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Abstract

We compare different models describing the buckling, post-buckling and vi-
brations of elastic beams in the plane. Focus is put on the first buckled equi-
librium solution and the first two vibration modes around it. In the incipient
post-buckling regime, the classic Woinowsky-Krieger model is known to grasp
the behavior of the system. It is based on the von Kármán approximation, a
2nd order expansion in the strains of the buckled beam. But as the curvature of
the beam becomes larger, the Woinowsky-Krieger model starts to show limita-
tions and we introduce a 3rd order model, derived from the geometrically-exact
Kirchhoff model. We discuss and quantify the shortcomings of the Woinowsky-
Krieger model and the contributions of the 3rd order terms in the new model,
and we compare them both to the Kirchhoff model. Different ways to nondi-
mensionalize the models are compared and we believe that, although this study
is performed for specific boundary conditions, the present results have a gen-
eral scope and can be used as abacuses to estimate the validity range of the
simplified models.

Keywords: nonlinearties, postbuckling, natural frequencies

1. Introduction

Every model is wrong [1], but a good model is both accurate and easy to
handle. In mechanical engineering, a trade-off is usually made between accuracy
and computability. When looking at the deformation of elastic structures, sim-
plification in the kinematics or constitutive relations are for example performed5

to ease calculations. Here, we investigate the post-buckling and vibration behav-
ior of elastic beams using both geometrically exact and approximate models. In
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Preprint submitted to - October 5, 2020



particular, we question the validity of semi-linearized models and their efficiency
to capture the nonlinear response of elastic beams. The equations of motion for
extensible, geometrically-exact beams have been established by Kirchhoff [2]10

and generalized by Reissner [3] to include shear effects. There are several recent
textbooks devoted to nonlinear structural models, see e.g. [4, 5, 6, 7], and [8]
for a nice historical analysis. Here, we deal with a nonlinear beam problem
and account for both bending and extensional deformations (while neglecting
shear and rotational inertia). Due to the difficulties to find exact solutions15

in the nonlinear case, approximate engineering models have been formulated.
These models rely on simplified kinematics, either linearized or weakly nonlin-
ear, and include a coupling between axial and bending motions. The so-called
Woinowsky-Krieger model [9, 10, 11, 12] assumes a linearized curvature calcula-
tion and a von Kármán-type axial strain measure, first introduced for the buck-20

ling of elastic plates [13, 14]. This model has been widely used in the literature
and has shown its efficiency for computing approximate amplitude-frequency
dependence of extensible elastic beams in the weakly nonlinear regime, see for
example [15, 16, 17, 18, 19, 20] and references therein. Furthermore, exact so-
lutions have been derived for the Woinowsky-Krieger model [21]. However, as25

mentioned in [22], it is based on a linearization of the transverse displacement
equation, so that computations of the nonlinear behavior of beams are only valid
under certain conditions and for small deflections. For the geometrically exact
case, Kirchhoff’s equations for the extensible beam have been reformulated by
Pflüger [23] who gave the exact buckling load of the extensible column. More-30

over, exact solutions for the equilibrium of extensible columns in term of elliptic
integrals have been derived, see for instance [24].

In this paper, we investigate the range of validity of the Woinowsky-Krieger
beam model by comparing it to the geometrically exact Kirchhoff model. We
consider clamped-clamped boundary conditions and analytically and numeri-35

cally compute the planar equilibrium and vibrations of a beam in a displacement-
controlled loading. We use the Kirchhoff extensible model in Section 2, and the
Woinowsky-Krieger model in Section 3, to compute equilibrium and vibrations
in the post-buckling regime, and we then compare results from the two models
in Section 4. As the Woinowsky-Krieger model is only 2nd order, we derive in40

Section 5 a new model, comprising 3rd order terms, and we compare it to the
two previous models. We discuss our findings and conclude in Section 6.

2. The Kirchhoff model

We look at the planar equilibrium and vibrations of a beam in the post-
buckling domain. The beam has length L, with a homogeneous cross-section of45

area A and second moment of area I, cast from a homogeneous and isotropic
material of Young’s modulus E and density ρ. An important parameter is the
slenderness ratio

η =
I

AL2
, (1)
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Figure 1: Clamped-clamped beam with imposed axial displacement D. Note that V = Y
and U = X − S. The external force at the right end has horizontal P (T ) = −Nx(L, T ) and
vertical Q(T ) = −Ny(L, T ) components, with T the physical time.

that becomes η = 1/12(h/L)2 in the case of a rectangular cross-section of width
w and thickness h. We adopt the Euler-Bernoulli assumptions, that is we ne-50

glect shear deformations and rotational inertia, which only become important
in the high frequency domain [25]. The beam is naturally flat, the reference
configuration being along the horizontal axis. We use the arc-length S of the
beam in its reference configuration as a Lagrangian variable, that is S ∈ [0, L]
always. The beam is clamped horizontally at its left end (S = 0), which lies at55

the origin. The right end (S = L) is constrained to lie on the horizontal axis,
with a horizontal tangent, see Figure 1. An axial displacement D is imposed
and we compute the equilibrium shape and the vibrations around this shape.
We then study how equilibrium and vibrations vary as D is changed.

In this section, we present the extensible Kirchhoff model, which we tend to
regard as the reference with which we are going to compare the models of the
subsequent sections. Kirchhoff’s framework uses the current position (X,Y ) and
inclination angle θ as kinematical variables, and the internal bending moment
M and force vector (Nx, Ny) as stress variables. Linear bending M = EI dθ/dS
and stretching Nθ = EAe constitutive relations are used, where e(S, T ) is the
extension of the beam and Nθ = Nx cos θ+Ny sin θ is the tension in the beam.
The motion of the beam is given by

X ′ = (1 + e) cos θ N ′x = ρAẌ (2a,b)

Y ′ = (1 + e) sin θ N ′y = ρAŸ (2c,d)

EIθ′ = M M ′ = Nx Y
′ −NyX ′ (2e,f)

EAe = Nx cos θ +Ny sin θ (2g)

Every variable depends on both the arc-length S and the time T with the no-60

tations ()′ = d()/dS and (̇) = d()/dT . Unless otherwise stated, from now on,
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we work with non-dimensionalized variables, that is we use L as unit length,
EI/L2 as unit force, and L2

√
ρA/(EI) as unit time. Non-dimensionalized vari-

ables are written in lower case, e.g. x = X/L, or nx = NxL
2/(EI). The

non-dimensionalized version of system (2) is simply obtained by setting EI = 1,65

L = 1, ρA = 1, and EA = 1/η, see [26, 27] for more details. We stress that
this beam model, and thus its solution, only depends on one parameter: the
slenderness ratio η, defined in (1).

