Statics and vibrations in the post-buckling domain with the extensible Kirchhoff model

S. Neukirch, M. Yavari, N. Challamel, O. Thomas

October 5, 2020

Abstract

We list here detailed analytical calculations for the post-buckled equilibrium solution (1st mode) and the first vibration mode around this equilibrium solution, using the Kirchhoff extensible model.

1 Introduction

The beam has length L, width w, thickness h, Young's modulus E and density ρ. The bending rigidity is then $E I=E h^{3} w / 12$ and the stretching rigidity $E A=E h w$, where A is the surface area and I the second moment of area of the cross-section. We consider slender beams, with a small ratio $\eta=I /\left(A L^{2}\right)=(1 / 12)(h / L)^{2}$. We use the arc-length S of the beam in its reference configuration as a Lagrangian variable, that is $S \in(0, L)$ always. The beam is clamped horizontally at its left end $(S=0)$, which lies at the origin. The right end $(S=L)$ is constrained to lie on the horizontal axis, with a horizontal tangent. An axial displacement D is imposed and we compute the equilibrium shape and the vibrations around this shape. We then study how equilibrium and vibrations vary as D is varied.

Kirchhoff equations for the dynamics of the beam write

$$
\begin{array}{rll}
Y^{\prime}=(1+e) \sin \theta & , & X^{\prime}=(1+e) \cos \theta \\
N_{Y}^{\prime}=\rho A \ddot{Y} & , & N_{X}^{\prime}=\rho A \ddot{X} \\
E I \theta^{\prime}=M & , & M^{\prime}=(1+e)\left(N_{X} \sin \theta-N_{Y} \cos \theta\right) \\
& E A e=N_{X} \cos \theta+N_{Y} \sin \theta \tag{4}
\end{array}
$$

where the internal force is $\boldsymbol{N}=\left(N_{X}, N_{Y}, 0\right)$, the bending moment is $\boldsymbol{M}=(0,0, M)$. All variables depend on both S and time T with the derivatives noted ' $\stackrel{\text { def }}{=} d / d S$ and $\stackrel{\text { def }}{=} d / d T$. Rotation inertia is neglected. We use the following scheme to non-dimensionalize the equations

$$
\begin{array}{rll}
y=Y / L & , & x=X / L \\
\boldsymbol{n}=\boldsymbol{N} L^{2} /(E I) & , & m=M L /(E I) \\
t=T / \tau & , & \text { with } \tau=L^{2} \sqrt{\rho A /(E I)} \tag{7}
\end{array}
$$

Using (4), we isolate:

$$
\begin{equation*}
e=\eta\left(n_{x} \cos \theta+n_{y} \sin \theta\right) \tag{8}
\end{equation*}
$$

Figure 1: Buckling of a clamped-clamped beam. Displacement are $V=Y$ et $U=X-S$.
and we obtain

$$
\begin{align*}
y^{\prime} & =\left(1+\eta\left(n_{x} \cos \theta+n_{y} \sin \theta\right)\right) \sin \theta \tag{9a}\\
x^{\prime} & =\left(1+\eta\left(n_{x} \cos \theta+n_{y} \sin \theta\right)\right) \cos \theta \tag{9b}\\
n_{y}^{\prime} & =\ddot{y} \tag{9c}\\
n_{x}^{\prime} & =\ddot{x} \tag{9d}\\
\theta^{\prime} & =m \tag{9e}\\
m^{\prime} & =\left(1+\eta\left(n_{x} \cos \theta+n_{y} \sin \theta\right)\right)\left(n_{x} \sin \theta-n_{y} \cos \theta\right) \tag{9f}
\end{align*}
$$

where

$$
\begin{equation*}
\eta=\frac{I}{A L^{2}} \tag{10}
\end{equation*}
$$

Boundary conditions read

$$
\begin{array}{ll}
y(s=0, t)=0 & y(s=1, t)=0 \quad \forall t \\
x(s=0, t)=0 & x(s=1, t)=1-d \quad \forall t \\
\theta(s=0, t)=0 & \theta(s=1, t)=0 \quad \forall t \tag{11c}
\end{array}
$$

