient 𝜇
and the linear stiffness 𝑘11 (i.e., p = {𝜇, 𝑘11}). The generated

samples are used to build the training matrix F and the
correlation matrix R associated with different regression
models in term of order (zero, one, and two) and different
spatial correlation models (linear, Gaussian, exponential,
cubic, and spherical). We are interested by the evolutions
of envelops of the system’s eigenvalues (real and imaginary
parts) versus the friction coefficient 𝜇.

The quadratic mean of error on the imaginary and real
parts of each eigenvalues and the associated maximum of
absolute error for different regression and correlation kriging
functions are given in Tables 3, 4, 5, and 6 for the first
configuration (in Tables 7, 8, 9, and 10 for the second
configuration).The quadraticmean of error on the imaginary
parts denoted by 𝑒𝜔QM as well as the quadratic mean of error
on the real parts denoted by 𝑒realQM are calculated as the square
root of the mean of the squares as follows:

𝑒𝜔QM = √∑𝑁𝑖=1 󵄨󵄨󵄨󵄨󵄨𝜔ref − 𝜔kriging
󵄨󵄨󵄨󵄨󵄨2𝑁

𝑒realQM = √∑𝑁𝑖=1 󵄨󵄨󵄨󵄨󵄨𝑎ref − 𝑎kriging󵄨󵄨󵄨󵄨󵄨2𝑁 ,
(15)

where 𝑁 defines the number of samples. 𝜔ref and 𝜔kriging
correspond to the pulsation of the reference model and
the kriging surrogate model, respectively. 𝑎ref and 𝑎kriging
correspond to the real part of one eigenvalue for the reference
model and the kriging surrogate model, respectively.

Results show influences of both regression and correla-
tion functions on the accuracy of kriging based predictions.
Moreover, they are different with respect to the considered
configuration. Each eigenvalue requires a kriging metamodel
with specific regression and correlation function (not neces-
sarily the same for all eigenvalues) to ensure suitable levels
of accuracy. Indeed, for the first configuration as example,
it can be observed that the accuracy of kriging predictions
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Figure 5: Three-dimensional parameter space: real (a, b) and imaginary (c, d) parts of eigenvalues versus 𝜇 and evolution in the complex
plan (e, f) for configurations 1 (a, c, e) and 2 (b, d, f).
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Table 3: Configuration 1: quadratic mean of absolute error on real parts of eigenvalues for different regression and correlation kriging
functions.

Reg Poly 0
Spherical Spline Linear Gauss Exponential Exponential general

Re(𝜆1) 8,33𝐸 − 02 7,07𝐸 − 02 8,33𝐸 − 02 6,72𝐸 − 02 8,33𝐸 − 02 6,03𝐸 − 02
Re(𝜆2) 1,18𝐸 − 01 1,14𝐸 − 01 1,18𝐸 − 01 1,67𝐸 + 00 1,18𝐸 − 01 9,52𝐸 − 02
Re(𝜆3) 8,35𝐸 − 02 7,07𝐸 − 02 8,35𝐸 − 02 5,86𝐸 − 01 8,35𝐸 − 02 6,06𝐸 − 02
Re(𝜆4) 1,18𝐸 − 01 1,13𝐸 − 01 1,18𝐸 − 01 1,08𝐸 + 00 1,18𝐸 − 01 9,50𝐸 − 02∑(Re(𝜆𝑖)) 4,03𝐸 − 01 3,68𝐸 − 01 4,03𝐸 − 01 3,40𝐸 + 00 4,03𝐸 − 01 3,11𝐸 − 01

Reg Poly 1
Spherical Spline Linear Gauss Exponential Exponential general

Re(𝜆1) 8,33𝐸 − 04 6,92𝐸 − 04 8,33𝐸 − 04 5,68𝐸 − 04 8,33𝐸 − 04 5,97𝐸 − 04
Re(𝜆2) 1,18𝐸 − 03 1,12𝐸 − 03 1,18𝐸 − 03 2,84𝐸 − 02 1,18𝐸 − 03 9,41𝐸 − 04
Re(𝜆3) 8,35𝐸 − 04 6,92𝐸 − 04 8,35𝐸 − 04 1,39𝐸 − 02 8,35𝐸 − 04 6,00𝐸 − 04
Re(𝜆4) 1,18𝐸 − 03 1,12𝐸 − 03 1,18𝐸 − 03 1,87𝐸 − 02 1,18𝐸 − 03 9,39𝐸 − 04∑(Re(𝜆𝑖)) 4,03𝐸 − 03 3,62𝐸 − 03 4,03𝐸 − 03 6,16𝐸 − 02 4,03𝐸 − 03 3,08𝐸 − 03

Reg Poly 2
Spherical Spline Linear Gauss Exponential Exponential general

Re(𝜆1) 8,26𝐸 − 02 6,97𝐸 − 02 4,59𝐸 − 01 5,53𝐸 − 02 2,12𝐸 − 01 5,96𝐸 − 02
Re(𝜆2) 1,18𝐸 − 01 1,13𝐸 − 01 8,76𝐸 − 01 3,68𝐸 + 00 3,75𝐸 − 01 9,40𝐸 − 02
Re(𝜆3) 8,29𝐸 − 02 6,98𝐸 − 02 4,61𝐸 − 01 1,40𝐸 + 00 2,13𝐸 − 01 5,99𝐸 − 02
Re(𝜆4) 1,18𝐸 − 01 1,12𝐸 − 01 8,79𝐸 − 01 3,61𝐸 + 00 3,76𝐸 − 01 9,38𝐸 − 02∑(Re(𝜆𝑖)) 4,01𝐸 − 01 3,64𝐸 − 01 2,68𝐸 + 00 8,75𝐸 + 00 1,18𝐸 + 00 3,07𝐸 − 01
Table 4: Configuration 1: maximum of absolute error on real parts of eigenvalues for different regression and correlation kriging functions.