The equilibrium solution (xE , yE , θE ,mE , nxE , nyE , eE) is found by solving
(2) with ẍ = 0 and ÿ = 0. Once the equilibrium is known, we compute vibrations
by using the ansatz

x(s, t) = xE(s) + δ x̄(s) cosωt (3a)

y(s, t) = yE(s) + δ ȳ(s) cosωt (3b)

. . .

with δ � 1. Injecting (3) into system (2) and keeping only 1st order terms in
δ yields the following linear differential system for the vibration modes x̄, ȳ, θ̄,
m̄, n̄x, n̄y:

n̄′y = −ω2 ȳ (4a)

n̄′x = −ω2 x̄ (4b)

θ̄′ = m̄ (4c)

m̄′ = n̄x y
′
E − n̄y x′E + nxE ȳ

′ − nyE x̄′ (4d)

ȳ′ = (1 + eE) cos θE θ̄ + ē sin θE (4e)

x̄′ = −(1 + eE) sin θE θ̄ + ē cos θE (4f)

with
ē = η

[
n̄y sin θE + n̄x cos θE + (nyE cos θE − nxE sin θE) θ̄

]
.

Clamped-clamped boundary conditions read

yE(0) = 0 = yE(1), θE(0) = 0 = θE(1), xE(0) = 0 = xE(1)− 1 + d (5a)

ȳ(0) = 0 = ȳ(1), θ̄(0) = 0 = θ̄(1), x̄(0) = 0 = x̄(1) (5b)

where d = D/L is the non-dimensionalized axial displacement. We note that in70

this displacement-controlled setup, the position xE(1) is fixed, but the applied
axial p(t) and shear q(t) forces vary with time, and we have nx(1, t) = −p(t) and
ny(1, t) = −q(t), see Figure 1. We are eventually left with a nonlinear boundary
value problem (2) (4) (5) that we solve numerically for a beam with η = 1/4800
(that is L = 20h in the case of a rectangular cross-section). We focus on the75

first buckling mode, which has nyE = 0 [28, 27], and on the first two vibration
modes around it. We plot in Figure 2 the external axial force pE as a function
of the axial displacement d. We plot in Figure 3 the transverse displacement at
midspan yE(1/2) as a function of the axial displacement d. We plot in Figures
4 and 5 the angular frequency ω of the first two vibration modes, as a function80

of the axial displacement d. These plots will be analyzed in Section 4. Please
see supplementary material for plots with different values of η.
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Figure 2: Post-buckled equilibrium of clamped-clamped beam. We here plot the axial load
pE vs the axial displacement d, for η = 1/4800. The curves for the Kirchhoff model (noted
Ki.), the Woinowsky-Krieger model (noted WK), the order 3 model of Section 5 (noted order
3), and the 4th order development of pE and d (noted Ki. dev 4) are shown. The plotted
equilibrium shape has d = 0.2.

3. The Woinowsky-Krieger model

We now turn to a simplified model to describe the same equilibrium and
vibrations experiment. This model, which was introduced in [9] to correct the85

fully linear approach, includes the axial/bending coupling that arises when the
transverse displacement of the beam becomes finite. It is based on the same
assumption as the one used by von Kármán for the statics of plates [13], which
consists in keeping only the first nonlinear term in the expansion of the axial
strain e as a function of the cross-section rotation θ. Namely, the term cos θ in90

Eq. (2a) is treated up to the second order, leading to

e = U ′ +
1

2
θ2, (6)

with U(S, T ) = X(S, T ) − S being the axial displacement of the cross-section.
This assumption is energetically consistent with the approximation which re-
places Eq. (2f) with Ny = −M ′ + NxY

′ (see Appendix C.2 for a variational
approach to this model). As a second assumption, the axial inertia is neglected
in this model. From Eq. (2b), this omission leads to a uniform axial force,
Nx(S, T ) = Nx(T ) = −P (T ). Consequently, Eq. (2c) is treated linearly in θ
and e is neglected with respect to 1, yielding to Y ′ = θ. Finally, Eq. (2g) is
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Figure 3: Post-buckled equilibrium of clamped-clamped beam. We here plot the transverse
displacement at midspan yE(1/2) vs the axial displacement d, for η = 1/4800. The curves
for the Kirchhoff model (noted Ki.), the Woinowsky-Krieger model (noted WK), the order 3
model of Section 5 (noted order 3), and the 4th order development of yE(1/2) and d (noted
Ki. dev 4) are shown. The plotted equilibrium shape has d = 0.8.

truncated to the zero-th order in θ, that is EAe = Nx. Combining all these
equations and keeping only U(S, T ) and Y (S, T ) as unknowns leads to

EI Y (S, T )′′′′ + ρAŸ (S, T ) + P (T )Y (S, T )′′ = 0 (7a)

EA

[
U ′(S, T ) +

1

2
Y ′2(S, T )

]
= −P (T ) (7b)

From here, we have two ways to write these equations in a dimensionless
form. The first way consists in using the same dimensionless variables as for the
Kirchhoff model of Section 2, and yields

ÿ + y′′′′ + py′′ = 0 (8a)

u′ + ηp+
1

2
y′2 = 0 (8b)

with u = U/L. In this case, the behaviour of the beam depends solely on the
slenderness ratio η (Eq. 1).