2 Equilibrium and vibrations

2.1 Equilibrium

Equilibrium equations are :

$$
\begin{array}{rll}
y_{E}^{\prime}=\left(1+e_{E}\right) \sin \theta_{E} & , & x_{E}^{\prime}=\left(1+e_{E}\right) \cos \theta_{E} \\
n_{y_{E}}^{\prime}=0 & , & n_{x_{E}}^{\prime}=0 \\
\theta_{E}^{\prime}=m_{E} & , & m_{E}^{\prime}=\left(1+e_{E}\right)\left(n_{x_{E}} \sin \theta_{E}-n_{y E} \cos \theta_{E}\right) \\
& & e_{E}=\eta\left(n_{x E} \cos \theta_{E}+n_{y E} \sin \theta_{E}\right) \tag{15}
\end{array}
$$

2.2 Small amplitude vibrations around equilibrium

Solutions of (9) having the form:

$$
\begin{align*}
& x(s, t)=x_{E}(s)+\delta x(s) e^{i w t} \text { with }|\delta x(s)| \ll 1 \forall s \tag{16}\\
& y(s, t)=y_{E}(s)+\delta y(s) e^{i w t} \text { with }|\delta y(s)| \ll 1 \forall s \tag{17}
\end{align*}
$$

fulfil the vibration equations

$$
\begin{align*}
\delta n_{y}^{\prime}= & -\omega^{2} \delta y \tag{19a}\\
\delta n_{x}^{\prime}= & -\omega^{2} \delta x \tag{19b}\\
\delta \theta^{\prime}= & \delta m \tag{19c}\\
\delta m^{\prime}= & \left(1+e_{E}\right)\left[\delta n_{x} \sin \theta_{E}-\delta n_{y} \cos \theta_{E}+\delta \theta\left(n_{y E} \sin \theta_{E}+n_{x E} \cos \theta_{E}\right)\right]+ \\
& \delta e\left(n_{x E} \sin \theta_{E}-n_{y E} \cos \theta_{E}\right) \tag{19d}\\
\delta y^{\prime}= & \left(1+e_{E}\right) \cos \theta_{E} \delta \theta+\delta e \sin \theta_{E} \tag{19e}\\
\delta x^{\prime}= & -\left(1+e_{E}\right) \sin \theta_{E} \delta \theta+\delta e \cos \theta_{E} \tag{19f}
\end{align*}
$$

where $e_{E}=\eta\left(n_{y E} \sin \theta_{E}+n_{x E} \cos \theta_{E}\right)$ and

$$
\delta e=\eta\left(\delta n_{y} \sin \theta_{E}+\delta n_{x} \cos \theta_{E}+\delta \theta\left(n_{y E} \cos \theta_{E}-n_{x E} \sin \theta_{E}\right)\right)
$$

2.3 Boundary conditions

For equilibrium we have

$$
\begin{array}{ll}
y_{E}(0)=0 & y_{E}(1)=0 \\
x_{E}(0)=0 & x_{E}(1)=1-d \\
\theta_{E}(0)=0 & \theta_{E}(1)=0 \tag{22}
\end{array}
$$

while for vibrations, we have

$$
\begin{align*}
& \delta y(0)=0=\delta y(1) \tag{23a}\\
& \delta x(0)=0=\delta x(1) \tag{23b}\\
& \delta \theta(0)=0=\delta \theta(1) \tag{23c}
\end{align*}
$$

System (19) is 6 D , and we have an additional parameter ω. With the six above conditions, we have then 1D paths of solutions, but system (19) being linear, we may norm the initial conditions, or just fix one of the initial conditions to 1 :

$$
\begin{equation*}
\delta y^{\prime \prime}(0)=1 \tag{24}
\end{equation*}
$$

Only isolated solutions remain: the vibration modes.

3 Post-buckled equilibrium

We solve the equilibrium equations in the near post-buckling domain, for p just above $p_{0}\left(p_{0} \simeq\right.$ $4 \pi^{2}$, see (35)). System (12)-(14) with $n_{y E}=0$ and $n_{x_{E}}=-p$ boils down to

$$
\begin{array}{r}
\theta_{E}^{\prime \prime}=-p \sin \theta_{E}+\frac{1}{2} \eta p^{2} \sin 2 \theta_{E} \text { with } \theta_{E}(0)=0=\theta_{E}(1) \\
y_{E}^{\prime}=\sin \theta_{E}-\frac{1}{2} \eta p \sin 2 \theta_{E} \text { with } y_{E}(0)=0=y_{E}(1) \tag{26}
\end{array}
$$

