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Résumé

We list here detailed analytical calculations for the post-buckled equilibrium solution (1st
mode) and the first vibration mode around this equilibrium solution, using the Kirchhoff
extensible order 3 model.

1 Introduction

The beam has length L, width w, thickness h, Young’s modulus E and density ρ. The bending
rigidity is then EI = Eh3w/12 and the stretching rigidity EA = Ehw, where A is the surface
area and I the second moment of area of the cross-section. We consider slender beams, with a
small ratio η = I/(AL2) = (1/12) (h/L)2. We use the arc-length S of the beam in its reference
configuration as a Lagrangian variable, that is S ∈ (0, L) always. The beam is clamped horizon-
tally at its left end (S = 0), which lies at the origin. The right end (S = L) is constrained to
lie on the horizontal axis, with a horizontal tangent. An axial displacement D is imposed and
we compute the equilibrium shape and the vibrations around this shape. We then study how
equilibrium and vibrations vary as D is varied. Equations for this proposed order 3 model write

X ′(S, T ) = 1 +
Nx(S, T )

EA
− 1

2
Y ′2(S, T ) (1a)

N ′
x(S, T ) = ρAẌ(S, T ) (1b)

EI
[
Y (S, T )′′′ + F3

]
= Nx(S, T )Y ′(S, T )−Ny(S, T )X ′(S, T ) (1c)

N ′
y(S, T ) = ρAŸ (S, T ) (1d)

with F3 = Y ′(S, T )Y ′′(S, T )2 +
1

2
Y ′(S, T )2 Y ′′′(S, T ) (1e)

where T is the physical time and ′ def
= d/dS et ˙

def
= d/dT . We study the dynamics of the beam

with fixed longitudinal displacement

X(0, T ) = 0 , ∀T (2)

X(L, T ) = L−D , ∀T (3)

Y (0, T ) = 0 = Y ′(0, T ) , ∀T (4)

Y (L, T ) = 0 = Y ′(L, T ) , ∀T (5)
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Figure 1 – Buckling of a clamped-clamped beam. Displacement are V = Y et U = X − S.

which implies that, during vibrations for example, the axial thrust is fluctuating in time P =
P (T ) = −Nx(L, T ).

1.1 Non-dimensionalisation

We work with adim variables

y = Y/L , x = x/L , et s = S/L (6)

nx,y = Nx,y L
2/(EI) (7)

t = T/τ , with τ = L2
√
ρA/(EI) (8)

and obtain the system

x′(s, t) = 1 + η nx(s, t)− 1

2
y′2(s, t) (9a)

n′x(s, t) = ẍ(s, t) (9b)

y(s, t)′′′ + f3 = nx(s, t)y′(s, t)− ny(s, t)x′(s, t) (9c)

n′y(s, t) = ÿ(s, t) (9d)

with f3 = y′(s, t) y′′(s, t)2 +
1

2
y′(s, t)2 y′′′(s, t) (9e)

where the small ratio η appears

η =
I

AL2
=

1

12

h2

L2
(10)

Note : we also use u(s, t) which is defined as

u(s, t) = x(s, t)− s (11)
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2 Equations for equilibrium and vibrations

2.1 Equilibrium

Equilibrium equations read

x′E = 1 + η nxE −
1

2
y′2E (12a)

n′xE = 0⇒ nxE = −pE (12b)

y′′′E + f3E = nxE y
′
E − nyE x′E (12c)

n′yE = 0⇒ nyE = 0 (12d)

with f3E = y′E y
′′2
E +

1

2
y′2E y

′′′
E (12e)

where we only consider the first buckling mode, which has nyE = 0.

2.2 Small amplitude vibrations

We look for the solutions of (9) having the form

x(s, t) = xE(s) + δx(s) eiωt with |δx(s)| << 1 ∀s (13)

y(s, t) = yE(s) + δy(s) eiωt with |δy(s)| << 1 ∀s (14)

nx(s, t) = nxE(s) + δnx(s) eiωt with |δnx(s)| << 1 ∀s (15)

ny(s, t) = nyE(s) + δny(s) eiωt with |δny(s)| << 1 ∀s (16)

and we have
δu(s) = δx(s) (17)

The equations for the vibrations then read

δx′ = η δnx − y′E δy′ (18a)

δn′x = −ω2 δx (18b)

δy′′′ + δf3 = δnx y
′ + nxE δy

′ − δny x′ − nyE δx′ (18c)