The second way to introduce dimensionless variables is to scale the trans-
verse displacement Y with the radius of gyration r =

√
I/A = L

√
η and the

axial displacement U with r2/L, one order of magnitude smaller. The physical
meaning of r is a characteristic thickness of the cross-section. In particular,
for a rectangular cross section, r = h/

√
12. Writing ŷ = Y/r = y/

√
η and
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Figure 4: Vibration curve showing the frequency ω vs axial displacement d for the first
vibration mode around the post-buckled equilibrium solution, for η = 1/4800. The curves
for the Kirchhoff model (noted Ki.), the Woinowsky-Krieger model (noted WK), the order
3 model of Section 5 (noted order 3) are shown. The equilibrium shape is plotted with the

first vibration mode, for d = 0.2. Note that Ω = ω/
(
L2
√
ρA/(EI)

)
is the physical angular

frequency in radians per second.

û = UL/r2 = u/η recasts Eqs. (8) in

¨̂y + ŷ′′′′ + pŷ′′ = 0 (9a)

û′ + p+
1

2
ŷ′2 = 0 (9b)

which does not depend on any geometrical or material parameter. This shows
that any beam modelled by the Woinowsky-Krieger model exhibits the same
mechanical behaviour. However, this scaling cannot be applied to the Kirchhoff
model for which the dependence on the slenderness ratio η cannot be avoided.
Consequently, in the following, when comparing models we will use the set of di-
mensionless variables of the Kirchhoff model and thus Eqs. (8). The equilibrium
version of Eqs. (8) is

y′′′′E + pE y
′′
E = 0 (10a)

x′E − 1 + η pE +
1

2
y′2E = 0 (10b)

which is completed by

ȳ′′′′ + pE ȳ
′′ + p̄ y′′E = ω2ȳ (11a)

x̄′ + η p̄+ y′E ȳ
′ = 0 (11b)
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Figure 5: Vibration curve showing the frequency ω vs axial displacement d for the first vibra-
tion mode, for η = 1/4800. The curves for the Kirchhoff model (noted Ki.), the Woinowsky-
Krieger model (noted WK), the order 3 model of Section 5 (noted order 3) are shown.
The equilibrium shape is plotted with the second vibration mode, for d = 0.2. Note that

Ω = ω/
(
L2
√
ρA/(EI)

)
is the physical angular frequency in radians per second.

for the vibrations. The great advantage of this model is that, although nonlinear,
it can be solved analytically [21, 29]. The equilibrium solution is

yE(s) =
ε

2
(1− cos 2πs) ⇒ yE(1/2) = ε (12a)

xE(s) = s(1− η4π2) +
ε2π

16
(sin 4πs− 4πs) ⇒ d = η4π2 +

π2

4
ε2 (12b)

pE = 4π2 (12c)

where the amplitude of the linear solution yE(s) has been chosen to fulfil con-
dition (15). The solution for the vibrations is95

ȳ(s) = c1 sinns+ c2 cosns+ c3 sinhms+ c4 coshms+
2p̄π2ε

ω2
cos 2πs (13)

with n =
[√
ω2 + 4π4 + 2π2

]1/2
and m =

[√
ω2 + 4π4 − 2π2

]1/2
. Boundary

conditions (5) yield a solvability condition which reads

0 = 8(m2 + n2)π4ε2R1(n,m)− 2mn(2π4ε2 − ηω2)R2(n,m) (14a)

with

R1(n,m) = n(coshm− 1) sinn+m(cosn− 1) sinhm (14b)

R2(n,m) = mn(cosn coshm− 1) + 2π2 sinn sinhm (14c)

8



which is in fact an equation for the frequency ω. We plot pE , yE(1/2), and ω
in Figures 2, 3, and 4 to compare with the results from Kirchhoff’s model.

As reported in [21, 29], we remark on Figure 5 that the second vibration mode100

in this model has an angular frequency that does not depend on d: it stays the
same throughout the whole post-buckling regime. All the even vibration modes
share this property. For these modes, Eq. (14a) is in fact fulfilled through a
common zero of the functions R1(ω) and R2(ω). These common zeros do not
depend on ε, hence do not depend on d. See Appendix B for a study of the105

common zeros of R1(ω) and R2(ω).
Finally, we re-plot in Appendix E Figures 2, 3, 4, and 5 with the load pE

(instead of D/L) on the horizontal axis.

4. Models comparison and validity range of the Woinowsky-Krieger
model110

4.1. Limit in term of axial displacement
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Figure 6: Comparison of the Woinowsky-Krieger and Kirchhoff models for various values of
the parameter η ∈ {1/1200, 1/4800, 1/19200, 1/76800}, respectively corresponding to L/h ∈
{10, 20, 40, 80} for a rectangular cross-section. The x-axis is either d = D/L or d̂ = d/η =
D/(Lη).

We first remind that, as explained in section 2 and 3, with suitable choices
of dimensionless variables, the Woinowsky-Krieger model does not depend on
any parameter, but the Kirchhoff (reference) model depends on the slenderness
ratio η. This is illustrated in Fig. 6 which shows the plots of figures 2, 3, 4,115

and 5 with rescaled axes. As expected, on each of the four plots the curves for

9
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Figure 7: Comparison of the Woinowsky-Krieger and Kirchhoff models for various val-
ues of the parameter η ∈ {1/1200, 1/4800, 1/19200, 1/76800}, respectively corresponding
to L/h ∈ {10, 20, 40, 80} for a rectangular cross section. First line: transverse displace-
ment and frequency of the first mode as a function of d = D/L. Second line: relative
error of the Woinowsky-Krieger model (as compared to the Kirchhoff model), for the trans-
verse displacement and the frequency of the first mode. The relative errors are defined

as Erry =
yWK(1/2)− yKi(1/2)

yKi(1/2)
and Errω =

ωKi(1/2)− ωWK(1/2)

ωKi(1/2)
with WK meaning

Woinowsky-Krieger and Ki meaning Kirchhoff.

the Woinowsky-Krieger model fall into a single master curve, while the curves
for the Kirchhoff model are seen to depend on η. For the transverse displace-
ment at midspan YE(L/2) and the natural frequency ω of the first mode, the
Woinowsky-Krieger curves agree with the Kirchhoff curves until limiting values,120

that depend on η. We plot in Figure 7 the curves for YE(L/2) and ω as functions
of d = D/L, and the relative error of Woinowsky-Krieger model (as compared
to the Kirchhoff model) for several values of the slenderness ratio η. It is ob-
served that all relative error curves are almost superimposed, meaning that the
error as a function of d = D/L is almost independent of η, see also Appendix F.125