As $m_{E}(s)=-p y_{E}(s)+c t e$, boundary conditions on $y_{E}(s)$ are equivalent to condition

$$
\begin{equation*}
m_{E}(0)=\theta_{E}^{\prime}(0)=m_{E}(1)=\theta_{E}^{\prime}(1) \tag{27}
\end{equation*}
$$

We introduce the series for $\theta_{E}(s), y_{E}(s)$, and p

$$
\begin{align*}
\theta_{E}(s) & =\epsilon \theta_{1}(s)+\epsilon^{2} \theta_{2}(s)+\epsilon^{3} \theta_{3}(s)+O\left(\epsilon^{4}\right) \tag{28}\\
y_{E}(s) & =\epsilon y_{1}(s)+\epsilon^{2} y_{2}(s)+\epsilon^{3} y_{3}(s)+O\left(\epsilon^{4}\right) \tag{29}\\
p & =p_{0}+\epsilon p_{1}+\epsilon^{2} p_{2}+\epsilon^{3} p_{3}+O\left(\epsilon^{4}\right) \tag{30}
\end{align*}
$$

with ϵ a small parameter measuring the 'distance' from buckling. At each order, we extract equations for $\theta_{i}(s), y_{i}(s)$, and p_{i}. Boundary conditions have to be verified at all orders. In order to fix a length scale for ϵ, we use the norm condition:

$$
\begin{equation*}
\epsilon=-4 \int_{0}^{1} y_{E}(s) \cos 2 \pi s d s \tag{31}
\end{equation*}
$$

3.1 order ϵ

We have to solve

$$
\begin{align*}
& y_{1}^{\prime}=\left(1-\eta p_{0}\right) \theta_{1} \quad \text { with } \quad y_{1}(0)=0=y_{1}(1) \tag{32}\\
& \theta_{1}^{\prime \prime}=-p_{0}\left(1-\eta p_{0}\right) \theta_{1} \quad \text { with } \quad \theta_{1}(0)=0=\theta_{1}(1) \tag{33}
\end{align*}
$$

Solutions are

$$
\begin{align*}
p_{0}\left(1-\eta p_{0}\right) & =4 \pi^{2} \tag{34}\\
p_{0} & =\frac{1-\sqrt{1-16 \pi^{2} \eta}}{2 \eta} \tag{35}\\
y_{1}(s) & =\frac{1}{2}(1-\cos 2 \pi s) \tag{36}\\
\theta_{1}(s) & =\frac{p_{0}}{4 \pi} \sin 2 \pi s \tag{37}
\end{align*}
$$

Eq. (31) imposes $A_{1}=\frac{p_{0}}{4 \pi}$.

3.2 order ϵ^{2}

At order 2, we have to solve

$$
\begin{align*}
& y_{2}^{\prime}=\left(1-\eta p_{0}\right) \theta_{2}-\frac{\eta p_{1} p_{0}}{4 \pi} \sin (2 \pi s) \text { with } y_{2}(0)=0=y_{2}(1) \tag{38}\\
& \theta_{2}^{\prime \prime}=-4 \pi^{2} \theta_{2}-\frac{\left(8 \pi^{2}-p_{0}\right) p_{1}}{4 \pi} \sin 2 \pi s \text { with } \theta_{2}(0)=0=\theta_{2}(1) \tag{39}
\end{align*}
$$

Solutions are

$$
\begin{align*}
p_{1} & =0 \tag{40}\\
y_{2}(s) & =\frac{A_{2}}{2 \pi}\left(1-\eta p_{0}\right)(1-\cos 2 \pi s) \tag{41}\\
\theta_{2}(s) & =A_{2} \sin 2 \pi s \tag{42}
\end{align*}
$$

and Eq. (31) imposes $A_{2}=0$.

3.3 order ϵ^{3}

At order 3, equations are

$$
\begin{align*}
y_{3}^{\prime} & =\left(1-\eta p_{0}\right) \theta_{3}-\frac{1-4 \eta p_{0}}{6}\left(\frac{p_{0}}{4 \pi}\right)^{3} \sin ^{3}(2 \pi s)-\frac{\eta p_{0} p_{2}}{4 \pi} \sin (2 \pi s) \tag{43}\\
y_{3}(0) & =0 \tag{44}\\
y_{3}(1) & =0 \tag{45}\\
\theta_{3}^{\prime \prime} & =-4 \pi^{2} \theta_{3}+\frac{p_{0}\left(1-4 \eta p_{0}\right)}{6}\left(\frac{p_{0}}{4 \pi}\right)^{3} \sin ^{3}(2 \pi s)-\frac{p_{0} p_{2}}{4 \pi}\left(1-2 \eta p_{0}\right) \sin 2 \pi s \tag{46}\\
\theta_{3}(0) & =0 \tag{47}\\
\theta_{3}(1) & =0 \tag{48}
\end{align*}
$$