Reg Poly 0
Spherical Spline Linear Gauss Exponential Exponential general

Re(𝜆1) 5.29𝐸 − 01 3.67𝐸 − 01 5.29𝐸 − 01 2.98𝐸 − 01 5.29𝐸 − 01 3.84𝐸 − 01
Re(𝜆2) 1.01𝐸 + 00 8.13𝐸 − 01 1.02𝐸 + 00 6.97𝐸 + 00 1.02𝐸 + 00 8.12𝐸 − 01
Re(𝜆3) 5.29𝐸 − 01 3.68𝐸 − 01 5.29𝐸 − 01 2.48𝐸 + 00 5.29𝐸 − 01 3.84𝐸 − 01
Re(𝜆4) 1.01𝐸 + 00 8.02𝐸 − 01 1.01𝐸 + 00 4.59𝐸 + 00 1.02𝐸 + 00 8.12𝐸 − 01∑(Re(𝜆𝑖)) 3.09𝐸 + 00 2.35𝐸 + 00 3.09𝐸 + 00 1.43𝐸 + 01 3.09𝐸 + 00 2.39𝐸 + 00

Reg Poly 1
Spherical Spline Linear Gauss Exponential Exponential general

Re(𝜆1) 5.29𝐸 − 01 3.65𝐸 − 01 5.29𝐸 − 01 3.00𝐸 − 01 5.29𝐸 − 01 3.84𝐸 − 01
Re(𝜆2) 1.01𝐸 + 00 8.20𝐸 − 01 1.02𝐸 + 00 2.21𝐸 + 01 1.02𝐸 + 00 8.12𝐸 − 01
Re(𝜆3) 5.29𝐸 − 01 3.66𝐸 − 01 5.29𝐸 − 01 8.87𝐸 + 00 5.29𝐸 − 01 3.84𝐸 − 01
Re(𝜆4) 1.01𝐸 + 00 8.09𝐸 − 01 1.01𝐸 + 00 1.64𝐸 + 01 1.01𝐸 + 00 8.12𝐸 − 01∑(Re(𝜆𝑖)) 3.09𝐸 + 00 2.36𝐸 + 00 3.09𝐸 + 00 4.77𝐸 + 01 3.09𝐸 + 00 2.39𝐸 + 00

Reg Poly 2
Spherical Spline Linear Gauss Exponential Exponential general

Re(𝜆1) 5.15𝐸 − 01 3.66𝐸 − 01 1.42𝐸 + 00 3.04𝐸 − 01 8.53𝐸 − 01 3.84𝐸 − 01
Re(𝜆2) 1.00𝐸 + 00 8.20𝐸 − 01 3.43𝐸 + 00 2.25𝐸 + 01 1.81𝐸 + 00 8.11𝐸 − 01
Re(𝜆3) 5.15𝐸 − 01 3.66𝐸 − 01 1.43𝐸 + 00 1.19𝐸 + 01 8.55𝐸 − 01 3.84𝐸 − 01
Re(𝜆4) 1.00𝐸 + 00 8.09𝐸 − 01 3.43𝐸 + 00 2.35𝐸 + 01 1.81𝐸 + 00 8.11𝐸 − 01∑(Re(𝜆𝑖)) 3.04𝐸 + 00 2.36𝐸 + 00 9.71𝐸 + 00 5.82𝐸 + 01 5.32𝐸 + 00 2.39𝐸 + 00
measured by the quadratic mean of absolute errors is rel-
atively suitable for all the built metamodels. However, for
the same eigenvalue (real and imaginary parts), the average
accuracy is weakly sensitive to the tuning parameters (the
regression order and the correlation function type). A relative

variation of the accuracy of predictions is rather observed
between kriging metamodels of different eigenvalues. The
maximum of absolute error indicates that the kriging meta-
model constructed with the general exponential function
gives predictions with the best and less sensitive accuracies
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Table 5: Configuration 1: quadratic mean of absolute error on imaginary parts of eigenvalues for different regression and correlation kriging
functions.

Reg Poly 0
Spherical Spline Linear Gauss Exponential Exponential general

Im(𝜆1) 7,76𝐸 − 02 6,61𝐸 − 02 7,76𝐸 − 02 6,75𝐸 − 02 7,76𝐸 − 02 5,49𝐸 − 02
Im(𝜆2) 1,20𝐸 − 01 1,15𝐸 − 01 1,20𝐸 − 01 2,04𝐸 + 00 1,20𝐸 − 01 9,52𝐸 − 02
Im(𝜆3) 7,78𝐸 − 02 6,60𝐸 − 02 7,78𝐸 − 02 1,15𝐸 + 00 7,78𝐸 − 02 5,48𝐸 − 02
Im(𝜆4) 1,19𝐸 − 01 1,13𝐸 − 01 1,19𝐸 − 01 3,19𝐸 + 00 1,19𝐸 − 01 9,48𝐸 − 02∑(Im(𝜆𝑖)) 3,95𝐸 − 01 3,60𝐸 − 01 3,95𝐸 − 01 6,45𝐸 + 00 3,95𝐸 − 01 3,00𝐸 − 01