This result is interesting since most of the literature about geometrical nonlin-
earities traditionally gives the validity limit of the Woinowsky-Krieger model in
term of ŷE(1/2) = YE(L/2)/r = YE(L/2)/(L

√
η), usually around ŷE(1/2) ≈ 2

or 3. Here, we prove that a correct validity limit should be given in terms of
yE(L/2) = YE(L/2)/L (or in terms of d = D/L) and thus that the correct scal-130

ing of Y for the validity limit is not the radius of gyration r but the length L
of the beam. In particular, an axial displacement of D/L = 0.1 (or equivalently

10



a transverse displacement YE(L/2)/L ≈ 0.2), gives errors of less than 4% on Y
and less than 3% on ω. We then conclude that the Woinowsky-Krieger model
tends to depart from the reference Kirchhoff model as soon as 10% of axial dis-135

placement or 20% of transverse displacement, and this for any slenderness ratio.
Equivalently, in terms of ŷE(1/2), for η ∈ {1/1200, 1/4800, 1/19200, 1/76800}
(that is L/h ∈ {10, 20, 40, 80} in the case of a rectangular cross-section), the
limit of the Woinowsky-Krieger model is then ŷE(1/2) ≈ {7, 14, 28, 55}, which
is larger than ŷE(1/2) ≈ 2 or 3, as often claimed.140

Another interesting result is that these errors are roughly linear functions of
D/L, as long as D/L < 0.5. Finally, we note that, for each of the plots of Fig. 7,
one of the curves lies slightly apart from the others. This curve is associated
with the largest η = 1/1200, corresponding to a beam with a thickness only ten
times smaller than the length (L/h = 10). Such a case has to be considered with145

caution since the validity of the Euler-Bernoulli kinematics is then questionable.

4.2. Offset in the critical load

Moreover, looking at the results for small d, we detect an offset between
Woinowsky-Krieger and Kirchhoff curves, see insets in Figs. 2, 3, 4 and 5. This
offset exists right from buckling and to disclose it analytically we proceed to150

construct a series expansion in powers of ε, a small parameter measuring the
mean transverse displacement of the buckled solution [30]. We find it convenient
to use

ε = −4

∫ 1

0

yE(s) cos 2πsds (15)

In the case of the Woinowsky-Krieger model, ε is exactly equal to yE(L/2) =
YE(L/2)/L, see Eq. (12a). We inject the following expansions

xE(s) = xE0(s) + ε xE1(s) + ε2xE2(s) + ε3xE3(s) +O
(
ε4
)

(16a)

yE(s) = ε yE1(s) + ε2yE2(s) + ε3yE3(s) +O
(
ε4
)

(16b)

θE(s) = ε θE1(s) + ε2θE2(s) + ε3θE3(s) +O
(
ε4
)

(16c)

−nxE = pE = pE0 + ε pE1 + ε2pE2 + ε3pE3 +O
(
ε4
)

(16d)

d = d0 + ε d1 + ε2d2 + ε3d3 +O
(
ε4
)

(16e)

into the Kirchhoff equilibrium system, and solve the equations at each order of
ε. At order ε0, we find xE0(s) = s(1− η pE0), with pE0 still unknown. At order
ε1, we solve

x′E1 = −η pE1 with xE1(0) = 0 (17a)

y′E1 = (1− η pE0) θE1 with y1(0) = 0 = y1(1) (17b)

θ′′E1 = −pE0 (1− η pE0) θE1 with θ1(0) = 0 = θ1(1) (17c)
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and find that the solution is

xE1 = −η pE1 s (18a)

yE1 =
1

2
(1− cos 2πs)⇒ θE1 =

π sin 2πs

1− ηpE0
(18b)

pE0 =
1−

√
1− 16π2η

2η
(18c)

where we see that pE1 is not defined at order ε1 and will only be selected when
solving order ε2. In the same manner, finding pE2 requires to solve order ε3. We
shall come back to this remark when discussing the Woinowsky-Krieger model.
We note that the same shift occurs for xE(s) (hence d) and ω. Conducting the
expansion up to order ε3 (included) yields

pE = pE0 + ε2
p3E0(16π2 − 3pE0)

128π2(8π2 − pE0)
+ pE3 ε

3 +O
(
ε4
)

(19a)

= 4π2 + 16π4η +O(η2) + ε2
(
π4

2
+ 2π6η +O(η2)

)
+ pE3 ε

3 +O
(
ε4
)

(19b)

yE(1/2) = ε+ p2E0

16π2 − 3pE0

4096π4
ε3 +O(ε4) (19c)

= ε+
π2

64

[
1− 4π2η +O(η2)

]
ε3 +O(ε4) (19d)

d = ηpE0 + ε2 pE0
2π(p2E0 + 4pE0π

2 − 64π4)

256π3(8π2 − pE0)
+ d3 ε

3 +O
(
ε4
)

(19e)

= 4π2η +O(η2) + ε2
π2

4

[
1 + 2π2η +O(η2)

]
+ d3 ε

3 +O
(
ε4
)

(19f)

The solutions xE(s), yE(s), and θE(s) are listed in Appendix A. Please note
that, as explained in Appendix A, further calculations lead to pE3 = 0 and
d3 = 0. A similar expansion for the 1st mode of vibrations (with ω0 = 0) leads
to

ω = ε
p0

8π2

√
(64π4 − p20 − 4π2p0)

12η
+ ω3 ε

3 +O(ε4) (20a)

= επ2

√
2

3η

[
1 +O(η)

]
+ ω3 ε

3 +O(ε4) (20b)

Please note that the results noted ’Ki. dev 4’ in the figures involve expansions
of the solutions up to order ε4 included, given in the supplementary materials.155