and Eq. (31) gives A_{3}. The solution is

$$
\begin{align*}
A_{3} & =\frac{p_{0}^{3}\left(16 \pi^{2}-3 p_{0}\right)\left(88 \pi^{2}+p_{0}\right)}{49152 \pi^{5}\left(8 \pi^{2}-p_{0}\right)} \tag{49}\\
p_{2} & =\frac{p_{0}^{4}\left(1-4 \eta p_{0}\right)}{128 \pi^{2}\left(8 \pi^{2}-p_{0}\right)}=\frac{\pi^{4}}{2}+2 \pi^{6} \eta+O\left(\eta^{2}\right) \tag{50}\\
\theta_{3}(s) & =\frac{p_{0}^{3}\left(16 \pi^{2}-3 p_{0}\right)\left[96 \pi^{2} \sin (2 \pi s)-\left(8 \pi^{2}-p_{0}\right) \sin (6 \pi s)\right]}{48(4 \pi)^{5}\left(8 \pi^{2}-p_{0}\right)} \tag{51}\\
y_{3}(s) & =p_{0}^{2} \frac{16 \pi^{2}-3 p_{0}}{4096 \pi^{4}} \sin ^{2}(3 \pi s) \tag{52}
\end{align*}
$$

3.4 order ϵ^{4}

At this order, we find

$$
\begin{align*}
p_{3} & =0 \tag{53}\\
y_{4}(s) & =0 \tag{54}\\
\theta_{4}(s) & =0 \tag{55}
\end{align*}
$$

3.5 order ϵ^{5}

We find

$$
\begin{align*}
p_{4} & =-p_{0}^{5} \frac{3 p_{0}^{4}+720 p_{0}^{3} \pi^{2}-14528 p_{0}^{2} \pi^{4}+90112 p_{0} \pi^{6}-180224 \pi^{8}}{128(4 \pi)^{6}\left(-p_{0}+8 \pi^{2}\right)^{3}} \tag{56}\\
& =\frac{21 \pi^{6}}{128}+\frac{3 \pi^{8}}{4} \eta+O\left(\eta^{2}\right) \tag{57}
\end{align*}
$$

3.6 Solution up to ϵ^{4}

$$
\begin{align*}
\theta_{E}(s)= & \epsilon \frac{p_{0}}{4 \pi} \sin 2 \pi s+\epsilon^{3} \frac{p_{0}^{3}\left(16 \pi^{2}-3 p_{0}\right)\left[96 \pi^{2} \sin (2 \pi s)-\left(8 \pi^{2}-p_{0}\right) \sin (6 \pi s)\right]}{48 \cdot(4 \pi)^{5}\left(8 \pi^{2}-p_{0}\right)}+0 \epsilon^{4}+O\left(\epsilon^{5}\right) \tag{58}\\
\theta_{E}(s)= & \epsilon \pi \sin 2 \pi s\left[1+4 \pi^{2} \eta+O\left(\eta^{2}\right)\right]+\epsilon^{3} \pi^{3}\left(\frac{24 \sin (2 \pi s)-\sin (6 \pi s)}{192}+\eta \pi^{2} \frac{\sin 2 \pi s}{2}+O\left(\eta^{2}\right)\right)+0 \epsilon^{4} \\
& +O\left(\epsilon^{5}\right) \tag{59}\\
y_{E}(s)= & \frac{\epsilon}{2}(1-\cos 2 \pi s)+\epsilon^{3} p_{0}^{2} \frac{16 \pi^{2}-3 p_{0}}{4096 \pi^{4}} \sin ^{2}(3 \pi s)+0 \epsilon^{4}+O\left(\epsilon^{5}\right) \tag{60}\\
y_{E}(s)= & \frac{\epsilon}{2}(1-\cos 2 \pi s)+\epsilon^{3} \frac{\pi^{2}}{64}\left[1-4 \pi^{2} \eta+O\left(\eta^{2}\right)\right] \sin ^{2}(3 \pi s)+0 \epsilon^{4}+O\left(\epsilon^{5}\right) \tag{61}\\
p= & p_{0}+\epsilon^{2} \frac{p_{0}^{3}\left(16 \pi^{2}-3 p_{0}\right)}{128 \pi^{2}\left(8 \pi^{2}-p_{0}\right)}+0 \epsilon^{3}+p_{4} \epsilon^{4}+O\left(\epsilon^{5}\right) \tag{62}\\
p= & 4 \pi^{2}+16 \pi^{4} \eta+O\left(\eta^{2}\right)+\epsilon^{2}\left(\frac{\pi^{4}}{2}+2 \pi^{6} \eta+O\left(\eta^{2}\right)\right)+0 \epsilon^{3}+\epsilon^{4}\left(\frac{21 \pi^{6}}{128}+\frac{3 \pi^{8}}{4} \eta+O\left(\eta^{2}\right)\right)+O\left(\epsilon^{5}\right) \tag{63}\\
p_{4}= & -p_{0}^{5} \frac{3 p_{0}^{4}+720 p_{0}^{3} \pi^{2}-14528 p_{0}^{2} \pi^{4}+90112 p_{0} \pi^{6}-180224 \pi^{8}}{128(4 \pi)^{6}\left(-p_{0}+8 \pi^{2}\right)^{3}}=\frac{21 \pi^{6}}{128}+\frac{3 \pi^{8}}{4} \eta+O\left(\eta^{2}\right) \tag{64}\\
p_{0}= & \frac{1-\sqrt{1-16 \pi^{2} \eta}}{2 \eta}=4 \pi^{2}+16 \pi^{4} \eta+O\left(\eta^{2}\right) \tag{65}
\end{align*}
$$