Reg Poly 1
Spherical Spline Linear Gauss Exponential Exponential general

Im(𝜆1) 7,76𝐸 − 02 6,61𝐸 − 02 1,31𝐸 − 01 5,39𝐸 − 02 1,17𝐸 − 01 5,46𝐸 − 02
Im(𝜆2) 1,20𝐸 − 01 1,15𝐸 − 01 1,82𝐸 − 01 2,41𝐸 + 00 1,66𝐸 − 01 9,51𝐸 − 02
Im(𝜆3) 7,78𝐸 − 02 6,60𝐸 − 02 1,35𝐸 − 01 2,41𝐸 + 00 1,17𝐸 − 01 5,49𝐸 − 02
Im(𝜆4) 1,19𝐸 − 01 1,14𝐸 − 01 1,87𝐸 − 01 4,24𝐸 + 00 1,84𝐸 − 01 9,49𝐸 − 02∑(Im(𝜆𝑖)) 3,95𝐸 − 01 3,61𝐸 − 01 6,36𝐸 − 01 9,11𝐸 + 00 5,83𝐸 − 01 2,99𝐸 − 01

Reg Poly 2
Spherical Spline Linear Gauss Exponential Exponential general

Im(𝜆1) 2,21𝐸 − 03 6,61𝐸 − 04 1,55𝐸 − 03 5,37𝐸 − 04 2,95𝐸 − 03 5,46𝐸 − 04
Im(𝜆2) 2,16𝐸 − 03 1,15𝐸 − 03 1,60𝐸 − 03 8,25𝐸 − 02 2,92𝐸 − 03 9,52𝐸 − 04
Im(𝜆3) 2,15𝐸 − 03 6,61𝐸 − 04 1,50𝐸 − 03 2,59𝐸 − 02 2,86𝐸 − 03 5,49𝐸 − 04
Im(𝜆4) 2,15𝐸 − 03 1,14𝐸 − 03 1,59𝐸 − 03 9,20𝐸 − 02 2,90𝐸 − 03 9,49𝐸 − 04∑(Im(𝜆𝑖)) 8,67𝐸 − 03 3,62𝐸 − 03 6,24𝐸 − 03 2,01𝐸 − 01 1,16𝐸 − 02 3,00𝐸 − 03
Table 6: Configuration 1: maximum of absolute error on imaginary parts of eigenvalues for different regression and correlation kriging
functions.

Reg Poly 0
Spherical Spline Linear Gauss Exponential Exponential general

Im(𝜆1) 4.87𝐸 − 01 3.45𝐸 − 01 4.87𝐸 − 01 2.87𝐸 − 01 4.87𝐸 − 01 3.59𝐸 − 01
Im(𝜆2) 9.75𝐸 − 01 8.13𝐸 − 01 9.75𝐸 − 01 8.32𝐸 + 00 9.75𝐸 − 01 8.06𝐸 − 01
Im(𝜆3) 4.90𝐸 − 01 3.46𝐸 − 01 4.90𝐸 − 01 4.72𝐸 + 00 4.91𝐸 − 01 3.59𝐸 − 01
Im(𝜆4) 9.83𝐸 − 01 8.00𝐸 − 01 9.83𝐸 − 01 1.28𝐸 + 01 9.83𝐸 − 01 8.07𝐸 − 01∑(Im(𝜆𝑖)) 2.94𝐸 + 00 2.30𝐸 + 00 2.94𝐸 + 00 2.61𝐸 + 01 2.94𝐸 + 00 2.33𝐸 + 00

Reg Poly 1
Spherical Spline Linear Gauss Exponential Exponential general

Im(𝜆1) 4.87𝐸 − 01 3.47𝐸 − 01 6.00𝐸 − 01 2.84𝐸 − 01 5.95𝐸 − 01 3.59𝐸 − 01
Im(𝜆2) 9.75𝐸 − 01 8.09𝐸 − 01 1.10𝐸 + 00 1.81𝐸 + 01 1.14𝐸 + 00 8.07𝐸 − 01
Im(𝜆3) 4.90𝐸 − 01 3.47𝐸 − 01 6.12𝐸 − 01 1.73𝐸 + 01 6.29𝐸 − 01 3.59𝐸 − 01
Im(𝜆4) 9.83𝐸 − 01 7.99𝐸 − 01 1.13𝐸 + 00 2.62𝐸 + 01 1.20𝐸 + 00 8.07𝐸 − 01∑(Im(𝜆𝑖)) 2.94𝐸 + 00 2.30𝐸 + 00 3.44𝐸 + 00 6.19𝐸 + 01 3.56𝐸 + 00 2.33𝐸 + 00

Reg Poly 2
Spherical Spline Linear Gauss Exponential Exponential general

Im(𝜆1) 8.05𝐸 − 01 3.47𝐸 − 01 5.78𝐸 − 01 2.84𝐸 − 01 9.85𝐸 − 01 3.59𝐸 − 01
Im(𝜆2) 1.11𝐸 + 00 8.09𝐸 − 01 9.55𝐸 − 01 4.45𝐸 + 01 1.34𝐸 + 00 8.07𝐸 − 01
Im(𝜆3) 7.95𝐸 − 01 3.47𝐸 − 01 5.71𝐸 − 01 1.97𝐸 + 01 9.72𝐸 − 01 3.59𝐸 − 01
Im(𝜆4) 1.13𝐸 + 00 8.01𝐸 − 01 9.67𝐸 − 01 4.81𝐸 + 01 1.36𝐸 + 00 8.07𝐸 − 01∑(Im(𝜆𝑖)) 3.84𝐸 + 00 2.30𝐸 + 00 3.07𝐸 + 00 1.12𝐸 + 02 4.66𝐸 + 00 2.33𝐸 + 00
on all eigenvalues (real and imaginary part). Indeed, the sum
of maximum errors recorded for all eigenvalues is stationary
(2.39% for the real part and 2.33% for the imaginary part).
Kriging based predictions (by using the general exponen-
tial function with a second-order regression function) and

