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Abstract

We list here detailed analytical calculations for the post-buckled equilibrium solution (1st
mode) and the first vibration mode around this equilibrium solution, using the Kirchhoff
extensible model.

1 Introduction

The beam has length L, width w, thickness h, Young’s modulus E and density ρ. The bending
rigidity is then EI = Eh3w/12 and the stretching rigidity EA = Ehw, where A is the surface
area and I the second moment of area of the cross-section. We consider slender beams, with a
small ratio η = I/(AL2) = (1/12) (h/L)2. We use the arc-length S of the beam in its reference
configuration as a Lagrangian variable, that is S ∈ (0, L) always. The beam is clamped horizon-
tally at its left end (S = 0), which lies at the origin. The right end (S = L) is constrained to
lie on the horizontal axis, with a horizontal tangent. An axial displacement D is imposed and
we compute the equilibrium shape and the vibrations around this shape. We then study how
equilibrium and vibrations vary as D is varied.

Kirchhoff equations for the dynamics of the beam write

Y ′ = (1 + e) sin θ , X ′ = (1 + e) cos θ (1)

N ′
Y = ρAŸ , N ′

X = ρAẌ (2)

EIθ′ = M , M ′ = (1 + e) (NX sin θ −NY cos θ) (3)

EAe = NX cos θ +NY sin θ (4)

where the internal force is N = (NX , NY , 0), the bending moment is M = (0, 0,M). All variables

depend on both S and time T with the derivatives noted ′ def
= d/dS and ˙

def
= d/dT . Rotation

inertia is neglected. We use the following scheme to non-dimensionalize the equations

y = Y/L , x = X/L (5)

n = NL2/(EI) , m = ML/(EI) (6)

t = T/τ , with τ = L2
√
ρA/(EI) (7)

Using (4), we isolate:
e = η(nx cos θ + ny sin θ) (8)
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Figure 1: Buckling of a clamped-clamped beam. Displacement are V = Y et U = X − S.

and we obtain

y′ = (1 + η(nx cos θ + ny sin θ)) sin θ (9a)

x′ = (1 + η(nx cos θ + ny sin θ)) cos θ (9b)

n′y = ÿ (9c)

n′x = ẍ (9d)

θ′ = m (9e)

m′ = (1 + η(nx cos θ + ny sin θ)) (nx sin θ − ny cos θ) (9f)

where

η =
I

AL2
(10)

Boundary conditions read

y(s = 0, t) = 0 y(s = 1, t) = 0 ∀t (11a)

x(s = 0, t) = 0 x(s = 1, t) = 1− d ∀t (11b)

θ(s = 0, t) = 0 θ(s = 1, t) = 0 ∀t (11c)

2 Equilibrium and vibrations

2.1 Equilibrium

Equilibrium equations are :

y′E = (1 + eE) sin θE , x′E = (1 + eE) cos θE (12)

n′yE = 0 , n′xE = 0 (13)

θ′E = mE , m′
E = (1 + eE) (nxE sin θE − nyE cos θE) (14)

eE = η(nxE cos θE + nyE sin θE) (15)
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2.2 Small amplitude vibrations around equilibrium

Solutions of (9) having the form:

x(s, t) = xE(s) + δx(s)eiwt with |δx(s)| << 1 ∀s (16)

y(s, t) = yE(s) + δy(s)eiwt with |δy(s)| << 1 ∀s (17)

. . . (18)

fulfil the vibration equations

δn′y = −ω2 δy (19a)

δn′x = −ω2 δx (19b)

δθ′ = δm (19c)

δm′ = (1 + eE) [δnx sin θE − δny cos θE + δθ (nyE sin θE + nxE cos θE)] +

δe (nxE sin θE − nyE cos θE) (19d)

δy′ = (1 + eE) cos θE δθ + δe sin θE (19e)

δx′ = −(1 + eE) sin θE δθ + δe cos θE (19f)

where eE = η (nyE sin θE + nxE cos θE) and

δe = η (δny sin θE + δnx cos θE + δθ (nyE cos θE − nxE sin θE))

2.3 Boundary conditions

For equilibrium we have

yE(0) = 0 yE(1) = 0 (20)

xE(0) = 0 xE(1) = 1− d (21)

θE(0) = 0 θE(1) = 0 (22)

while for vibrations, we have

δy(0) = 0 = δy(1) (23a)

δx(0) = 0 = δx(1) (23b)

δθ(0) = 0 = δθ(1) (23c)

System (19) is 6D, and we have an additional parameter ω. With the six above conditions, we
have then 1D paths of solutions, but system (19) being linear, we may norm the initial conditions,
or just fix one of the initial conditions to 1:

δy′′(0) = 1 (24)

Only isolated solutions remain: the vibration modes.
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3 Post-buckled equilibrium

We solve the equilibrium equations in the near post-buckling domain, for p just above p0 (p0 '
4π2, see (35)). System (12)–(14) with nyE = 0 and nxE = −p boils down to

θ′′E = −p sin θE +
1

2
ηp2 sin 2θE with θE(0) = 0 = θE(1) (25)

y′E = sin θE −
1

2
ηp sin 2θE with yE(0) = 0 = yE(1) (26)

As mE(s) = −p yE(s) + cte, boundary conditions on yE(s) are equivalent to condition

mE(0) = θ′E(0) = mE(1) = θ′E(1) (27)

We introduce the series for θE(s), yE(s), and p

θE(s) = εθ1(s) + ε2θ2(s) + ε3θ3(s) +O
(
ε4
)

(28)

yE(s) = εy1(s) + ε2y2(s) + ε3y3(s) +O
(
ε4
)

(29)

p = p0 + εp1 + ε2p2 + ε3p3 +O
(
ε4
)

(30)

with ε a small parameter measuring the ’distance’ from buckling. At each order, we extract
equations for θi(s), yi(s), and pi. Boundary conditions have to be verified at all orders. In order
to fix a length scale for ε, we use the norm condition:

ε = −4

∫ 1

0
yE(s) cos 2πs ds (31)

3.1 order ε

We have to solve

y′1 = (1− η p0) θ1 with y1(0) = 0 = y1(1) (32)

θ′′1 = −p0 (1− η p0) θ1 with θ1(0) = 0 = θ1(1) (33)

Solutions are

p0(1− ηp0) = 4π2 (34)

p0 =
1−

√
1− 16π2η

2η
(35)

y1(s) =
1

2
(1− cos 2πs) (36)

θ1(s) =
p0
4π

sin 2πs (37)

Eq. (31) imposes A1 = p0
4π .
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3.2 order ε2

At order 2, we have to solve

y′2 = (1− ηp0) θ2 −
ηp1p0

4π
sin(2πs) with y2(0) = 0 = y2(1) (38)

θ′′2 = −4π2 θ2 −
(8π2 − p0)p1

4π
sin 2πs with θ2(0) = 0 = θ2(1) (39)

Solutions are

p1 = 0 (40)

y2(s) =
A2

2π
(1− ηp0)(1− cos 2πs) (41)

θ2(s) = A2 sin 2πs (42)

and Eq. (31) imposes A2 = 0.

3.3 order ε3

At order 3, equations are

y′3 = (1− ηp0)θ3 −
1− 4ηp0

6

( p0
4π

)3
sin3(2πs)− ηp0p2

4π
sin(2πs) (43)

y3(0) = 0 (44)

y3(1) = 0 (45)

θ′′3 = −4π2 θ3 +
p0(1− 4ηp0)

6

( p0
4π

)3
sin3(2πs)− p0p2

4π
(1− 2ηp0) sin 2πs (46)

θ3(0) = 0 (47)

θ3(1) = 0 (48)

and Eq. (31) gives A3. The solution is

A3 =
p30(16π2 − 3p0)(88π2 + p0)

49152π5(8π2 − p0)
(49)

p2 =
p40(1− 4ηp0)

128π2(8π2 − p0)
=
π4

2
+ 2π6η +O(η2) (50)

θ3(s) =
p30(16π2 − 3p0)[96π2 sin(2πs)− (8π2 − p0) sin(6πs)]

48 (4π)5 (8π2 − p0)
(51)

y3(s) = p20
16π2 − 3p0

4096π4
sin2(3πs) (52)

3.4 order ε4

At this order, we find

p3 = 0 (53)

y4(s) = 0 (54)

θ4(s) = 0 (55)
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3.5 order ε5

We find

p4 = −p50
3p40 + 720p30π

2 − 14528p20π
4 + 90112p0π

6 − 180224π8

128 (4π)6(−p0 + 8π2)3
(56)

=
21π6

128
+

3π8

4
η +O(η2) (57)

3.6 Solution up to ε4

θE(s) = ε
p0
4π

sin 2πs+ ε3
p30(16π2 − 3p0)[96π2 sin(2πs)− (8π2 − p0) sin(6πs)]

48 · (4π)5 (8π2 − p0)
+ 0 ε4 +O

(
ε5
)

(58)

θE(s) = επ sin 2πs[1 + 4π2η +O(η2)] + ε3π3
(

24 sin(2πs)− sin(6πs)

192
+ ηπ2

sin 2πs

2
+O(η2)

