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Abstract Satellite estimates of burned area, associated carbonmonoxide (CO) emission estimates, and CO
column retrievals do not agree on the peak fire month in Africa, evident in both Northern and Southern
Africa though distinct in the burning seasonality. Here we analyze this long-standing problem using (1) a top-
down Bayesian inversion of Measurements Of Pollution In The Troposphere CO columns during 2005–2016
into surface CO emissions and (2) the bottom-up Global Fire Emissions Database 4.1 s. We show that Global
Fire Emissions Database 4.1 s underestimates CO emissions by 12–62% in the late fire season and
hypothesize that this is partly because it assumes seasonally static emission factors. However, the degree to
which emission factors would have to vary through the season to bring top-down and bottom-up in
agreement cannot be confirmed by past field-based measurements. Improved observational constraint on
the seasonality of burned area, fuel combustion, and emission factors would further reduce the discrepancy
between bottom-up and top-down emission estimates.

Plain Language Summary Fire is an integral component of African ecosystems, which emits large
amounts of trace gases, pollutants, and aerosols into the atmosphere. The accurate assessment of this
impact is currently hampered by the poor knowledge of fire emission estimates in Africa. One known issue is
that the bottom-up estimates of carbon monoxide (CO) emissions using satellite-based burned area are
generally underestimated and also describe a CO emission peak 1–2 months earlier than satellite CO column
retrievals and their inversion into emissions. Here we used a Bayesian atmospheric inversion approach to
analyze the seasonal variation in CO emissions, CO emission factors, and combustion efficiency of African
savanna fires. The results lead us to hypothesize that under actual conditions, flaming- and smoldering-
dominated combustions tend to appear successively when amoving fire front passes through a savanna. This
mechanism is not sufficiently considered in current bottom-up fire emission models, which partly explains the
emission underestimate and a phase shift to the early season in the seasonality of bottom-up emissions data.

1. Introduction

Fire is an integral component of many African ecosystems and especially of grasslands and savannas (Andela
& van der Werf, 2014). The frequent and extensive fires in Africa emit large amounts of trace gases, pollutants,
and aerosols into the atmosphere, which are an important research focus due to their significant influence on
climate and air pollution. Among the emitted species, carbon monoxide (CO) has a lifetime of a few weeks,
has no other major primary sources in Africa, and is observed by several satellite instruments. These features
make CO a good tracer to study the African fires.

CO emission estimates for African fires are subject to considerable uncertainty, because the African fires are
highly variable in space and time (Andela & van der Werf, 2014). Illustrative of those uncertainties, the top-
down inversions of satellite CO column retrievals produce emission estimates 30% higher than bottom-up
inventories in Africa (Chevallier et al., 2009; Liousse et al., 2010; Pétron et al., 2004; Stroppiana et al., 2010;
Yin et al., 2015). Additionally, the top-down estimates (and CO columns from satellites) show a CO emission
(and concentration) peak 1–2 months later than the bottom-up estimates (Roberts et al., 2009; Thonat et al.,
2015; van der Werf et al., 2006; Whitburn et al., 2015). The fourth version of Global Fire Emissions Database
(GFED 4.1 s) with improvements in the mapping of the burned area from small fires, and improved parame-
terizations of the conversion between burned area and burned fraction, has slightly improved the seasonal
cycle of fire emissions in Africa (van der Werf et al., 2017), but it still cannot match the top-down inversions
as discussed in this paper.
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Key Points:
• CO emission factors of African fires

likely rise up higher than the
seasonally constant value used by
GFED in the late fire season

• The increase in emission factors is
partly due to a flaming to smoldering
transition in relation with rainfall and
fire radiative power

• The flaming to smoldering transition
partly explains why the peak month
in African fire emissions occurs later
than GFED estimates
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In this study, we analyze this problem from the perspective of the fire regime, with a focus on the sea-
sonal variation of combustion efficiency and emission factors. The starting point is a Bayesian atmospheric
inversion of tropospheric CO columns from Measurements Of Pollution In The Troposphere (MOPITT;
Deeter et al., 2017) to estimate eight-daily maps of fire CO emissions between 2005 and 2016
(section 3). Then we use the inversion emissions and the GFED 4.1 s estimate of burned area (Giglio et al.,
2013) and fuel combustion per unit area burned to calculate monthly CO emission factors (section 4). The
estimated emission factors are compared to independent field measurement data and are then further
used to deduce combustion efficiency at the monthly scale. Possible drivers of the seasonal variation in
fire combustion efficiency are discussed in relation to terrestrial biomes, fire radiative power (FRP),
and precipitation. These results lead us to discuss the evolving fire regime within a fire season and its
influence on the seasonality of fire emissions (section 5). The logic of this research is summarized in
Figure S1 in the supporting information.