reference predictions of envelopes of eigenvalues (real and
imaginary parts) induced by the variability of parameter𝑘11 are plotted versus the friction coefficient 𝜇 in Figures
6(a) and 6(c). Moreover, Figure 6(e) shows evolutions of
eigenvalues in the complex plan for the first configuration. It
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Table 7: Configuration 2: quadratic mean of the absolute error on real parts of eigenvalues for different regression and correlation kriging
functions.

Reg Poly 0
Spherical Spline Linear Gauss Exponential Exponential general

Re(𝜆1) 4,56𝐸 − 02 4,22𝐸 − 02 4,56𝐸 − 02 9,58𝐸 − 02 4,56𝐸 − 02 2,23𝐸 − 02
Re(𝜆2) 1,03𝐸 − 01 9,73𝐸 − 02 1,03𝐸 − 01 2,80𝐸 − 01 1,03𝐸 − 01 8,06𝐸 − 02
Re(𝜆3) 9,91𝐸 − 02 8,57𝐸 − 02 9,91𝐸 − 02 1,64𝐸 − 01 9,91𝐸 − 02 7,36𝐸 − 02
Re(𝜆4) 1,02𝐸 − 01 8,41𝐸 − 02 1,02𝐸 − 01 3,23𝐸 − 01 1,02𝐸 − 01 6,83𝐸 − 02∑(Re(𝜆𝑖)) 3,50𝐸 − 01 3,09𝐸 − 01 3,50𝐸 − 01 8,62𝐸 − 01 3,50𝐸 − 01 2,45𝐸 − 01

Reg Poly 1
Spherical Spline Linear Gauss Exponential Exponential general

Re(𝜆1) 4,56𝐸 − 02 4,23𝐸 − 02 1,01𝐸 − 01 9,92𝐸 − 02 1,01𝐸 − 01 2,16𝐸 − 02
Re(𝜆2) 1,03𝐸 − 01 8,08𝐸 − 02 1,84𝐸 − 01 1,29𝐸 + 00 1,54𝐸 − 01 7,95𝐸 − 02
Re(𝜆3) 9,91𝐸 − 02 8,18𝐸 − 02 1,11𝐸 − 01 1,71𝐸 + 00 1,53𝐸 − 01 7,34𝐸 − 02
Re(𝜆4) 1,02𝐸 − 01 6,42𝐸 − 02 1,96𝐸 − 01 6,44𝐸 − 01 2,05𝐸 − 01 6,70𝐸 − 02∑(Re(𝜆𝑖)) 3,50𝐸 − 01 2,69𝐸 − 01 5,93𝐸 − 01 3,75𝐸 + 00 6,13𝐸 − 01 2,41𝐸 − 01

Reg Poly 2
Spherical Spline Linear Gauss Exponential Exponential general

Re(𝜆1) 4,42𝐸 − 02 4,12𝐸 − 02 8,48𝐸 − 02 1,04𝐸 − 01 6,19𝐸 − 02 2,21𝐸 − 02
Re(𝜆2) 9,84𝐸 − 02 7,69𝐸 − 02 1,65𝐸 − 01 1,66𝐸 + 00 1,13𝐸 − 01 7,93𝐸 − 02
Re(𝜆3) 9,83𝐸 − 02 7,98𝐸 − 02 1,06𝐸 − 01 1,96𝐸 + 00 1,24𝐸 − 01 7,35𝐸 − 02
Re(𝜆4) 1,01𝐸 − 01 6,03𝐸 − 02 1,66𝐸 − 01 8,24𝐸 − 01 1,23𝐸 − 01 6,68𝐸 − 02∑(Re(𝜆𝑖)) 3,42𝐸 − 01 2,58𝐸 − 01 5,21𝐸 − 01 4,55𝐸 + 00 4,21𝐸 − 01 2,42𝐸 − 01

Table 8: Configuration 2:maximumof the absolute error on real parts of eigenvalues for different regression and correlation kriging functions.

Reg Poly 0
Spherical Spline Linear Gauss Exponential Exponential general

Re(𝜆1) 3.61𝐸 − 01 1.88𝐸 − 01 3.61𝐸 − 01 4.76𝐸 − 01 3.61𝐸 − 01 2.17𝐸 − 01
Re(𝜆2) 7.64𝐸 − 01 6.71𝐸 − 01 7.65𝐸 − 01 1.37𝐸 + 00 7.65𝐸 − 01 6.45𝐸 − 01
Re(𝜆3) 7.23𝐸 − 01 6.56𝐸 − 01 7.23𝐸 − 01 8.97𝐸 − 01 7.23𝐸 − 01 6.44𝐸 − 01
Re(𝜆4) 7.21𝐸 − 01 5.02𝐸 − 01 7.21𝐸 − 01 1.73𝐸 + 00 7.22𝐸 − 01 5.08𝐸 − 01∑(Re(𝜆𝑖)) 2.57𝐸 + 00 2.02𝐸 + 00 2.57𝐸 + 00 4.47𝐸 + 00 2.57𝐸 + 00 2.01𝐸 + 00