δn′y = −ω2 δy (18d)

with δf3 = δy′ y′′2E + 2y′E δy
′′ y′′E + δy′ y′E y

′′′
E +

1

2
y′2E δy

′′′ (18e)

2.3 Conditions de bord

The tangent is horizontal at both clamps. Left end is fixed, right end is always on the y axis,
with a imposed axial displacement d = D/L. For equilibrium we have then

yE(0) = 0 yE(1) = 0 (19a)

y′E(0) = 0 y′E(1) = 0 (19b)

xE(0) = 0 xE(1) = 1− d (19c)
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System (12) is order 6. We have 6 boundary conditions, we will then obtain isolated solutions for
each given value of d. Boundary condition for vibrations read

δy(0) = 0 = δy(1) (20a)

δy′(0) = 0 = δy′(1) (20b)

δx(0) = 0 = δx(1) (20c)

System (18) is order 6, and there is an additional parameter ω. With the six above boundary
conditions, we will then a priori have a 1D family of solutions. But as the system is linear, we
may enforce a norm condition. We choose

δy′′(0) = 1 (21)

We finaly have 7 conditions for 7 unknowns, and only isolated solution : the vibrations modes.

3 Post-buckled equilibrium

We solve equilibrium system (12) for compression forces values slightly above the bucklng
threshold : p & 4π2. We expand xE(s), yE(s), et pE = −nxE in power of ε, a small parameter
giving the ’distance’ from buckling

xE(s) = x0(s) + εx1(s) + ε2x2(s) + ε3x3(s) +O
(
ε4
)

(22a)

yE(s) = εy1(s) + ε2y2(s) + ε3y3(s) +O
(
ε4
)

(22b)

pE = p0 + εp1 + ε2p2 + ε3p3 +O
(
ε4
)

(22c)

At each ε order, we extract and solve the equations for the variables xi(s), yi(s), . . .. Boundary
conditions have to be verified at all orders. In order to fix a length scale for ε, we use the norm
condition :

ε = −4

∫ 1

0
yE(s) cos 2πs ds (23)

3.1 order ε0

Equations are
u′0(s) = −η p0 with u0(0) = 0 (24)

Solutions is
u0(s) = −η p0 s (25)

3.2 order ε1

Equations are

y′′′′1 + p0 y
′′
1 = 0 with y1(0) = 0 = y1(1) et y′1(0) = 0 = y′1(1) (26)

u′1(s) = −ηp1 with u1(0) = 0 (27)

4



With the norm condition (23) taken into account, solutions are

p0 = 4π2 (28)

y1(s) =
1

2
(1− cos 2πs) (29)

u1(s) = −η p1 s (30)

3.3 order ε2

Equations are

y′′′′2 + 4π2 y′′2 + 2π2 p1 cos 2πs = 0 with y2(0) = y2(1) = y′2(0) = y′2(1) = 0 (31)

u′2(s) = −ηp2 −
π2

2
sin2 2πs with u2(0) = 0 (32)

With the norm condition (23) taken into account, solutions are

p1 = 0 (33)

y2(s) = 0 (34)

u2(s) = −ηp2s−
π2

4
s+

π

16
sin 4πs (35)

Up to now, the solution is the same as with the von Karman model. Things change at order
3.

3.4 order ε3

Equations are

y′′′′3 +

(
y′′33 + 3y′3y

′′
3y

′′′
3 +

1

2
y′23 y

′′′′
3

)
+ p0 y

′′
3 + p2y

′′
1 = 0 (36)

with y3(0) = y3(1) = y′3(0) = y′3(1) = 0 (37)

u′3(s) = −ηp3 with u3(0) = 0 (38)

With the norm condition (23) taken into account, solutions are

p2 =
π4

4
(39)

y3(s) =
π2

64
sin2 3πs (40)

u3(s) = −ηp3s (41)

3.5 order ε4

At this order, we find

p3 = 0 (42)

y4(s) = 0 (43)

u4(s) = −ηp4s−
3π3

512
sin 4πs+

3π3

1024
sin 8πs (44)
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3.6 Solution up to order ε4

We obtain

yE(s) =
ε

2
(1− cos 2πs) + ε3

π2

64
sin2 3πs+ 0ε4 +O(ε5) (45)

uE(s) = −η4π2s− ε2 π
16

(
4πs+ 8π3ηs− sin 4πs

)
+ u4(s)ε

4 +O(ε5) (46)

pE = 4π2 + ε2
π4

2
+ p4ε

4 +O(ε5) (47)

where order 5 is needed to obtain p4.
For the end-shortening we have

d = −uE(1) = η4π2 + ε2
π2

4

(
1 + 2π2η

)
+ ηp4ε

4 +O(ε5) (48)

And the mid span vertical deflection is

yE(1/2) = ε+ ε3
π2

64
+ 0ε4 +O(ε5) (49)

Considering only the lowest η order, the solutions for y1, y3, u0, u2, p0, p2 are the same as in
the full (extensible) Kirchhoff model.

