Statics and vibrations in the post-buckling domain with the order-3 model

S. Neukirch, M. Yavari, N. Challamel, O. Thomas

5 octobre 2020

Résumé

We list here detailed analytical calculations for the post-buckled equilibrium solution (1st mode) and the first vibration mode around this equilibrium solution, using the Kirchhoff extensible order 3 model.

1 Introduction

The beam has length L, width w, thickness h, Young's modulus E and density ρ. The bending rigidity is then $E I=E h^{3} w / 12$ and the stretching rigidity $E A=E h w$, where A is the surface area and I the second moment of area of the cross-section. We consider slender beams, with a small ratio $\eta=I /\left(A L^{2}\right)=(1 / 12)(h / L)^{2}$. We use the arc-length S of the beam in its reference configuration as a Lagrangian variable, that is $S \in(0, L)$ always. The beam is clamped horizontally at its left end $(S=0)$, which lies at the origin. The right end $(S=L)$ is constrained to lie on the horizontal axis, with a horizontal tangent. An axial displacement D is imposed and we compute the equilibrium shape and the vibrations around this shape. We then study how equilibrium and vibrations vary as D is varied. Equations for this proposed order 3 model write

$$
\begin{align*}
X^{\prime}(S, T) & =1+\frac{N_{x}(S, T)}{E A}-\frac{1}{2} Y^{\prime 2}(S, T) \tag{1a}\\
N_{x}^{\prime}(S, T) & =\rho A \ddot{X}(S, T) \tag{1b}\\
E I\left[Y(S, T)^{\prime \prime \prime}+F_{3}\right] & =N_{x}(S, T) Y^{\prime}(S, T)-N_{y}(S, T) X^{\prime}(S, T) \tag{1c}\\
N_{y}^{\prime}(S, T) & =\rho A \ddot{Y}(S, T) \tag{1d}\\
\text { with } F_{3} & =Y^{\prime}(S, T) Y^{\prime \prime}(S, T)^{2}+\frac{1}{2} Y^{\prime}(S, T)^{2} Y^{\prime \prime \prime}(S, T) \tag{1e}
\end{align*}
$$

where T is the physical time and ${ }^{\prime} \stackrel{\text { def }}{=} d / d S$ et $\stackrel{\text { def }}{=} d / d T$. We study the dynamics of the beam with fixed longitudinal displacement

$$
\begin{align*}
X(0, T) & =0, \forall T \tag{2}\\
X(L, T) & =L-D, \forall T \tag{3}\\
Y(0, T) & =0=Y^{\prime}(0, T), \forall T \tag{4}\\
Y(L, T) & =0=Y^{\prime}(L, T), \forall T \tag{5}
\end{align*}
$$

Figure 1 - Buckling of a clamped-clamped beam. Displacement are $V=Y$ et $U=X-S$.
which implies that, during vibrations for example, the axial thrust is fluctuating in time $P=$ $P(T)=-N_{x}(L, T)$.

1.1 Non-dimensionalisation

We work with adim variables

$$
\begin{array}{cc}
y=Y / L & , \quad x=x / L, \text { et } s=S / L \\
n_{x, y}=N_{x, y} L^{2} /(E I) & \\
t=T / \tau & , \quad \text { with } \tau=L^{2} \sqrt{\rho A /(E I)} \tag{8}
\end{array}
$$

and obtain the system

$$
\begin{align*}
x^{\prime}(s, t) & =1+\eta n_{x}(s, t)-\frac{1}{2} y^{\prime 2}(s, t) \tag{9a}\\
n_{x}^{\prime}(s, t) & =\ddot{x}(s, t) \tag{9b}\\
y(s, t)^{\prime \prime \prime}+f_{3} & =n_{x}(s, t) y^{\prime}(s, t)-n_{y}(s, t) x^{\prime}(s, t) \tag{9c}\\
n_{y}^{\prime}(s, t) & =\ddot{y}(s, t) \tag{9~d}\\
\text { with } f_{3} & =y^{\prime}(s, t) y^{\prime \prime}(s, t)^{2}+\frac{1}{2} y^{\prime}(s, t)^{2} y^{\prime \prime \prime}(s, t) \tag{9e}
\end{align*}
$$

where the small ratio η appears

$$
\begin{equation*}
\eta=\frac{I}{A L^{2}}=\frac{1}{12} \frac{h^{2}}{L^{2}} \tag{10}
\end{equation*}
$$