Reg Poly 1
Spherical Spline Linear Gauss Exponential Exponential general

Re(𝜆1) 3.61𝐸 − 01 1.92𝐸 − 01 4.89𝐸 − 01 4.98𝐸 − 01 4.27𝐸 − 01 2.17𝐸 − 01
Re(𝜆2) 7.64𝐸 − 01 5.95𝐸 − 01 9.80𝐸 − 01 1.12𝐸 + 01 1.04𝐸 + 00 6.44𝐸 − 01
Re(𝜆3) 7.23𝐸 − 01 5.91𝐸 − 01 5.83𝐸 − 01 1.32𝐸 + 01 7.53𝐸 − 01 6.44𝐸 − 01
Re(𝜆4) 7.21𝐸 − 01 3.85𝐸 − 01 8.98𝐸 − 01 4.21𝐸 + 00 1.06𝐸 + 00 5.09𝐸 − 01∑(Re(𝜆𝑖)) 2.57𝐸 + 00 1.76𝐸 + 00 2.95𝐸 + 00 2.91𝐸 + 01 3.28𝐸 + 00 2.01𝐸 + 00

Reg Poly 2
Spherical Spline Linear Gauss Exponential Exponential general

Re(𝜆1) 3.45𝐸 − 01 1.83𝐸 − 01 4.30𝐸 − 01 5.31𝐸 − 01 4.00𝐸 − 01 2.15𝐸 − 01
Re(𝜆2) 7.27𝐸 − 01 5.90𝐸 − 01 9.33𝐸 − 01 1.41𝐸 + 01 8.18𝐸 − 01 6.44𝐸 − 01
Re(𝜆3) 6.93𝐸 − 01 5.92𝐸 − 01 5.41𝐸 − 01 1.89𝐸 + 01 7.18𝐸 − 01 6.43𝐸 − 01
Re(𝜆4) 6.84𝐸 − 01 3.87𝐸 − 01 8.46𝐸 − 01 5.29𝐸 + 00 7.75𝐸 − 01 5.08𝐸 − 01∑(Re(𝜆𝑖)) 2.45𝐸 + 00 1.75𝐸 + 00 2.75𝐸 + 00 3.88𝐸 + 01 2.71𝐸 + 00 2.01𝐸 + 00
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Table 9: Configuration 2: quadratic mean of absolute error on imaginary parts of eigenvalues for different regression and correlation kriging
functions.

Reg Poly 0
Spherical Spline Linear Gauss Exponential Exponential general

Im(𝜆1) 1,04𝐸 − 01 7,51𝐸 − 02 9,36𝐸 − 02 6,31𝐸 − 02 1,10𝐸 − 01 7,72𝐸 − 02
Im(𝜆2) 9,89𝐸 − 02 9,57𝐸 − 02 1,01𝐸 − 01 5,30𝐸 − 01 1,04𝐸 − 01 7,60𝐸 − 02
Im(𝜆3) 1,35𝐸 − 01 1,04𝐸 − 01 1,29𝐸 − 01 5,21𝐸 − 01 1,38𝐸 − 01 1,03𝐸 − 01
Im(𝜆4) 9,64𝐸 − 02 8,04𝐸 − 02 9,70𝐸 − 02 1,17𝐸 − 01 1,02𝐸 − 01 6,09𝐸 − 02∑(Im(𝜆𝑖)) 4,33𝐸 − 01 3,55𝐸 − 01 4,20𝐸 − 01 1,23𝐸 + 00 4,54𝐸 − 01 3,17𝐸 − 01

Reg Poly 1
Spherical Spline Linear Gauss Exponential Exponential general

Im(𝜆1) 1,03𝐸 − 01 6,35𝐸 − 02 2,43𝐸 − 01 6,39𝐸 − 02 1,53𝐸 − 01 7,73𝐸 − 02
Im(𝜆2) 9,56𝐸 − 02 7,75𝐸 − 02 1,59𝐸 − 01 1,11𝐸 + 00 1,27𝐸 − 01 7,58𝐸 − 02
Im(𝜆3) 1,34𝐸 − 01 9,34𝐸 − 02 3,08𝐸 − 01 1,18𝐸 + 00 1,97𝐸 − 01 1,03𝐸 − 01
Im(𝜆4) 9,69𝐸 − 02 5,92𝐸 − 02 2,78𝐸 − 01 5,03𝐸 − 01 1,66𝐸 − 01 6,10𝐸 − 02∑(Im(𝜆𝑖)) 4,29𝐸 − 01 2,94𝐸 − 01 9,88𝐸 − 01 2,85𝐸 + 00 6,44𝐸 − 01 3,17𝐸 − 01