Maximal vertical deflection (at the mid span) take the value

$$
\begin{equation*}
y_{E}(1 / 2)=\epsilon+p_{0}^{2} \frac{16 \pi^{2}-3 p_{0}}{4096 \pi^{4}} \epsilon^{3}+O\left(\epsilon^{5}\right)=\epsilon+\frac{\pi^{2}}{64}\left[1-4 \pi^{2} \eta+O\left(\eta^{2}\right)\right] \epsilon^{3}+O\left(\epsilon^{5}\right) \tag{66}
\end{equation*}
$$

Current position $x_{E}(s)$ is found by integrating $\left(1+e_{E}(s)\right) \cos \theta_{E}(s)$ with

$$
\begin{align*}
\cos \theta_{E}(s) & =1-\frac{p_{0}^{2}}{32 \pi^{2}} \sin ^{2}(2 \pi s) \epsilon^{2}+0 \epsilon^{3}+O\left(\epsilon^{4}\right) \tag{67}\\
e_{E}(s) & =-\eta p_{0}-\eta \epsilon^{2}\left[\frac{p_{0}^{4}\left(1-4 \eta p_{0}\right)}{128 \pi^{2}\left(8 \pi^{2}-p_{0}\right)}-\frac{p_{0}^{3}}{32 \pi^{2}} \sin ^{2}(2 \pi s)\right]+0 \epsilon^{3}+O\left(\epsilon^{4}\right) \tag{68}
\end{align*}
$$

Hence

$$
\begin{align*}
& x_{E}(s)=s\left(1-\eta p_{0}\right)-\epsilon^{2} p_{0} \frac{2 \pi\left(p_{0}^{2}+4 p_{0} \pi^{2}-64 \pi^{4}\right) s+\left(8 \pi^{2}-p_{0}\right)^{2} \sin 4 \pi s}{256 \pi^{3}\left(8 \pi^{2}-p_{0}\right)}+0 \epsilon^{3}+O\left(\epsilon^{4}\right) \tag{69}\\
& x_{E}(s)=\left[s-4 \pi^{2} \eta s+O\left(\eta^{2}\right)\right]+\left[\frac{\pi}{16}(\sin 4 \pi s-4 \pi s)-\frac{\pi^{4}}{2} s \eta+O\left(\eta^{2}\right)\right] \epsilon^{2}+0 \epsilon^{3}+O\left(\epsilon^{4}\right) \tag{70}
\end{align*}
$$