For u4 and p4, we would need order ε5.

4 Vibrations around post-buckled equilibrium

We set :

ω = ω0 + εω1 + ε2ω2 + ε3ω3 +O
(
ε4
)

(50)

δx(s) = δu(s) = δu0 + εδu1 + ε2δu2 + ε3δu3 +O
(
ε4
)

(51)

δy(s) = δy0 + εδy1 + ε2δy2 + ε3δy3 +O
(
ε4
)

(52)

δnx(s) = δnx0 + εδnx1 + ε2δnx2 + ε3δnx3 +O
(
ε4
)

(53)

δny(s) = δny0 + εδny1 + ε2δny2 + ε3δny3 +O
(
ε4
)

(54)

order ε0

Equations are

δu′0 = η δnx0 with δu0(0) = δu0(1) = 0 (55a)

δn′x0 = 0 (55b)

δn′y0 = 0 (55c)

−(1− 4π2η)δny0 = δy
′′′
0 + 4π2δy

′
0 with δy0(0) = δy0(1) = δy′0(0) = δy′0(1) = 0 (55d)
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Using the norm condition (21), we obtain the solutions

δu0(s) = 0 (56a)

δnx0(s) = 0 (56b)

δny0(s) = 0 (56c)

δy0(s) =
1− cos 2πs

4π2
(56d)

order ε1

Equations are

δu′1 = η δnx1 −
sin2 2πs

2
with δu1(0) = δu1(1) = 0 (57a)

δn′x1 = 0 (57b)

δn′y1 = 0 (57c)

−(1− 4π2η)δny1 = δy
′′′
1 + 4π2δy

′
1 with δy1(0) = δy1(1) = δy′1(0) = δy′1(1) = 0 (57d)

Using the norm condition (21), we obtain the solutions

δu1(s) =
sin 4πs

16π
(58a)

δnx1(s) =
1

4η
(58b)

δny1(s) = 0 (58c)

δy1(s) = 0 (58d)

order ε2

Equations are

δu′2 = η δnx2 with δu1(0) = δu1(1) = 0 (59a)

δn′x2 = 0 (59b)

δn′y2 = −ω
2
1 sin2 πs

2π2
(59c)

δy
′′′
2 + 4π2δy

′
2 = −(1− 4π2η)δny2 + c1 sin 2πs+ c2 sin 6πs (59d)

with δy2(0) = δy2(1) = δy′2(0) = δy′2(1) = 0 (59e)

Using the norm condition (21), we obtain the solutions

ω2
1 =

2π4

3η

1 + 2π2η

1− 4π2η
(60a)

δu2(s) = 0 (60b)

δnx2(s) = 0 (60c)

δy2(s) = 1 + s+ s2 cos 2πs+ cos 6πs+ sin 2πs+ s sin 2πs (60d)

δy2(s) =
1 + 2π2(s− 1)s− cos 2πs+ π(1− 2s) sin 2πs

96π2η
+O(η0) (60e)
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order ε3

Equations are

δu′3 = η δnx3 + . . . with δu1(0) = δu1(1) = 0 (61a)

δn′x3 = − ω2
1

16π
sin 4πs (61b)

δn′y3 = −ω1 ω2 sin2 πs

π2
(61c)

−(1− 4π2η)δny3 = δy
′′′
3 + 4π2δy

′
3 (61d)

with δy2(0) = δy2(1) = δy′2(0) = δy′2(1) = 0 (61e)

Using the norm condition (21), we obtain the solutions

ω2 = 0 (62a)

δu3(s) =
sinπs

384πη

(
−7 cosπs+ cos 3πs+ 8π(1− 2s) sin3 πs

)
+O(η0) (62b)

δnx3(s) = cte+
1

64π2
ω2
1 cos 4πs (62c)

δy3(s) = 0 (62d)

δny3(s) = 0 (62e)

order ε4

At this order p4 pops up. It would need to be calculated in the static solution.

Conclusion for vibrations

At the lowest order in η, vibrations solutions at odrer 1, 2, and 3 are the same as in the
solutions of the full Kirchhoff model, except for δu3. A term involving y′4 would have been
needed in (9a) to have the same solution for δu3.
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