Reg Poly 2
Spherical Spline Linear Gauss Exponential Exponential general

Im(𝜆1) 1,03𝐸 − 01 7,12𝐸 − 02 1,33𝐸 − 01 6,46𝐸 − 02 1,13𝐸 − 01 7,74𝐸 − 02
Im(𝜆2) 9,55𝐸 − 02 7,65𝐸 − 02 1,71𝐸 − 01 3,08𝐸 + 00 1,12𝐸 − 01 7,58𝐸 − 02
Im(𝜆3) 1,33𝐸 − 01 9,76𝐸 − 02 1,38𝐸 − 01 2,92𝐸 + 00 1,54𝐸 − 01 1,03𝐸 − 01
Im(𝜆4) 9,58𝐸 − 02 5,92𝐸 − 02 1,75𝐸 − 01 6,38𝐸 − 01 1,24𝐸 − 01 6,11𝐸 − 02∑(Im(𝜆𝑖)) 4,27𝐸 − 01 3,05𝐸 − 01 6,17𝐸 − 01 6,70𝐸 + 00 5,02𝐸 − 01 3,17𝐸 − 01

is clearly shown that kriging based predictions globally show
the same tendencies as the reference so the whole stability
behavior characterized by the coalescence patterns within
the considered parameter intervals is faithfully represented.
Indeed, the kriging predictor, built by using the general
exponential correlation function and the second-order
regression function, has suitablymodeled the influence of 𝑘11
parameter on the first instability in which the envelope in the𝜇-dimension is suitably estimated at [0.29, 0.39]. Otherwise,
the kriging basedmetamodel has alsowell predicted the zero-
impact of 𝑘11 on the second instability located at 𝜇 = 0.57 and
on the associated coupling modes.

Secondly, evolutions of all eigenvalues (real and imag-
inary parts) are plotted for the second configuration by
using the general exponential function with a second-order
regression function. Comparisons of the reference model
and the chosen kriging surrogate model are illustrated in
Figure 6. More specifically, Figures 6(b) and 6(d) give
envelopes of imaginary and real parts of eigenvalues versus
p = {𝜇, 𝑘11}. Figure 6(f) gives evolutions of eigenvalues in
the complex plan. It is clearly illustrated that the complex
coalescence patterns are very well reproduced with the three
mode couplings: the modes are involved in several successive
coupling coalescences with a crossing phenomenon between
stable and unstable modes. Envelopes of the corresponding
instabilities in the 𝜇-dimension are obtained within the
intervals [0.12, 0.27] and [0.81, 0.82], respectively. Moreover,
the complex plane for the reference and the kriging surrogate
model are very similar. So increasing the system’s complexity
(as proposed for the second configuration) by increasing the
coupling stiffness 𝑘𝑎 has not strongly impacted the average

accuracy of kriging based predictions (see Tables 7 and
9). Finally, it is also noted that the general exponential
correlation function has also allowed a less sensitive accuracy
towards eigenvalues (real and imaginary parts) and the
regression order. This is indicated by the stationary sum of
maximum absolute errors on kriging predictions (2.01% for
the real part and 2.33% for the imaginary part), as given in
Tables 8 and 10. Otherwise, it is noted from Figure 7 that the
number of unstable modes versus design parameters 𝜇 and𝑘11 is well predicted by the kriging models constructed for
the two considered configurations. Indeed, the comparison
with the reference deterministic results shows the suitable
accuracy of the stability and instability zones estimated by the
constructed kriging metamodels. From all these results, the
efficiency of the proposed kriging surrogate model is clearly
demonstrated. The minimum and maximum envelopes are
suitably approximated for all the real parts and frequencies.
So the kriging model is able to reproduce not only the
classical baseline of the first configuration (i.e., coalescence
of two modes, one being unstable and the other stable) but
also the more complex modes coupling mechanism with
the successive appearances of instabilities and the crossing
phenomenon between modes (as proposed for the second
configuration).

4.2.2. Study with p = {𝜇, 𝑘11}: Training Data from a
Latin Hypercube Sampling. In the previous part, the training
process of the generated kriging metamodels is performed
by using data generated from linear grilling of the parameter
space. In fact, linear grid is not necessarily the optimal plan
for an efficient training giving a suitable compromise between
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Figure 6: Kriging (- -) on two-dimensional parameter space with a 2D linear sample grid (20 × 50) compared to deterministic results (−):
real (a, b) and imaginary (c, d) parts of eigenvalues versus 𝜇 for configurations 1 (a, c) and 2 (b, d). Evolution in the complex plan based on
kriging metamodel for configurations 1 (e) and 2 (f).
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Table 10: Configuration 2: maximum absolute error on imaginary parts of eigenvalues for different regression and correlation kriging
functions.

Reg Poly 0
Spherical Spline Linear Gauss Exponential Exponential general

Im(𝜆1) 5.97𝐸 − 01 4.13𝐸 − 01 5.05𝐸 − 01 3.79𝐸 − 01 6.31𝐸 − 01 4.40𝐸 − 01
Im(𝜆2) 7.30𝐸 − 01 6.80𝐸 − 01 7.29𝐸 − 01 2.72𝐸 + 00 7.04𝐸 − 01 6.67𝐸 − 01
Im(𝜆3) 7.48𝐸 − 01 6.51𝐸 − 01 7.48𝐸 − 01 3.00𝐸 + 00 7.46𝐸 − 01 6.67𝐸 − 01
Im(𝜆4) 7.33𝐸 − 01 4.97𝐸 − 01 7.33𝐸 − 01 7.76𝐸 − 01 7.58𝐸 − 01 5.08𝐸 − 01∑(Im(𝜆𝑖)) 2.81𝐸 + 00 2.24𝐸 + 00 2.72𝐸 + 00 6.88𝐸 + 00 2.84𝐸 + 00 2.28𝐸 + 00