Comparing Woinowsky-Krieger and Kirchhoff solutions for pE , yE(1/2), and
d, listed in (12) and (19), reveals the nature of the offset mentioned earlier: as
soon as order ε0, pE is not computed exactly in the Woinowsky-Krieger model
which, strictly speaking, is then not a rigorous expansion of Kirchhoff’s model.
In this matter, the Woinowsky-Krieger model is equivalent to the traditional160
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linear beam model (see e.g. [31]), and predicts the critical buckling load to
be pE = 4π2, see Eq. (12c). On the contrary, Kirchhoff’s model predicts this
buckling load to be pE = 4π2(1 + 4π2η + O(η2)), see Eq. (19b) with ε = 0.
The offset, though non-zero, is in most practical cases negligible as η � 1 for
slender beams. The physical explanation of this offset is that the Woinowsky-165

Krieger model neglects the small shortening of the beam before the critical load.
Following Eq. (2a), this shortening is (1 + e) for an infinitesimal axial element
when θ � 1 (that is dx = (1 + e)ds). This axial shortening is neglected in
the Woinowsky-Krieger model which writes Eq. (2c) as y′ = θ. To (artificially)
correct the Woinowsky-Krieger model, one could use y′ = (1 + e) θ and keep all170

other approximations. In doing this, Eq. (2e) would become m = y′′/(1 + e)
and since e = −ηp, this would lead to replace p by p(1− ηp) in equation (10a).
Solving this equation would yield pE(1−ηpE) = 4π2, which is the exact buckling
load, Eq. (18c). Please note nevertheless that it would not cure all Woinowsky-
Krieger shortcomings.175

Finally, we can also compare the two models in their prediction of the curva-
ture of the curve yE(L/2) = f(d) just after the buckling point. For the Kirchhoff
model, combining (19d) and (19f), we have

d ' 4π2η + y2E(1/2)
π2

4

[
1 + 2π2η

]
for small η and yE (21)

while for the Woinowsky-Krieger model, combining (12a) and (12b), we have

d = 4π2η + y2E(1/2)
π2

4
(22)

Here also, the Woinowsky-Krieger model is wrong by a small term, proportional180

to η.

4.3. Second order in the axial load

There is yet another, more important, flaw in Woinowsky-Krieger approach:
there is no order ε2 in the solution for pE . Indeed, computing pE2 would require
an order 3 in its equation for transverse displacement (10a). In this sense,185

the Woinowsky-Krieger model does not yield a proper order 2 expansion of
Kirchhoff’s solutions. This implies that the Woinowsky-Krieger model predicts
a constant load pE along the post-buckling path, see Figure 2, and is therefore
unable to deal with load-controlled experiments. Nevertheless, in (10b) the load
pE is multiplied by the small parameter η, which tends to weaken the absence190

of the pE2 term.
Another way to test for the order 2 conformity of the Woinowsky-Krieger

equation is to take Kirchhoff’s solutions xE(s), yE(s), and pE (see Appendix
A) and inject them in equations (10). We obtain

y′′′′E + pE y
′′
E = 2π2 p2E0 η ε cos 2πs+ 0 ε2 +O(ε3) (23a)

x′E − 1 + η pE +
1

2
y′2E =

η2p4E0

32π2
ε2 sin2 2πs+ 0 ε3 +O(ε4) (23b)

13



where we see that, strictly speaking, the transverse displacement equation is not
fulfilled at order ε1 and the axial displacement equation is not fulfilled at order
ε2.

For the vibrations, the picture is very much the same: if we make an expan-195

sion of the solution of (14) in powers of ε, we find

ω = επ2

√
2

3η
+ 0 ε2 +O(ε3) (24)

which misses an O(η) term, but is the leading η order of Kirchhoff’s result, see
(20b).

5. An order 3 model

Building on the remark of the previous section about the necessity of having200

an order 3 in the transverse displacement equation (7a), we start from Kirch-
hoff’s system (2) and proceed to derive an order 3 model. Owing to the remark
that the parameter η is small and that the Woinowsky-Krieger model is only
exact in the limit η → 0, we settle on removing η as much as possible since
this makes derivation much easier. Nevertheless, it has been shown [26, 27] that205

in displacement-controlled experiments, η should at least remain in the axial
displacement equation (2a). This equation x′ = (1 + ηnx cos θ + ηny sin θ) cos θ
is then simplified to

x′ = 1 + ηnx −
1

2
θ2 (25)

This resembles Woinowsky-Krieger (8b), with the difference that we keep the
s dependence in the load nx(s, t). For the transverse displacement, we know210

extension is only playing a minor role and we readily set η = 0. We then start
with y′ = sin θ and proceed to develop the sinus up to order 3, y′ = θ− (1/6) θ3.
Inverting this relation yields

θ = y′ +
1

6
y′3 ⇒ θ′′ = y′′′ + y′ y′′2 +

1

2
y′2 y′′′ (26)

which is injected into (2f). We end up with a system for the axial and transverse
displacement (x, y) and forces (nx, ny):

x′(s, t) = 1 + η nx(s, t)− 1

2
y′2(s, t) (27a)

n′x(s, t) = ẍ(s, t) (27b)

y(s, t)′′′ + f3 = nx(s, t)y′(s, t)− ny(s, t)x′(s, t) (27c)

n′y(s, t) = ÿ(s, t) (27d)

with

f3 = y′(s, t) y′′(s, t)2 +
1

2
y′(s, t)2 y′′′(s, t) (28)

14



To readily compare this new system with the Woinowsky-Krieger model, one215

has to differentiate (27c) and find

y′′′′−nxy′′+ÿ = −y′′3−3y′y′′y′′′− 1

2
y′2y′′′′+ẍy′−nyx′′−ÿ

(
ηnx −

1

2
y′2
)

(29)

which in contrast to (7a) has order 3 terms on the right-hand side.
Equilibrium equations for xE , yE , nxE , nyE are obtained by setting ẍ = 0 =

ÿ in (27) and vibration equations are then derived by injecting (3) into (27).
We obtain

x̄′ = η n̄x − y′E ȳ′ (30a)

n̄′x = −ω2 x̄ (30b)