We note $d \stackrel{\text { def }}{=} 1-\left(x_{E}(1)-x_{E}(0)\right)=1-x_{E}(1)$ the end-shortening (longitudinal displacement), and have

$$
\begin{align*}
d & =\eta p_{0}+\epsilon^{2} p_{0} \frac{2 \pi\left(p_{0}^{2}+4 p_{0} \pi^{2}-64 \pi^{4}\right)}{256 \pi^{3}\left(8 \pi^{2}-p_{0}\right)}+0 \epsilon^{3}+O\left(\epsilon^{4}\right) \tag{71}\\
& =\left[4 \pi^{2} \eta+O\left(\eta^{2}\right)\right]+\epsilon^{2} \frac{\pi^{2}}{4}\left[1+2 \pi^{2} \eta+O\left(\eta^{2}\right)\right]+0 \epsilon^{3}+O\left(\epsilon^{4}\right) \tag{72}
\end{align*}
$$

Going back to the longitudinal displacement $u(s) \stackrel{\text { def }}{=} x(s)-s$, von Karman kinematics writes $e(s)=u^{\prime}(s)+(1 / 2) v^{\prime 2}(s)$, where vertical displacement is written $v(s) \stackrel{\text { def }}{=} y(s)$. This kinematics is not strictly verified:

$$
\begin{equation*}
e_{E}(s)-u_{E}^{\prime}(s)-\frac{1}{2} v_{E}^{\prime 2}(s)=\frac{1}{8} \eta p_{0}^{2} \epsilon^{2} \sin ^{2}(2 \pi s)+0 \epsilon^{3}+O\left(\epsilon^{4}\right) \tag{73}
\end{equation*}
$$

or

$$
\begin{equation*}
x_{E}^{\prime}(s)-1+\eta p+\frac{1}{2} y_{E}^{\prime 2}(s)=\frac{\eta^{2} p_{0}^{4}}{32 \pi^{2}} \epsilon^{2} \sin ^{2}(2 \pi s)+0 \epsilon^{3}+O\left(\epsilon^{4}\right) \tag{74}
\end{equation*}
$$

Von Karman differential equation for the vertical displacement is not even verified at order ϵ

$$
\begin{equation*}
y_{E}^{\prime \prime \prime \prime}(s)+p_{E} y_{E}^{\prime \prime}(s)=2 \pi^{2} \eta p_{0}^{2} \epsilon \cos (2 \pi s)+0 \epsilon^{2}+O\left(\epsilon^{3}\right) \tag{75}
\end{equation*}
$$

4 Vibrations around an equilibrium solution

We set :

$$
\begin{align*}
\omega & =\omega_{0}+\epsilon \omega_{1}+\epsilon^{2} \omega_{2}+\epsilon^{3} \omega_{3}+O\left(\epsilon^{4}\right) \tag{76}\\
\delta y(s) & =\delta y_{0}+\epsilon \delta y_{1}+\epsilon^{2} \delta y_{2}+\epsilon^{3} \delta y_{3}+O\left(\epsilon^{4}\right) \tag{77}
\end{align*}
$$

Same expansion for all the other variables $\delta x(s), \delta \theta(s), \ldots$

4.1 Restriction to the first vibration mode: $\omega_{0}=0$

order ϵ^{0}
Equations are

$$
\begin{align*}
\delta x_{0}^{\prime} & =\eta \delta n_{x 0} \text { with } \delta x_{0}(0)=0=\delta x_{0}(1) \tag{78a}\\
\delta n_{x 0}^{\prime} & =0 \tag{78b}\\
0 & =\delta y_{0}^{\prime \prime \prime \prime}+4 \pi^{2} \delta y_{0}^{\prime \prime} \text { with } \delta y_{0}(0)=\delta y_{0}(1)=\delta y_{0}^{\prime}(0)=\delta y_{0}^{\prime}(1)=0 \tag{78c}
\end{align*}
$$

Solutions are

$$
\begin{align*}
\delta x_{0}(s) & =0 \tag{79a}\\
\delta n_{x 0}(s) & =0 \tag{79b}\\
\delta y_{0}(s) & =A_{0}(1-\cos 2 \pi s) \tag{79c}
\end{align*}
$$

which yields

$$
\begin{align*}
\delta \theta_{0}(s) & =\frac{2 \pi A_{0}}{1-\eta p_{0}} \sin 2 \pi s \tag{80a}\\
\delta m_{0}(s) & =\frac{4 \pi^{2} A_{0}}{1-\eta p_{0}} \cos 2 \pi s \tag{80b}\\
\delta n_{y 0}(s) & =0 \tag{80c}
\end{align*}
$$