)
+ 0 ε4

+O
(
ε5
)

(59)

yE(s) =
ε

2
(1− cos 2πs) + ε3 p20

16π2 − 3p0
4096π4

sin2(3πs) + 0 ε4 +O
(
ε5
)

(60)

yE(s) =
ε

2
(1− cos 2πs) + ε3

π2

64

[
1− 4π2η +O(η2)

]
sin2(3πs) + 0 ε4 +O

(
ε5
)

(61)

p = p0 + ε2
p30(16π2 − 3p0)

128π2(8π2 − p0)
+ 0 ε3 + p4 ε

4 +O
(
ε5
)

(62)

p = 4π2 + 16π4η +O(η2) + ε2
(
π4

2
+ 2π6η +O(η2)

)
+ 0 ε3 + ε4

(
21π6

128
+

3π8

4
η +O(η2)

)
+O

(
ε5
)

(63)

p4 = −p50
3p40 + 720p30π

2 − 14528p20π
4 + 90112p0π

6 − 180224π8

128 (4π)6(−p0 + 8π2)3
=

21π6

128
+

3π8

4
η +O(η2) (64)

p0 =
1−

√
1− 16π2η

2η
= 4π2 + 16π4η +O(η2) (65)

Maximal vertical deflection (at the mid span) take the value

yE(1/2) = ε+ p20
16π2 − 3p0

4096π4
ε3 +O(ε5) = ε+

π2

64

[
1− 4π2η +O(η2)

]
ε3 +O(ε5) (66)

Current position xE(s) is found by integrating (1 + eE(s)) cos θE(s) with

cos θE(s) = 1− p20
32π2

sin2(2πs)ε2 + 0 ε3 +O(ε4) (67)

eE(s) = −ηp0 − ηε2
[

p40(1− 4ηp0)

128π2(8π2 − p0)
− p30

32π2
sin2(2πs)

]
+ 0 ε3 +O(ε4) (68)

Hence

xE(s) = s(1− ηp0)− ε2 p0
2π(p20 + 4p0π

2 − 64π4) s+ (8π2 − p0)2 sin 4πs

256π3(8π2 − p0)
+ 0 ε3 +O

(
ε4
)
(69)

xE(s) = [s− 4π2ηs+O(η2)] +

[
π

16
(sin 4πs− 4πs)− π4

2
sη +O(η2)

]
ε2 + 0 ε3 +O

(
ε4
)

(70)
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We note d
def
= 1−(xE(1)−xE(0)) = 1−xE(1) the end-shortening (longitudinal displacement),

and have

d = ηp0 + ε2 p0
2π(p20 + 4p0π

2 − 64π4)

256π3(8π2 − p0)
+ 0 ε3 +O

(
ε4
)

(71)

= [4π2η +O(η2)] + ε2
π2

4
[1 + 2π2η +O(η2)] + 0 ε3 +O

(
ε4
)

(72)

Going back to the longitudinal displacement u(s)
def
= x(s)− s, von Karman kinematics writes

e(s) = u′(s) + (1/2) v′2(s), where vertical displacement is written v(s)
def
= y(s). This kinematics

is not strictly verified:

eE(s)− u′E(s)− 1

2
v′2E(s) =

1

8
ηp20ε

2 sin2(2πs) + 0 ε3 +O(ε4) (73)

or

x′E(s)− 1 + η p+
1

2
y′2E(s) =

η2p40
32π2

ε2 sin2(2πs) + 0 ε3 +O(ε4) (74)

Von Karman differential equation for the vertical displacement is not even verified at order ε

y′′′′E (s) + pE y
′′
E(s) = 2π2ηp20ε cos(2πs) + 0 ε2 +O(ε3) (75)

4 Vibrations around an equilibrium solution

We set :

ω = ω0 + εω1 + ε2ω2 + ε3ω3 +O
(
ε4
)

(76)

δy(s) = δy0 + εδy1 + ε2δy2 + ε3δy3 +O
(
ε4
)

(77)

Same expansion for all the other variables δx(s), δθ(s), ...