Note : we also use $u(s, t)$ which is defined as

$$
\begin{equation*}
u(s, t)=x(s, t)-s \tag{11}
\end{equation*}
$$

2 Equations for equilibrium and vibrations

2.1 Equilibrium

Equilibrium equations read

$$
\begin{align*}
x_{E}^{\prime} & =1+\eta n_{x E}-\frac{1}{2} y_{E}^{\prime 2} \tag{12a}\\
n_{x E}^{\prime} & =0 \Rightarrow n_{x E}=-p_{E} \tag{12~b}\\
y_{E}^{\prime \prime \prime}+f_{3 E} & =n_{x E} y_{E}^{\prime}-n_{y E} x_{E}^{\prime} \tag{12c}\\
n_{y E}^{\prime} & =0 \Rightarrow n_{y E}=0 \tag{12d}\\
\text { with } f_{3 E} & =y_{E}^{\prime} y_{E}^{\prime \prime 2}+\frac{1}{2} y_{E}^{\prime 2} y_{E}^{\prime \prime \prime} \tag{12e}
\end{align*}
$$

where we only consider the first buckling mode, which has $n_{y E}=0$.

2.2 Small amplitude vibrations

We look for the solutions of (9) having the form

$$
\begin{align*}
x(s, t) & =x_{E}(s)+\delta x(s) e^{i \omega t} \text { with }|\delta x(s)| \ll 1 \forall s \tag{13}\\
y(s, t) & =y_{E}(s)+\delta y(s) e^{i \omega t} \text { with }|\delta y(s)| \ll 1 \forall s \tag{14}\\
n_{x}(s, t) & =n_{x E}(s)+\delta n_{x}(s) e^{i \omega t} \text { with }\left|\delta n_{x}(s)\right| \ll 1 \forall s \tag{15}\\
n_{y}(s, t) & =n_{y E}(s)+\delta n_{y}(s) e^{i \omega t} \text { with }\left|\delta n_{y}(s)\right| \ll 1 \forall s \tag{16}
\end{align*}
$$

and we have

$$
\begin{equation*}
\delta u(s)=\delta x(s) \tag{17}
\end{equation*}
$$

The equations for the vibrations then read

$$
\begin{align*}
\delta x^{\prime} & =\eta \delta n_{x}-y_{E}^{\prime} \delta y^{\prime} \tag{18a}\\
\delta n_{x}^{\prime} & =-\omega^{2} \delta x \tag{18b}\\
\delta y^{\prime \prime \prime}+\delta f_{3} & =\delta n_{x} y^{\prime}+n_{x E} \delta y^{\prime}-\delta n_{y} x^{\prime}-n_{y E} \delta x^{\prime} \tag{18c}\\
\delta n_{y}^{\prime} & =-\omega^{2} \delta y \tag{18d}\\
\text { with } \delta f_{3} & =\delta y^{\prime} y_{E}^{\prime \prime 2}+2 y_{E}^{\prime} \delta y^{\prime \prime} y_{E}^{\prime \prime}+\delta y^{\prime} y_{E}^{\prime} y_{E}^{\prime \prime \prime}+\frac{1}{2} y_{E}^{\prime 2} \delta y^{\prime \prime \prime} \tag{18e}
\end{align*}
$$

2.3 Conditions de bord

The tangent is horizontal at both clamps. Left end is fixed, right end is always on the y axis, with a imposed axial displacement $d=D / L$. For equilibrium we have then

$$
\begin{array}{ll}
y_{E}(0)=0 & y_{E}(1)=0 \\
y_{E}^{\prime}(0)=0 & y_{E}^{\prime}(1)=0 \\
x_{E}(0)=0 & x_{E}(1)=1-d \tag{19c}
\end{array}
$$