2. Methods and Data
2.1. Inversion Analysis of CO Emissions

We use a Bayesian atmospheric inversion system (Chevallier et al., 2005) to infer eight-daily maps of CO emis-
sions for years 2005–2016. Global CO emission fluxes are inferred from atmospheric observations of CO, for-
maldehyde (HCHO), and methane (CH4) and from a priori emission maps, each information being weighted
by its respective uncertainty. The a priori emissions of fires are derived from GFED 4.1 s, and the other input
data are summarized in Figure S1 and Table S1 (Olivier et al., 2003; Granier et al., 2011; Sindelarova et al., 2014;
González Abad et al., 2015). Detail of the current version of the inversion system is given by Zheng et al.
(2018). Here we provide a brief summary.

The inversion system is built upon the Laboratoire de Météorologie Dynamique (LMDz)-Simplified
Atmospheric Chemistry assimilation System (SACS) model (Pison et al., 2009), a 3-D transport model with a
simplified chemistry scheme, and with an associated adjoint code. The chemical mechanism focuses on
the hydrocarbon atmospheric oxidation chain, with explicit representation of CO, HCHO, CH4, carbon dioxide
(CO2), and methyl chloroform (MCF). Observations of CO, HCHO, CH4, and MCF are assimilated jointly into the
inversion system. These observation data as well as a priori emissions are incorporated into a cost function
(Text S1), which represents the misfit between simulation and observation, as well as the misfit between esti-
mated and a priori emissions. The cost function is minimized using a quasi-Newton method in an iterative
way to solve the inversion problem (Chevallier et al., 2005).

The inversion emissions of CO for all emitting sectors are solved for each surface grid cell of the LMDz-SACS
model (1.9° latitude × 3.75° longitude) over 8-day periods (Yin et al., 2015). Fire emissions are then separated
from total emissions in each grid cell by taking the product of optimized total emissions and the proportion
of fire emissions derived from the a priori inventory (Yin et al., 2016). According to GFED 4.1 s and other a
priori inventories (Table S1), fires account for more than 80% of CO emissions in the fire season over Africa.
We calculate the monthly sum of fire emissions for the seasonal cycle analysis (Text S2).

2.2. Fire Emission Factor and Combustion Efficiency

We calculate monthly CO emission factors of African fires with the following formula:

EFi;j ¼ Emisi;j
BAi;j�Fueli;j

(1)

where i represents the month during 2005–2016, j represents either Northern or Southern Africa (defined
in Figure S2), Emis is inversion estimate of fire CO emissions (grams of CO), BA is the burned area (km2)
from GFED 4.1 s, Fuel is the fuel combustion per unit area burned (kilograms of dry matter per square
kilometer) from GFED 4.1 s. The resulting emission factor EF is in grams of CO per kilogram of dry matter
burned. We estimate the 95% confidence interval (CI) of EF by a Monte Carlo method, with the assump-
tion of normal error statistics for BA and Fuel (Text S3). We assume that BA follows a normal distribution
with a coefficient of variation (or relative standard deviation) of 10% (Giglio et al., 2010) and that the coef-
ficient of variation for Fuel is 15% (van der Werf et al., 2017), both of which are independent of their
quantities.
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Modified combustion efficiency (MCE) is defined as the ratio of emitted carbon in CO2 to emitted carbon in
CO2 + CO. This is an important indicator of burning efficiency, which estimates the relative share of flaming
and smoldering combustion (Akagi et al., 2011). An MCE close to 1 reflects pure flaming and an MCE near 0.8
suggests mostly smoldering. Following van Leeuwen et al. (2013), we express the monthly MCE of African
fires as a function of the CO emission factor:

MCE ¼ aþ b�EF (2)

We estimated the coefficients a and b as 1.0023 ± 0.0023 (95% CI) and �0.0009 ± 0.00003 (95% CI), respec-
tively, on the basis of about 100 samples from different field measurements on savanna fires (Table S2). The R-
squared value of this linear regression model is 0.98, a large value that gives us confidence in the robustness
of this regression. Van Leeuwen et al. (2013) give similar estimates of a and b as 1.0041 and�0.0009, respec-
tively. We also find that the negative linear relationship between MCE and emission factor holds for CH4, par-
ticulate matters and ammonia (NH3; Figure S3), which reflects the fact that fires emit more products of
incomplete combustion at low combustion efficiency.

2.3. Driver Analysis of Combustion Efficiency

To investigate the drivers of the seasonal cycle of MCE, we empirically relate the estimated MCE to monthly
FRP (Kaiser et al., 2012) and precipitation (CRU-NCEP version 7.2) using 2005–2016 average data (Figure S1
and Table S1). These two parameters are used as explaining variables because they are directly associated
to fire characteristics. FRP represents fire radiative intensity (W/m2), which is an indicator of fire energy
(Tang & Arellano, 2017; Wooster et al., 2005) and of biomass combustion (Kaiser et al., 2012). Precipitation
shapes fire regimes through limiting burned area and altering fuel moisture content. We also combine land
cover maps with burned area to check if a shift from grassland fires to woodland fires occurs in the late fire
season. This is a widely cited conjecture to explain the mismatch in seasonality of fire CO emissions between
bottom-up and top-down estimates (van der Werf et al., 2006). We use two independent land cover maps
from Li et al. (2018) and Hansen et al. (2013) for comparison, and we also use two different burned area pro-
ducts from GFED 4.1 s and MERIS 4.1 (Pettinari et al., 2016), respectively.