4.1 Restriction to the first vibration mode: ω0 = 0

order ε0

Equations are

δx′0 = ηδnx0 with δx0(0) = 0 = δx0(1) (78a)

δn′x0 = 0 (78b)

0 = δy
′′′′
0 + 4π2δy

′′
0 with δy0(0) = δy0(1) = δy′0(0) = δy′0(1) = 0 (78c)

Solutions are

δx0(s) = 0 (79a)

δnx0(s) = 0 (79b)

δy0(s) = A0(1− cos 2πs) (79c)

7



which yields

δθ0(s) =
2πA0

1− ηp0
sin 2πs (80a)

δm0(s) =
4π2A0

1− ηp0
cos 2πs (80b)

δny0(s) = 0 (80c)

The norm condition (24) implies

A0 =
1

4π2
(81)

order ε1

Equations are

δx′1 = ηδnx1 − p0
1− 2ηp0

8π2(1− ηp0)
sin2 2πs , with δx1(0) = 0 = δx1(1) (82a)

δn′x1 = 0 (82b)

0 = δy
′′′′
1 + 4π2δy

′′
1 , with δy1(0) = δy1(1) = δy′1(0) = δy′1(1) = 0 (82c)

Longitudinal mode solutions are

δx1(s) = p0
1− 2ηp0
1− ηp0

sin 4πs

64π3
(83)

δnx1(s) = p0
1− 2ηp0
1− ηp0

1

16π2η
(84)

(85)

Transverse variable:
δy1(s) = A1(1− cos 2πs) (86)

The norm condition (24) forces A1 = 0. We then have

δy1(s) = 0 = δθ1(s) = δm1(s) = δny1(s) (87)

order ε2

For longitudinal variable, equations are

δx′2 = ηδnx2 with δx2(0) = 0 = δx2(1) (88)

δn′x2 = 0 (89)

The solution vanishes

δx2(s) = 0 (90a)

δnx2(s) = 0 (90b)
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For transverse variables, equations boils down to

δy
′′′′
2 + 4π2δy

′′
2 +A cos 6πs+B cos 2πs+ C = 0 (91a)

with δy2(0) = δy2(1) = δy′2(0) = δy′2(1) = 0 (91b)

A = −27p20
128

(
16− 3p0

π2

)
(91c)

B =
p20

16π2
p20 + 4p0π

2 − 64π4

4(p0 − 4π2)
+

4π2ω2
1

p20
(91d)

C = −4π2ω2
1

p20
(91e)

Solution is

1152π4 δy2(s) = A− 90B + 144Cπ2s− 144Cπ2s2 + 288π2K + 90B cos 2πs−
288π2K cos 2πs−A cos 6πs− 72Cπ sin 2πs+ 72Bπs sin 2πs (92)

δy2(s) =
1 + 2π2(s− 1)s− cos 2πs+ π(1− 2s) sin 2πs

96π2η
+O(η0) (93)

Boundary conditions δy′1(1) = 0 imposes B = 2C, which in return yields ω1

ω2
1 =

p40(p
2
0 + 4p0π

2 − 64π4)

768π4(−p0 + 4π2)
(94)

which yields, with (65)

ω1 =

√
2

3
π2
[

1
√
η

+ π2
√
η

]
+O(η3/2) (95)

The norm condition (24) fixes

K =
12C −A

32π2
(96)

order ε3

Solutions are

δx3(s) =
s

64η
+

sinπs

384πη

(
−7 cosπs+ cos 3πs+ 8π(1− 2s) sin3 πs

)
+O(η0) (97)

δnx3(s) = nx3K − p0
p0 − 8π2

1024π6
ω2
1 cos 4πs (98)

ω2 = 0 (99)

δy3(s) = 0 = δθ3(s) = δm3(s) = δny3(s) (100)
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order ε4

For the longitudinal variables, equations are

δx′4 = ηδnx4 with δx4(0) = 0 = δx4(1) (101)

δn′x4 = 0 (102)

The solution vanishes

δx4(s) = 0 (103a)

δnx4(s) = 0 (103b)

For the transverse variables, equations boils down to

δy
′′′′
4 + 4π2δy

′′
4 + f(ω3, s, s

2, sin(2, 4, 6πs), s sin(2, 4, 6πs), cos(2, 4, 6, 10πs), . . .) = 0 (104a)

with δy4(0) = δy4(1) = δy′4(0) = δy′4(1) = 0 (104b)

We find ω3 by enforcing the condition δy′4(1) = 0

ω3 =
( p0

4π

)6 M

41472π4(p0 − 8π2)(p0 − 4π2)2ω1
(105)

M = 9p60 − 13680p40π
4 − 65536π12(−285 + 16π2) + 2p50π

2(−87 + 16π2) +

768p20π
8(399 + 16π2) + 8192p0π

10(−831 + 32π2)− 32p30π
6(−4233 + 176π2) (106)

which yields, for small η

ω3 = π2
−21 + 2π2

216
√

6 η3/2
+
π4(141− 10π2)

216
√

6 η1/2
+O(η1/2) (107)

where we note that the first term is exactly the same as in the von Karman model.

4.2 General case, ω0 6= 0

todo !
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