System (12) is order 6 . We have 6 boundary conditions, we will then obtain isolated solutions for each given value of d. Boundary condition for vibrations read

$$
\begin{align*}
\delta y(0) & =0=\delta y(1) \tag{20a}\\
\delta y^{\prime}(0) & =0=\delta y^{\prime}(1) \tag{20b}\\
\delta x(0) & =0=\delta x(1) \tag{20c}
\end{align*}
$$

System (18) is order 6, and there is an additional parameter ω. With the six above boundary conditions, we will then a priori have a 1 D family of solutions. But as the system is linear, we may enforce a norm condition. We choose

$$
\begin{equation*}
\delta y^{\prime \prime}(0)=1 \tag{21}
\end{equation*}
$$

We finaly have 7 conditions for 7 unknowns, and only isolated solution : the vibrations modes.

3 Post-buckled equilibrium

We solve equilibrium system (12) for compression forces values slightly above the bucklng threshold : $p \gtrsim 4 \pi^{2}$. We expand $x_{E}(s), y_{E}(s)$, et $p_{E}=-n_{x E}$ in power of ϵ, a small parameter giving the 'distance' from buckling

$$
\begin{align*}
x_{E}(s) & =x_{0}(s)+\epsilon x_{1}(s)+\epsilon^{2} x_{2}(s)+\epsilon^{3} x_{3}(s)+O\left(\epsilon^{4}\right) \tag{22a}\\
y_{E}(s) & =\epsilon y_{1}(s)+\epsilon^{2} y_{2}(s)+\epsilon^{3} y_{3}(s)+O\left(\epsilon^{4}\right) \tag{22b}\\
p_{E} & =p_{0}+\epsilon p_{1}+\epsilon^{2} p_{2}+\epsilon^{3} p_{3}+O\left(\epsilon^{4}\right) \tag{22c}
\end{align*}
$$

At each ϵ order, we extract and solve the equations for the variables $x_{i}(s), y_{i}(s), \ldots$ Boundary conditions have to be verified at all orders. In order to fix a length scale for ϵ, we use the norm condition :

$$
\begin{equation*}
\epsilon=-4 \int_{0}^{1} y_{E}(s) \cos 2 \pi s d s \tag{23}
\end{equation*}
$$

3.1 order ϵ^{0}

Equations are

$$
\begin{equation*}
u_{0}^{\prime}(s)=-\eta p_{0} \quad \text { with } \quad u_{0}(0)=0 \tag{24}
\end{equation*}
$$

Solutions is

$$
\begin{equation*}
u_{0}(s)=-\eta p_{0} s \tag{25}
\end{equation*}
$$

3.2 order ϵ^{1}

Equations are

$$
\begin{array}{r}
y_{1}^{\prime \prime \prime \prime}+p_{0} y_{1}^{\prime \prime}=0 \quad \text { with } \quad y_{1}(0)=0=y_{1}(1) \quad \text { et } \quad y_{1}^{\prime}(0)=0=y_{1}^{\prime}(1) \\
 \tag{27}\\
u_{1}^{\prime}(s)=-\eta p_{1} \quad \text { with } \quad u_{1}(0)=0
\end{array}
$$

With the norm condition (23) taken into account, solutions are

$$
\begin{align*}
p_{0} & =4 \pi^{2} \tag{28}\\
y_{1}(s) & =\frac{1}{2}(1-\cos 2 \pi s) \tag{29}\\
u_{1}(s) & =-\eta p_{1} s \tag{30}
\end{align*}
$$

3.3 order ϵ^{2}

Equations are

$$
\begin{array}{r}
y_{2}^{\prime \prime \prime}+4 \pi^{2} y_{2}^{\prime \prime}+2 \pi^{2} p_{1} \cos 2 \pi s=0 \text { with } y_{2}(0)=y_{2}(1)=y_{2}^{\prime}(0)=y_{2}^{\prime}(1)=0 \\
u_{2}^{\prime}(s)=-\eta p_{2}-\frac{\pi^{2}}{2} \sin ^{2} 2 \pi s \quad \text { with } \quad u_{2}(0)=0 \tag{32}
\end{array}
$$