The norm condition (24) implies

$$
\begin{equation*}
A_{0}=\frac{1}{4 \pi^{2}} \tag{81}
\end{equation*}
$$

order ϵ^{1}
Equations are

$$
\begin{align*}
\delta x_{1}^{\prime} & =\eta \delta n_{x 1}-p_{0} \frac{1-2 \eta p_{0}}{8 \pi^{2}\left(1-\eta p_{0}\right)} \sin ^{2} 2 \pi s, \text { with } \delta x_{1}(0)=0=\delta x_{1}(1) \tag{82a}\\
\delta n_{x 1}^{\prime} & =0 \tag{82b}\\
0 & =\delta y_{1}^{\prime \prime \prime \prime}+4 \pi^{2} \delta y_{1}^{\prime \prime}, \text { with } \delta y_{1}(0)=\delta y_{1}(1)=\delta y_{1}^{\prime}(0)=\delta y_{1}^{\prime}(1)=0 \tag{82c}
\end{align*}
$$

Longitudinal mode solutions are

$$
\begin{align*}
\delta x_{1}(s) & =p_{0} \frac{1-2 \eta p_{0}}{1-\eta p_{0}} \frac{\sin 4 \pi s}{64 \pi^{3}} \tag{83}\\
\delta n_{x 1}(s) & =p_{0} \frac{1-2 \eta p_{0}}{1-\eta p_{0}} \frac{1}{16 \pi^{2} \eta} \tag{84}
\end{align*}
$$

Transverse variable:

$$
\begin{equation*}
\delta y_{1}(s)=A_{1}(1-\cos 2 \pi s) \tag{86}
\end{equation*}
$$

The norm condition (24) forces $A_{1}=0$. We then have

$$
\begin{equation*}
\delta y_{1}(s)=0=\delta \theta_{1}(s)=\delta m_{1}(s)=\delta n_{y 1}(s) \tag{87}
\end{equation*}
$$

order ϵ^{2}
For longitudinal variable, equations are

$$
\begin{align*}
\delta x_{2}^{\prime} & =\eta \delta n_{x 2} \text { with } \delta x_{2}(0)=0=\delta x_{2}(1) \tag{88}\\
\delta n_{x 2}^{\prime} & =0 \tag{89}
\end{align*}
$$

The solution vanishes

$$
\begin{align*}
\delta x_{2}(s) & =0 \tag{90a}\\
\delta n_{x 2}(s) & =0 \tag{90b}
\end{align*}
$$

For transverse variables, equations boils down to

$$
\begin{align*}
& \delta y_{2}^{\prime \prime \prime}+4 \pi^{2} \delta y_{2}^{\prime \prime}+A \cos 6 \pi s+B \cos 2 \pi s+C=0 \tag{91a}\\
& \text { with } \delta y_{2}(0)=\delta y_{2}(1)=\delta y_{2}^{\prime}(0)=\delta y_{2}^{\prime}(1)=0 \tag{91b}\\
& A=-\frac{27 p_{0}^{2}}{128}\left(16-\frac{3 p_{0}}{\pi^{2}}\right) \tag{91c}\\
& B=\frac{p_{0}^{2}}{16 \pi^{2}} \frac{p_{0}^{2}+4 p_{0} \pi^{2}-64 \pi^{4}}{4\left(p_{0}-4 \pi^{2}\right)}+\frac{4 \pi^{2} \omega_{1}^{2}}{p_{0}^{2}} \tag{91d}\\
& C=-\frac{4 \pi^{2} \omega_{1}^{2}}{p_{0}^{2}} \tag{91e}
\end{align*}
$$

Solution is

$$
\begin{align*}
1152 \pi^{4} \delta y_{2}(s)= & A-90 B+144 C \pi^{2} s-144 C \pi^{2} s^{2}+288 \pi^{2} K+90 B \cos 2 \pi s- \\
& 288 \pi^{2} K \cos 2 \pi s-A \cos 6 \pi s-72 C \pi \sin 2 \pi s+72 B \pi s \sin 2 \pi s \tag{92}\\
\delta y_{2}(s)= & \frac{1+2 \pi^{2}(s-1) s-\cos 2 \pi s+\pi(1-2 s) \sin 2 \pi s}{96 \pi^{2} \eta}+O\left(\eta^{0}\right) \tag{93}
\end{align*}
$$