Reg Poly 1
Spherical Spline Linear Gauss Exponential Exponential general

Im(𝜆1) 5.83𝐸 − 01 3.53𝐸 − 01 7.94𝐸 − 01 3.81𝐸 − 01 7.37𝐸 − 01 4.42𝐸 − 01
Im(𝜆2) 7.06𝐸 − 01 6.14𝐸 − 01 5.70𝐸 − 01 1.04𝐸 + 01 7.08𝐸 − 01 6.67𝐸 − 01
Im(𝜆3) 7.61𝐸 − 01 6.19𝐸 − 01 1.09𝐸 + 00 9.73𝐸 + 00 8.34𝐸 − 01 6.67𝐸 − 01
Im(𝜆4) 7.37𝐸 − 01 3.75𝐸 − 01 1.16𝐸 + 00 4.07𝐸 + 00 9.96𝐸 − 01 5.08𝐸 − 01∑(Im(𝜆𝑖)) 2.79𝐸 + 00 1.96𝐸 + 00 3.61𝐸 + 00 2.46𝐸 + 01 3.27𝐸 + 00 2.28𝐸 + 00

Reg Poly 2
Spherical Spline Linear Gauss Exponential Exponential general

Im(𝜆1) 5.97𝐸 − 01 3.76𝐸 − 01 6.72𝐸 − 01 3.82𝐸 − 01 6.67𝐸 − 01 4.42𝐸 − 01
Im(𝜆2) 7.10𝐸 − 01 6.17𝐸 − 01 7.73𝐸 − 01 2.87𝐸 + 01 7.22𝐸 − 01 6.67𝐸 − 01
Im(𝜆3) 7.64𝐸 − 01 6.19𝐸 − 01 6.82𝐸 − 01 2.84𝐸 + 01 8.28𝐸 − 01 6.67𝐸 − 01
Im(𝜆4) 7.13𝐸 − 01 3.79𝐸 − 01 9.06𝐸 − 01 7.13𝐸 + 00 8.22𝐸 − 01 5.08𝐸 − 01∑(Im(𝜆𝑖)) 2.78𝐸 + 00 1.99𝐸 + 00 3.03𝐸 + 00 6.47𝐸 + 01 3.04𝐸 + 00 2.28𝐸 + 00
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Figure 7: Number of unstable modes versus 𝜇 and 𝑘11 for configurations 1 (a) and 2 (b): kriging with a 2D linear grid (−) and deterministic
results (- -).

the accuracy and the cost (size of the training data). So, in this
part, the pseudorandom sampling based on the LHS is used.
It is a widely used method to generate controlled random
samples. It is based on the basic idea to make sampling point
distribution close to probability density function. Opposite to
linear grids, the performance of the training process depends
not only on the size of the LHS plan but also on the location
of the generated samples in the parameter space as samples
are generated pseudorandomly. Thus, in order to analyze

performances of kriging with respect to the size of LHS
plan by taking into account the location of samples in the
parameter space, we have considered the convergence study
of kriging from the statistical view point. This is performed
by generating 50 times the LHS plan for different size. The
mean value and the standard deviation of relative errors
associated with the predicted envelopes of eigenvalues (real
and imaginary parts) are determined versus the size of the
used LHS plans. Results are displayed in Figure 8.
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Figure 8: Evolution of the quadratic mean error and the standard deviation error versus the size of the experimental design on real (a, b) and
imaginary (c, d) parts of each eigenvalue for configurations 1 (a, c) and 2 (b, d).

Results show a clear decrease of the mean relative error
versus the size of LHS plan. An increasing number of points
induces a diminution of the mean relative error as well as the
associated standard deviation. For example for the first eigen-
value, stationary regimes for the mean relative error and the
standard deviation are reached from𝑁 = 300 points. At this
level, the accuracy of kriging prediction is weakly dependent

on the repartition of training datawithin the parameter space.
The reached stationary error level is 8.7% for the real part
while it is lower for the imaginary part 0.23%. Otherwise, it
can be remarked that the size 𝑁 required for a convergent
training with an LHS plan is strongly smaller than the one
required with the linear grid (𝑁 = 1000). Then Figure 9
shows, for the two considered configurations, kriging based
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Figure 9: Kriging (- -) on two-dimensional parameter space with a 70 points’ LHS as experimental design compared to deterministic results
(−): real (a, b) and imaginary (c, d) parts of eigenvalues versus 𝜇 for configurations 1 (a, c) and 2 (b, d). Evolution in the complex plan based
on kriging metamodel for configurations 1 (e) and 2 (f).



Shock and Vibration 19

2900

0

1

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3000 3100 3200 33002700 2800

𝜇

k11

(a)

2700 2800 2900 3000 3100 3200 3300

0

1

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

𝜇

k11

(b)

Figure 10: Number of unstable modes versus 𝜇 and 𝑘11 for configurations 1 (a) and 2 (b): kriging on a 70 points’ LHS (−) and deterministic
results (- -).

predictions of envelopes of eigenvalues obtained by using an
LHS with 𝑁 = 70, which shows already good results with
a small number of points. Then, Figures 9(a), 9(c), and 9(e)
illustrate the coalescence pattern for the first configuration
(i.e., the “classical simple mode coupling phenomenon”). It
is clearly shown that the kriging model with LHS is able
to replicate efficiently and accurately the stability behavior
and the coalescence patterns of the reference model (i.e.,
evolutions of the real and imaginary parts versus 𝜇 and
by considering the variability of parameter 𝑘11). Moreover,
Figures 9(b), 9(d), and 9(f) show the results for the second
configuration. The stability behavior is analyzed versus the
two parameters 𝜇 and 𝑘11. This is carried out by determining
the number of unstable modes. The latter is estimated by
the kriging model, displayed and compared to the reference
results in Figure 10. It can be observed that the stability and
instability regions are accurately predicted. Otherwise, it can
be noted that even if more complex coalescence patterns
are considered, it is still possible to reproduce the stability
behavior of the system and the successive modes couplings
by using the kriging model with LHS.