ȳ′′′ + f̄3 = n̄x y
′ + nxE ȳ

′ − n̄y x′ − nyE x̄′ (30c)

n̄′y = −ω2 ȳ (30d)

with

f̄3 = ȳ′ y′′2E + 2y′E ȳ
′′ y′′E + ȳ′ y′E y

′′′
E +

1

2
y′2E ȳ

′′′ (31)

We solve this system numerically and compare the results to the two previous
models in Figures 2, 3, 4, and 5. A first remark is that this new model suffers220

from the same offset as the Woinowsky-Krieger model: right from buckling a
small shift exists in the curves. As explained earlier it arises from the setting
of η = 0 in the transverse displacement equation. Next we see that the load
curve is no longer flat (Figure 2), nor is the frequency of the 2nd vibration mode
(Figure 4).225

In order to make sure we indeed came up with a model exhibiting the correct
terms up to order 3, we perform the expansion (16) and compute

yE(s) =
ε

2
(1− cos 2πs) + ε3

π2

64
sin2 3πs+O(ε4) (32a)

xE(s) = s(1− 4π2η)− ε2 π
16

(
4πs+ 8π3ηs− sin 4πs

)
+O(ε4) (32b)

pE = 4π2 + ε2
π4

2
+O(ε4) (32c)

d = 1− xE(1) = 4π2η + ε2
π2

4

(
1 + 2π2η

)
+O(ε4) (32d)

yE(1/2) = ε+ ε3
π2

64
+O(ε4) (32e)

which indeed is correct up to order 3 when compared to Kirchhoff’s results, see
Eqs. (19) and Appendix A. For the 1st mode of vibrations (with ω0 = 0) we
find

ω = ε π2

√
2

3η

1 + 2π2η

1− 4π2η
+O(ε3) (33)
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which corresponds to the first η order of (20). See supplementary material for
detailed calculations.230

The interest of the present order 3 model lies in the fact that it efficiently
corrects the Woinowsky-Krieger model for the axial load and the second natural
frequency, in the small η limit. Moreover, it is the extension of a well known
order 3 model, commonly used for nonlinear vibrations of inextensible cantilever
beams and first introduced by Crespo da Silva and Glynn [32] (see [20] for a235

list of other references). As shown in Appendix D, the present order 3 model
reduces to the Crespo da Silva model in the case of clamped-free boundary
conditions and inextensible beams. However, contrary to the Crespo da Silva
model, which elegantly involves a single equation for the unique variable y(s, t),
the present order 3 model consists of a system of 4 equations and 4 variables,240

system (27), which might be complex to use in practice.

6. Conclusion

We have studied the range of validity of the Woinowsky-Krieger equations for
the planar equilibrium and vibrations of post-buckled beams. The Woinowsky-
Krieger equations are useful and widely used, especially when dealing with non-245

linear vibrations, but are only valid in the weakly nonlinear regime and un-
der displacement-controlled setups. We have shown that these equations are
not a rigorous 2nd order development of Kirchhoff’s equations, but that they
nevertheless capture faithfully the post-buckling behavior of the beam up to
10% (D = 0.1L) of axial displacement and/or 20% of transverse displacement250

(Y (L/2) = 0.2L), and that these limits only weakly depends on the slenderness
ratio of the beam. If the transverse displacement Y (L/2) is written in units of
the beam thickness h, we have shown that the validity limit of the Woinowsky-
Krieger model then depends on the slenderness ratio of the beam and that it
can be large: Y (L/2)/h < 4 for a thickness to length ratio of h/L = 1/20 and255

Y (L/2)/h < 16 for h/L = 1/80. Incidentally, we have also rigorously proved
that every other vibration frequency in the Woinowsky-Krieger model is load-
independent in the entire post-buckling regime. Finally, we have introduced a
3rd order model capable of coping with load-controlled setups and more accu-
rately predicting vibration modes in the moderate post-buckling regime.260

Appendix A. Expansions for the solution of the Kirchhoff model

In the clamped-clamped case, buckling happens in a symmetrical pitchfork
bifurcation. Consequently, with the chosen definition of ε in (15), the develop-
ments of the axial variables xE , pE = −nxE , and eE only comprise even terms
in ε, while the developments of the transverse variables yE , θE , mE , and nyE
only comprise odd terms in ε. Please see supplementary material for detailed

16



calculations leading to

θE(s) = ε
p0
4π

sin 2πs+ ε3
p30(16π2 − 3p0)[96π2 sin(2πs)− (8π2 − p0) sin(6πs)]

48 · (4π)5 (8π2 − p0)
+O

(
ε5
)

= επ sin 2πs[1 + 4π2η +O(η2)] + ε3π3 25 + 2 cos 4πs+ 96π2η +O(η2)

192
sin 2πs+O

(
ε5
)

yE(s) =
ε

2
(1− cos 2πs) + ε3 p20

16π2 − 3p0
4096π4

sin2(3πs) +O
(
ε5
)

=
ε

2
(1− cos 2πs) + ε3

π2

64

[
1− 4π2η +O(η2)

]
sin2(3πs) +O

(
ε5
)

xE(s) = s(1− ηp0)− ε2 p0
2π(p20 + 4p0π

2 − 64π4) s+ (8π2 − p0)2 sin 4πs

256π3(8π2 − p0)
+O

(
ε4
)

= [s− 4π2ηs+O(η2)] +

[
π

16
(sin 4πs− 4πs)− π4

2
sη +O(η2)

]
ε2 +O

(
ε4
)

Appendix B. Common zeros of R1 and R2

We replace n = 2πβ, m = 2πα, R1 = 4πR̂1, and R2 = 4π2R̂2 to obtain

R̂1(α, β) = β sin(2πβ) sinh2(πα)− α sin2(πβ) sinh(2πα) (B.1a)

R̂2(α, β) = 2αβ (cos(2πβ) cosh(2πα)− 1) + sin(2πβ) sinh(2πα) (B.1b)

β2 = 1 + α2 (B.1c)

with β = 1
2π

[√
ω2 + 4π4 + 2π2

]1/2
and α = 1

2π

[√
ω2 + 4π4 − 2π2

]1/2
. We work

with n > 2π and m > 0, that is

β > 1 and α > 0 (B.2)