With the norm condition (23) taken into account, solutions are

$$
\begin{align*}
p_{1} & =0 \tag{33}\\
y_{2}(s) & =0 \tag{34}\\
u_{2}(s) & =-\eta p_{2} s-\frac{\pi^{2}}{4} s+\frac{\pi}{16} \sin 4 \pi s \tag{35}
\end{align*}
$$

Up to now, the solution is the same as with the von Karman model. Things change at order 3.

3.4 order ϵ^{3}

Equations are

$$
\begin{array}{r}
y_{3}^{\prime \prime \prime \prime}+\left(y_{3}^{\prime \prime 3}+3 y_{3}^{\prime} y_{3}^{\prime \prime} y_{3}^{\prime \prime \prime}+\frac{1}{2} y_{3}^{\prime 2} y_{3}^{\prime \prime \prime \prime}\right)+p_{0} y_{3}^{\prime \prime}+p_{2} y_{1}^{\prime \prime}=0 \\
\text { with } y_{3}(0)=y_{3}(1)=y_{3}^{\prime}(0)=y_{3}^{\prime}(1)=0 \\
u_{3}^{\prime}(s)=-\eta p_{3} \quad \text { with } \quad u_{3}(0)=0 \tag{38}
\end{array}
$$

With the norm condition (23) taken into account, solutions are

$$
\begin{align*}
p_{2} & =\frac{\pi^{4}}{4} \tag{39}\\
y_{3}(s) & =\frac{\pi^{2}}{64} \sin ^{2} 3 \pi s \tag{40}\\
u_{3}(s) & =-\eta p_{3} s \tag{41}
\end{align*}
$$

3.5 order ϵ^{4}

At this order, we find

$$
\begin{align*}
p_{3} & =0 \tag{42}\\
y_{4}(s) & =0 \tag{43}\\
u_{4}(s) & =-\eta p_{4} s-\frac{3 \pi^{3}}{512} \sin 4 \pi s+\frac{3 \pi^{3}}{1024} \sin 8 \pi s \tag{44}
\end{align*}
$$

3.6 Solution up to order ϵ^{4}

We obtain

$$
\begin{align*}
y_{E}(s) & =\frac{\epsilon}{2}(1-\cos 2 \pi s)+\epsilon^{3} \frac{\pi^{2}}{64} \sin ^{2} 3 \pi s+0 \epsilon^{4}+O\left(\epsilon^{5}\right) \tag{45}\\
u_{E}(s) & =-\eta 4 \pi^{2} s-\epsilon^{2} \frac{\pi}{16}\left(4 \pi s+8 \pi^{3} \eta s-\sin 4 \pi s\right)+u_{4}(s) \epsilon^{4}+O\left(\epsilon^{5}\right) \tag{46}\\
p_{E} & =4 \pi^{2}+\epsilon^{2} \frac{\pi^{4}}{2}+p_{4} \epsilon^{4}+O\left(\epsilon^{5}\right) \tag{47}
\end{align*}
$$

where order 5 is needed to obtain p_{4}.
For the end-shortening we have

$$
\begin{equation*}
d=-u_{E}(1)=\eta 4 \pi^{2}+\epsilon^{2} \frac{\pi^{2}}{4}\left(1+2 \pi^{2} \eta\right)+\eta p_{4} \epsilon^{4}+O\left(\epsilon^{5}\right) \tag{48}
\end{equation*}
$$

And the mid span vertical deflection is

$$
\begin{equation*}
y_{E}(1 / 2)=\epsilon+\epsilon^{3} \frac{\pi^{2}}{64}+0 \epsilon^{4}+O\left(\epsilon^{5}\right) \tag{49}
\end{equation*}
$$

Considering only the lowest η order, the solutions for $y_{1}, y_{3}, u_{0}, u_{2}, p_{0}, p_{2}$ are the same as in the full (extensible) Kirchhoff model.