In conclusion, the efficiency of the proposed kriging
surrogate model with LHS is clearly demonstrated. So, for
almost the same level of error, the size𝑁 of the training data
with an LHS plan is drastically reduced in comparison with
the previous linear grid (see Section 4.2.1).

4.2.3. Study with p = {𝜇, 𝑘11, 𝑘22}. In this last section, the
kriging metamodel is considered to predict mode coupling
instabilities within a 3-dimensional parameter space defined
asp = {𝜇, 𝑘11, 𝑘22}. Tuning parameters determined previously
with the 2-dimensional study are kept in the following. The
effect of the increased complexity in terms of the dimension
of the space parameter can then be analyzed. So the general
exponential correlation and second-order regression func-
tions are used. The training data are generated from a 3D

LHS plan for parameters 𝑘11 and 𝑘22 with dispersions equal
to 10% around their mean values and 𝜇 within the unitary
interval. Its size has been fixed to𝑁 = 200. Envelopes of the
system’s eigenvalues induced by the dispersions of considered
parameter are estimated and plotted in the 𝜇-dimension.
Results are presented in Figure 11 for both configurations.
Figures 11(c) and 11(d) have to be compared to Figures 5(c)
and 5(d), respectively.

For the first configuration, comparing Figures 11(a) and
11(c) to Figures 5(a) and 5(c), respectively, the variation
of the stiffness 𝑘22 has an effect on eigenvalues with the
two lower pulsations but not on the others. This sensitivity
towards the 𝑘22 parameter is wellmodeled by the used kriging
metamodel as well as the stability behavior. The coalescence
patterns are suitably predicted so increasing the dimension
of the parameter space has not negatively impacted the
performance of the kriging metamodel.

For the second configuration, comparing Figures 11(b)
and 11(d) to Figures 5(b) and 5(d), respectively, the envelopes
of eigenvalues are more spread and an eigenvalue can have
a positive real part from 𝜇 = 0, and the system is always
unstable. In this case, the kriging metamodel has also well
predicted the spread character of the envelopes and the
resulting unstable behavior. Increasing the dimension of the
parameter space has involved the increase of the size of the
LHS and thus the size of the training data to capture the
induced 𝑘22 effect on the eigenvalues.

In order to probe the contribution of the use of kriging
metamodels comparing to the classical parametric CEA,
computational costs induced by both methods in the stability
analysis are given in Tables 11 and 12. These results highlight
the less computational cost of the proposed method with
LHS and the nonnegligible contribution of using kriging
metamodels. Moreover the numbers of CEA realized in order
to perform the stability analysis with kriging metamodels
are drastically reduced as shown in Table 13. The reduction
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Figure 11: Kriging (- -) on three-dimensional parameter space with a 200 points’ LHS experimental design compared to deterministic results
(−): real (a, b) and imaginary (c, d) parts of eigenvalues versus 𝜇 for configurations 1 (a, c) and 2 (b, d). Evolution in the complex plan based
on kriging metamodel for configurations 1 (e) and 2 (f).
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Table 11: Comparison of computation time between the CEA and
the metamodel for two parameters.

Method Time (s)
CEA 0.87
Kriging metamodel with a 2D linear sample grid 4.07
Kriging metamodel with LHS 0.12

Table 12: Comparison of computation time between the CEA and
the metamodel for three parameters.

Method Time (s)
CEA 9.06
Kriging metamodel with LHS 0.67

Table 13: Comparison of the number of samples for each of the case
studies p = {𝜇, 𝑘11} and p = {𝜇, 𝑘11, 𝑘22} (i.e., for 2 or 3 parameters)
in order to compute the deterministic results via CEAor to construct
a kriging metamodel.

p = {𝜇, 𝑘11} p = {𝜇, 𝑘11, 𝑘22}
Deterministic method 10 000 1 000 000
Kriging based on a 2D linear
sample grid 1000 —

Kriging based on LHS 70 200

level is more important when the kriging surrogate model is
determined using the LHS plan.

5. Conclusion

The potential of kriging based metamodeling in the pre-
diction of mode coupling instabilities has been analyzed in
this study. This analysis has been carried out in order to
propose a suitable alternative to the parameter-dependent
CEA which is known to be too costly in most cases. In this
perspective, a four-degree-of-freedom mechanical system
subjected to friction-induced vibrations and mode coupling
instabilities has been considered with two configurations.
These yield two different stability behaviors characterized by
mode coupling having coalescence patterns with different
complexities. The aim was to assess performances of kriging
metamodels with respect to the complexity of the stability
behavior. Results have shown an interesting efficiency for
kriging metamodels comparing to the parameter-dependent
CEAmethod since, for the same level of accuracy, the number
of calculuses has been shown to be drastically decreased.
This efficiency is however shown to be dependent on the
complexity of the stability behavior. Indeed, among all the
kriging tuning parameters, the size of the experience plan is
the most impacted one. The size is closely dependent on the
number of coalescence points and thus the number of mode
coupling instabilities needed to be predicted. Hence, results
in this study give strong indicators for kriging aptitudes to be
efficiently used for the prediction of squeal which is a work in
progress. Otherwise, the design space of the used system has
been defined to capture some complexity patterns related to
mode coupling instabilities, the main aim being the assessing

of kriging abilities to model and predict these instabilities.
Other phenomena with different complexity levels are not
necessary captured with the considered parameter set. This
issue will be addressed in a future study.
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