We show in this section that:265

(i) R̂1(ω) and R̂2(ω) have common zeros,

(ii) but also have separate zeros, with

(iia) R̂1(ω) = 0 and R̂2(ω) 6= 0 when β = 2, 3, 4, . . .,

(iib) R̂2(ω) = 0 and R̂1(ω) 6= 0 when Â− 1/Â = B̂ − 1/B̂ with Â 6= B̂.

where Â and B̂ are defined in Appendix B.3270

Appendix B.1. Individual zeros of R̂1

To prove (iia), we start by factorizing R̂1

R̂1 = 2 sinh(πα) sinπβ [y cos(πβ) sinh(πα)− α sin(πβ) cosh(πα)] (B.3)

and see that, with (B.2), R̂1(ω) = 0 for β = 2, 3, 4, . . .. In such cases R̂2 =
2αβ[cosh(2πα)− 1] > 0, hence we have zeros of R̂1 which are not zeros of R̂2.
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Appendix B.2. Common zeros of R̂1 and R̂2275

We first remark that the zeros of R̂1 or R̂2 are such that cos(πβ) 6= 0: If
β = 3/2, 5/2, 7/2, . . . then R̂1 = −α sinh(2πα) 6= 0 and R̂2 = −2αβ [cosh(2πα)+
1] 6= 0. We may then divide by α, β, cos(πβ), and cosh(πα) without any trouble
and rewrite

R̂1(α, β) = 2αβ sin(πβ) cos(πβ) sinh(πα) cosh(πα)

[
tanh(πα)

α
− tan(πβ)

β

]
(B.4a)

R̂2(n,m) = 4αβ cos2(πβ) cosh2(πα)

(
tanh2(πα)− tan2(πβ) +

tanh(πα)

α

tan(πβ)

β

)
(B.4b)

We then see that if β 6= 2, 3, 4, . . . and R̂1 = 0, we have tanh(πα)
α = tan(πβ)

β and

tanh2(πα)− tan2(πβ) + tanh(πα)
α

tan(πβ)
β = 0, i.e. R̂2 = 0. This proves (i).

Appendix B.3. Individual zeros of R̂2

If we have R̂2 = 0 and β 6= 2, 3, 4, . . ., we have (using (B.1c))

tan(πβ)

tanh(πα)
− tanh(πα)

tan(πβ)
=
β

α
− α

β
(B.5)

which is Â − 1/Â = B̂ − 1/B̂ with Â = tan(πβ)/ tanh(πα) and B̂ = β/α.280

Solutions are either Â = B̂ is which case we have a common zero of R̂1 and R̂2,
or solutions with Â < 0 and B̂ > 0 in which case we have a zero of R̂2 such that
R̂1 6= 0. This proves (iib).

Appendix B.4. Summary

In table B.1 we see that each common zero is followed by an individual zero285

of R̂2, then by an individual zero of R̂1.

ω α β R̂1 R̂2 Â B̂ Â− 1/Â B̂ − 1/B̂
44.4 0.85 1.31 0 0 1.54 1.54 0.89 0.89

103.5 1.47 1.78 -7.6 103 0 -0.83 1.21 0.38 0.38
136.8 1.73 2 0 9.2 104 0 1.15 ∞ 0.29
182.1 2.03 2.27 0 0 1.11 1.11 0.22 0.22
280.6 2.57 2.76 -1.4 107 0 -0.93 1.07 0.14 0.14
334.9 2.83 3 0 2.2 108 0 1.06 ∞ 0.12

Table B.1: Six lowest zeros of R̂1 and R̂2. Please note that ω = 4π2αβ, but that only common
roots correspond to actual vibration frequencies of the beam.
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Appendix C. Energies for the different models

We present a variational approach for the three different models used in this
paper. We list the kinetic T and potential V energies and compute the first
variation of the Action S =

∫ t2
t1
L dT where the Lagrangian L = T − V.290

Appendix C.1. The Kirchhoff model

In this model the kinetic energy is computed as if the mass of each section
were concentrated on the centerline, that is no rotational inertia is involved. We
have

T =
1

2
ρA

∫ L

0

(Ẋ2 + Ẏ 2) dS (C.1)

The potential energy comprises bending and extension deformations295

V =
1

2

∫ L

0

(EI θ′
2

+ EAe2) dS (C.2)

with boundary conditions (5) valid at all time T

X(0, T ) = 0 = X(L, T )− L+D (C.3a)

Y (0, T ) = 0 = Y (L, T ) (C.3b)

θ(0, T ) = 0 = θ(L, T ) (C.3c)

The Action S is then a functional of q = (X,Y, θ, e) and the principle of least
Action then selects the dynamical evolution q(S, T ) of the system. This principle
reads

S(q + εq̄) ≥ S(q) for all small ε and for all admissible q̄ (C.4)

under the pointwise kinematic constraints

φx = X ′ − (1 + e) cos θ = 0 and φy = Y ′ − (1 + e) sin θ = 0 (C.5)

We introduce Lagrange multipliers to deal with constraints (C.5). We anticipate300

the multipliers to be the components Nx and Ny of the force vector and use
L = T −V−Nxφx−Nyφy as the Lagrangian. The first order necessary condition
for (C.4) to hold is then

S̄(q, q̄) = lim
ε→0

S(q + εq̄)− S(q)

ε
= 0 for all admissible q̄ (C.6)

with

−S̄ =

∫ t2

t1

∫ L

0

{
− ρA

(
Ẋ ˙̄X + Ẏ ˙̄Y

)
+ EIθ′θ̄′ + EAeē

+Nx
(
X̄ ′ − ē cos θ + (1 + e) θ̄ sin θ

)
+Ny

(
Ȳ ′ − ē sin θ − (1 + e) θ̄ cos θ

)}
dS dT (C.7)
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Using (C.3), boundary conditions for the test functions q̄ read

X̄(0, T ) = 0 = X̄(L, T ) (C.8a)

Ȳ (0, T ) = 0 = Ȳ (L, T ) (C.8b)