For u_{4} and p_{4}, we would need order ϵ^{5}.

4 Vibrations around post-buckled equilibrium

We set :

$$
\begin{align*}
\omega & =\omega_{0}+\epsilon \omega_{1}+\epsilon^{2} \omega_{2}+\epsilon^{3} \omega_{3}+O\left(\epsilon^{4}\right) \tag{50}\\
\delta x(s)=\delta u(s) & =\delta u_{0}+\epsilon \delta u_{1}+\epsilon^{2} \delta u_{2}+\epsilon^{3} \delta u_{3}+O\left(\epsilon^{4}\right) \tag{51}\\
\delta y(s) & =\delta y_{0}+\epsilon \delta y_{1}+\epsilon^{2} \delta y_{2}+\epsilon^{3} \delta y_{3}+O\left(\epsilon^{4}\right) \tag{52}\\
\delta n_{x}(s) & =\delta n_{x 0}+\epsilon \delta n_{x 1}+\epsilon^{2} \delta n_{x 2}+\epsilon^{3} \delta n_{x 3}+O\left(\epsilon^{4}\right) \tag{53}\\
\delta n_{y}(s) & =\delta n_{y 0}+\epsilon \delta n_{y 1}+\epsilon^{2} \delta n_{y 2}+\epsilon^{3} \delta n_{y 3}+O\left(\epsilon^{4}\right) \tag{54}
\end{align*}
$$

order ϵ^{0}
Equations are

$$
\begin{align*}
\delta u_{0}^{\prime} & =\eta \delta n_{x 0} \text { with } \delta u_{0}(0)=\delta u_{0}(1)=0 \tag{55a}\\
\delta n_{x 0}^{\prime} & =0 \tag{55b}\\
\delta n_{y 0}^{\prime} & =0 \tag{55c}\\
-\left(1-4 \pi^{2} \eta\right) \delta n_{y 0} & =\delta y_{0}^{\prime \prime \prime}+4 \pi^{2} \delta y_{0}^{\prime} \text { with } \delta y_{0}(0)=\delta y_{0}(1)=\delta y_{0}^{\prime}(0)=\delta y_{0}^{\prime}(1)=0 \tag{55~d}
\end{align*}
$$

Using the norm condition (21), we obtain the solutions

$$
\begin{align*}
\delta u_{0}(s) & =0 \tag{56a}\\
\delta n_{x 0}(s) & =0 \tag{56b}\\
\delta n_{y 0}(s) & =0 \tag{56c}\\
\delta y_{0}(s) & =\frac{1-\cos 2 \pi s}{4 \pi^{2}} \tag{56d}
\end{align*}
$$

order ϵ^{1}
Equations are

$$
\begin{align*}
\delta u_{1}^{\prime} & =\eta \delta n_{x 1}-\frac{\sin ^{2} 2 \pi s}{2} \text { with } \delta u_{1}(0)=\delta u_{1}(1)=0 \tag{57a}\\
\delta n_{x 1}^{\prime} & =0 \tag{57b}\\
\delta n_{y 1}^{\prime} & =0 \tag{57c}\\
-\left(1-4 \pi^{2} \eta\right) \delta n_{y 1} & =\delta y_{1}^{\prime \prime \prime}+4 \pi^{2} \delta y_{1}^{\prime} \text { with } \delta y_{1}(0)=\delta y_{1}(1)=\delta y_{1}^{\prime}(0)=\delta y_{1}^{\prime}(1)=0 \tag{57d}
\end{align*}
$$