Boundary conditions $\delta y_{1}^{\prime}(1)=0$ imposes $B=2 C$, which in return yields ω_{1}

$$
\begin{equation*}
\omega_{1}^{2}=\frac{p_{0}^{4}\left(p_{0}^{2}+4 p_{0} \pi^{2}-64 \pi^{4}\right)}{768 \pi^{4}\left(-p_{0}+4 \pi^{2}\right)} \tag{94}
\end{equation*}
$$

which yields, with (65)

$$
\begin{equation*}
\omega_{1}=\sqrt{\frac{2}{3}} \pi^{2}\left[\frac{1}{\sqrt{\eta}}+\pi^{2} \sqrt{\eta}\right]+O\left(\eta^{3 / 2}\right) \tag{95}
\end{equation*}
$$

The norm condition (24) fixes

$$
\begin{equation*}
K=\frac{12 C-A}{32 \pi^{2}} \tag{96}
\end{equation*}
$$

order ϵ^{3}
Solutions are

$$
\begin{gather*}
\delta x_{3}(s)=\frac{s}{64 \eta}+\frac{\sin \pi s}{384 \pi \eta}\left(-7 \cos \pi s+\cos 3 \pi s+8 \pi(1-2 s) \sin ^{3} \pi s\right)+O\left(\eta^{0}\right) \tag{97}\\
\delta n_{x 3}(s)=n_{x 3 K}-p_{0} \frac{p_{0}-8 \pi^{2}}{1024 \pi^{6}} \omega_{1}^{2} \cos 4 \pi s \tag{98}\\
\omega_{2}=0 \tag{99}\\
\delta y_{3}(s)=0=\delta \theta_{3}(s)=\delta m_{3}(s)=\delta n_{y 3}(s) \tag{100}
\end{gather*}
$$

order ϵ^{4}

For the longitudinal variables, equations are

$$
\begin{align*}
\delta x_{4}^{\prime} & =\eta \delta n_{x 4} \text { with } \delta x_{4}(0)=0=\delta x_{4}(1) \tag{101}\\
\delta n_{x 4}^{\prime} & =0 \tag{102}
\end{align*}
$$

The solution vanishes

$$
\begin{align*}
\delta x_{4}(s) & =0 \tag{103a}\\
\delta n_{x 4}(s) & =0 \tag{103b}
\end{align*}
$$

For the transverse variables, equations boils down to

$$
\begin{align*}
& \delta y_{4}^{\prime \prime \prime \prime}+4 \pi^{2} \delta y_{4}^{\prime \prime}+f\left(\omega_{3}, s, s^{2}, \sin (2,4,6 \pi s), s \sin (2,4,6 \pi s), \cos (2,4,6,10 \pi s), \ldots\right)=0 \tag{104a}\\
& \text { with } \delta y_{4}(0)=\delta y_{4}(1)=\delta y_{4}^{\prime}(0)=\delta y_{4}^{\prime}(1)=0 \tag{104b}
\end{align*}
$$

We find ω_{3} by enforcing the condition $\delta y_{4}^{\prime}(1)=0$

$$
\begin{align*}
\omega_{3}= & \left(\frac{p_{0}}{4 \pi}\right)^{6} \frac{M}{41472 \pi^{4}\left(p_{0}-8 \pi^{2}\right)\left(p_{0}-4 \pi^{2}\right)^{2} \omega_{1}} \tag{105}\\
M= & 9 p_{0}^{6}-13680 p_{0}^{4} \pi^{4}-65536 \pi^{12}\left(-285+16 \pi^{2}\right)+2 p_{0}^{5} \pi^{2}\left(-87+16 \pi^{2}\right)+ \\
& 768 p_{0}^{2} \pi^{8}\left(399+16 \pi^{2}\right)+8192 p_{0} \pi^{10}\left(-831+32 \pi^{2}\right)-32 p_{0}^{3} \pi^{6}\left(-4233+176 \pi^{2}\right) \tag{106}
\end{align*}
$$

which yields, for small η

$$
\begin{equation*}
\omega_{3}=\pi^{2} \frac{-21+2 \pi^{2}}{216 \sqrt{6} \eta^{3 / 2}}+\frac{\pi^{4}\left(141-10 \pi^{2}\right)}{216 \sqrt{6} \eta^{1 / 2}}+O\left(\eta^{1 / 2}\right) \tag{107}
\end{equation*}
$$

where we note that the first term is exactly the same as in the von Karman model.

4.2 General case, $\omega_{0} \neq 0$

todo!