θ̄(0, T ) = 0 = θ̄(L, T ) (C.8c)

Using (C.8) and X̄(S, t1) = 0 = X̄(S, t2), Ȳ (S, t1) = 0 = Ȳ (S, t2) for all S, we
perform integration by parts on S and T to find

−S̄ =

∫ t2

t1

∫ L

0

{
ρA
(
ẌX̄ + Ÿ Ȳ

)
− EIθ′′θ̄ + EAeē

−N ′x X̄ −Nxē cos θ +Nx(1 + e) θ̄ sin θ

−N ′y Ȳ −Ny ē sin θ −Ny(1 + e) θ̄ cos θ
}

dS dT (C.9)

Finally, imposing that S̄ = 0 for all test functions X̄(S, T ), Ȳ (S, T ), θ̄(S, T ),
and ē(S, T ) yields system (2).305

Appendix C.2. The Woinowsky-Krieger model

See also [33] for an energy approach of the Woinowsky-Krieger equations. In
this model, the kinetic energy only comprises the transverse displacement term

T =
1

2
ρA

∫ L

0

Ẏ 2 dS (C.10)

Moreover, a linear formula is used for the curvature in the potential energy

V =
1

2

∫ L

0

(EI Y ′′
2

+ EAe2) dS (C.11)

and the kinematic constraint (C.5) reads310

φx = U ′ +
1

2
Y ′2 − e = 0 (C.12)

to which we associate a continuous Lagrange multiplier which we call Nx(S, T ).
The Action S is then a functional of q = (Y,U, e) and the first variation reads,
after several integrations by parts

−S̄ =

∫ t2

t1

∫ L

0

{
ρAŸ Ȳ + EIY ′′′′Ȳ + EAeē

−N ′x Ū −Nxē−N ′x Y ′Ȳ −NxY ′′Ȳ
}

dS dT (C.13)

Imposing S̄ = 0 for all test functions Ū(S, T ), Ȳ (S, T ), and ē(S, T ) yields system
(7) with P (T ) = −Nx(T ).
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Appendix C.3. The order 3 model

The kinetic and potential energies take the same form as in the Kirchhoff
model, see (C.1) and (C.2). As we aim at an order 3 model, we need to use
expansions at order 4 for the kinematic constraints (C.5)

X ′ = 1 + e− 1

2
θ2 +

1

24
θ4 (C.14a)

Y ′ = θ − 1

6
θ3 (C.14b)

where, as explained in Section 5, we only kept the lowest order in the small
extension e limit in (C.14a) and completely removed it from (C.14b). The
Action S is then a functional of q = (X,Y, θ, e) and the first variation reads,
after integration by parts

−S̄ =

∫ t2

t1

∫ L

0

{
ρA
(
ẌX̄ + Ÿ Ȳ

)
− EIθ′′θ̄ + EAeē

−N ′x X̄ −Nxē+Nx θθ̄ −
1

6
Nxθ

3θ̄

−N ′y Ȳ −Ny θ̄ +
1

2
Ny θ

2θ̄
}

dS dT (C.15)

Imposing that S̄ = 0 for all test functions X̄, Ȳ , ē, and θ̄ respectively yields

N ′x = ρAẌ (C.16a)

N ′y = ρAŸ (C.16b)

Nx = EAe (C.16c)

EIθ′′ = Nx

(
θ − 1

6
θ3
)
−Ny

(
1− 1

2
θ2
)

(C.16d)

Injecting (C.16c) into (C.14a), we obtain (25). Using (C.14) and (26), we rewrite
(C.16d) as315

EI

(
y′′′ + y′ y′′2 +

1

2
y′2 y′′′

)
= Nx Y

′ −Ny
(
X ′ − e− 1

24
θ4
)

(C.17)

which is (27c) in the small e limit and up to order 3.

Appendix D. The order 3 model for a cantilever beam

The system (30) in an order 3 approximation of the planar dynamics of an
extensible beam with general boundary conditions. In the special case where
one end is free and where the beam is considered inextensible (η = 0), we show320

here that system (30) reduces to the Crespo da Silva equation [32]. We start
from (27a) and express x(s, t) with y(s, t)

x(s, t) =

∫ s

0

(
1− 1

2
y′2
)

ds ⇒ ẍ(s, t) = −
∫ s

0

1

2
¨(y′2) ds (D.1)
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Next we use the free-end condition at s = 1 to integrate (27b) and write

nx(s, t) = −
∫ 1

s

ẍds (D.2)

We then inject (D.1) and (D.2) into (27c) and we isolate ny(s, t)

ny(s, t) = − y
′′′ + f3

1− 1
2y
′2 −

y′

1− 1
2y
′2

∫ 1

s

ẍds (D.3)

Differentiating once more with respect to s, using (27d), and restricting to order325

3 finally yields

ÿ(s, t) +
(
y′′′ + y′ y′′2 + y′2y′′′

)′
+

1

2

{
y′
∫ s

1

∫ s

0

¨(y′2) dsds

}′
= 0 (D.4)

which is Equation (61) of [20].

Appendix E. Bifurcation curves plotted with axial load

We plot in Figure E.8 the graphs of Figures 2, 3, 4, and 5 with the axial
load pE on the horizontal axis. This re-plotting puts light on the shortcomings330

of the Woinowsky-Krieger model, which fails to predict how the axial load pE
is evolving is the post-bucking regime. One must keep in mind that the fre-
quencies of the first and second modes shown here are not the ones obtained in
a load-controlled experiment, since frequencies depend on the axial boundary
conditions. For the case considered in this text, the axial distance between the335

ends of the beam is constant during vibrations, whereas in a load-controlled
experiment, this distance varies (i.e. vibrates) since the axial load is prescribed
constant. This case is well documented in [27].

Appendix F. Error of Woinowsky-Krieger model as function of η

We plot in figure F.9 curves of constant relative error between the Woinowsky-340

Krieger and Kirchhoff models, in the plane (1/
√
η,D/L). It is observed that

the relative errors Erry and Errω only weakly depend on the slenderness ratio
η and grow steadily with the axial displacement D/L.
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