Using the norm condition (21), we obtain the solutions

$$
\begin{align*}
\delta u_{1}(s) & =\frac{\sin 4 \pi s}{16 \pi} \tag{58a}\\
\delta n_{x 1}(s) & =\frac{1}{4 \eta} \tag{58b}\\
\delta n_{y 1}(s) & =0 \tag{58c}\\
\delta y_{1}(s) & =0 \tag{58d}
\end{align*}
$$

order ϵ^{2}
Equations are

$$
\begin{align*}
\delta u_{2}^{\prime}= & \eta \delta n_{x 2} \text { with } \delta u_{1}(0)=\delta u_{1}(1)=0 \tag{59a}\\
\delta n_{x 2}^{\prime}= & 0 \tag{59b}\\
\delta n_{y 2}^{\prime}= & -\frac{\omega_{1}^{2} \sin ^{2} \pi s}{2 \pi^{2}} \tag{59c}\\
\delta y_{2}^{\prime \prime \prime}+4 \pi^{2} \delta y_{2}^{\prime}= & -\left(1-4 \pi^{2} \eta\right) \delta n_{y 2}+c_{1} \sin 2 \pi s+c_{2} \sin 6 \pi s \tag{59d}\\
\text { with } & \delta y_{2}(0)=\delta y_{2}(1)=\delta y_{2}^{\prime}(0)=\delta y_{2}^{\prime}(1)=0 \tag{59e}
\end{align*}
$$

Using the norm condition (21), we obtain the solutions

$$
\begin{align*}
\omega_{1}^{2} & =\frac{2 \pi^{4}}{3 \eta} \frac{1+2 \pi^{2} \eta}{1-4 \pi^{2} \eta} \tag{60a}\\
\delta u_{2}(s) & =0 \tag{60b}\\
\delta n_{x 2}(s) & =0 \tag{60c}\\
\delta y_{2}(s) & =1+s+s^{2} \cos 2 \pi s+\cos 6 \pi s+\sin 2 \pi s+s \sin 2 \pi s \tag{60d}\\
\delta y_{2}(s) & =\frac{1+2 \pi^{2}(s-1) s-\cos 2 \pi s+\pi(1-2 s) \sin 2 \pi s}{96 \pi^{2} \eta}+O\left(\eta^{0}\right) \tag{60e}
\end{align*}
$$

order ϵ^{3}
Equations are

$$
\begin{align*}
\delta u_{3}^{\prime}= & \eta \delta n_{x 3}+\ldots \text { with } \delta u_{1}(0)=\delta u_{1}(1)=0 \tag{61a}\\
\delta n_{x 3}^{\prime}= & -\frac{\omega_{1}^{2}}{16 \pi} \sin 4 \pi s \tag{61b}\\
\delta n_{y 3}^{\prime}= & -\frac{\omega_{1} \omega_{2} \sin ^{2} \pi s}{\pi^{2}} \tag{61c}\\
-\left(1-4 \pi^{2} \eta\right) \delta n_{y 3}= & \delta y_{3}^{\prime \prime \prime}+4 \pi^{2} \delta y_{3}^{\prime} \tag{61d}\\
\text { with } & \delta y_{2}(0)=\delta y_{2}(1)=\delta y_{2}^{\prime}(0)=\delta y_{2}^{\prime}(1)=0 \tag{61e}
\end{align*}
$$

Using the norm condition (21), we obtain the solutions

$$
\begin{align*}
\omega_{2} & =0 \tag{62a}\\
\delta u_{3}(s) & =\frac{\sin \pi s}{384 \pi \eta}\left(-7 \cos \pi s+\cos 3 \pi s+8 \pi(1-2 s) \sin ^{3} \pi s\right)+O\left(\eta^{0}\right) \tag{62b}\\
\delta n_{x 3}(s) & =c t e+\frac{1}{64 \pi^{2}} \omega_{1}^{2} \cos 4 \pi s \tag{62c}\\
\delta y_{3}(s) & =0 \tag{62~d}\\
\delta n_{y 3}(s) & =0 \tag{62e}
\end{align*}
$$

order ϵ^{4}
At this order p_{4} pops up. It would need to be calculated in the static solution.

Conclusion for vibrations

At the lowest order in η, vibrations solutions at odrer 1,2 , and 3 are the same as in the solutions of the full Kirchhoff model, except for δu_{3}. A term involving $y^{\prime 4}$ would have been needed in (9a) to have the same solution for δu_{3}.