3. Annual Patterns and Seasonal Variations of African Fire CO Emissions

The largest burned area in Africa (Figure S2) is observed in savanna with available biomass as fuel load during
the dry season when fire occurs. The fire season typically starts from Northern Africa in October, moves south-
ward and ends near the southeast coast of Southern Africa by October on the following year. The most wide-
spread fire with maximum burned area generally occurs in December and January over Northern Africa, and
in July and August over Southern Africa. After those months, the burned area starts to decrease, and Africa
enters the late fire season.

The inversion-estimated fire CO emissions are significantly higher than the a priori field from GFED 4.1 s
(Figures 1a and 1b). The lower values of GFED 4.1 s are evident over the whole continent of Africa, that is,
�12% to �55% in Northern Africa from January to March (Figure 1c) and �31% to �62% in Southern
Africa from August to October (Figure 1d), which suggests that GFED gives lower estimates of emissions in
the late fire season. The seasonal variation in GFED emissions is broadly consistent with the FRP-derived emis-
sions from Global Fire Assimilation System (GFAS) version 1.2 (Figures 1c and 1d). To represent fire emissions,
GFED uses satellite-based burned area (van der Werf et al., 2017), while GFAS uses satellite-based FRP (Kaiser
et al., 2012). Despite different proxies, the temporal variation in total carbon emissions are consistent
between GFED and GFAS. Both GFED and GFAS use seasonally static emission factors to calculate CO emis-
sions from total carbon release; therefore, the seasonal variation of their CO emissions follow each other.

Modeling results of LMDz-SACS of CO columns driven by GFED 4.1 s agree with MOPITT CO columns in the
earlymonths of a fire season but underestimate the CO columns during the late season (Figure S4). The under-
estimation of CO columns exceeds the interannual variation in MOPITT observations, a feature that was also
seen in other studies that used different atmospheric transport models and previous versions of the GFED
data (Edwards et al., 2006; van Leeuwen et al., 2013). Additionally, the models driven by GFED cannot repro-
duce the late peak of satellite retrievals of NH3 columns (Paulot et al., 2017) and aerosol optical depth (AOD;
Horowitz et al., 2017; Magi et al., 2009; Tummon et al., 2010) over Africa. These tracers follow different chemical
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processes than CO and have shorter atmospheric lifetimes; therefore, the modeling biases are probably
caused by the underestimated emissions of GFED in the late season rather than by modeling deficiencies.

Compared to bottom-up emission estimates, the late peak of the inversion emissions has also been observed
by studies that assimilated previous releases of MOPITT or Infrared Atmospheric Sounding Interferometer
(IASI) retrievals in different data assimilation systems (Arellano et al., 2006; Chevallier et al., 2009; Pétron
et al., 2004; Whitburn et al., 2015). We interpret the consistency with other inversion studies as a sign of
robustness of the delayed timing in CO emissions retrieved in this study, when compared to both GFED
and GFAS.

4. Seasonal Variation of CO Emission Factor, Combustion Efficiency, and
Their Drivers

The inversion emissions combined with equations (1) and (2) suggest a seasonal variation in CO emission fac-
tor and MCE, unlike the seasonally constant values assumed in GFED 4.1 s (Figure 2). The estimated CO emis-
sion factors remain close to the GFED value (i.e., 63 g/kg dry matter) in the early season but increase rapidly in
the late season. These variations suggest that MCE remains constant at 0.94–0.96 at the beginning of a fire
season, that is, October–December for Northern Africa (Figure 2d) and May–July for Southern Africa
(Figure 2e) then decreases linearly to 0.84–0.87 during the following 3 months. Compared to independent
field measurement data (Figure 2a), the seasonal variation in the estimated MCE (and emission factors) are
mainly within 1-sigma of the average measured data (Figures 2b–2e), except the minimum MCE (and maxi-
mum emission factors) present in March for Northern Africa and in October and November for
Southern Africa.

Declining trends in combustion efficiency during the late fire season appear to be consistent with satellite
measurement of fire characteristics. Mebust and Cohen (2013) estimated NOx emission factors for wildfires
using Ozone Monitoring Instrument (OMI) nitrogen dioxide (NO2) satellite retrievals (without any

Figure 1. Inverse analysis of African fire CO emissions. The differences of average annual fire CO emissions between
inversion and GFED 4.1 s (i.e., inversion emissions minus GFED 4.1 s) are shown in (a), and the months when the largest
differences occur are shown in (b). Both (a) and (b) are mapped at 5° × 5°. Averagemonthly fire CO emissions are calculated
using GFED 4.1 s (blue curve), GFAS 1.2 (black curve), and the inversion emissions (red curve) in (c) and (d), and plotted
with error bars that represent one standard deviation induced by the interannual variation of 2005–2016 data. Note that the
x-axis of (c) is ordered from July to June. GFAS = Global Fire Assimilation System; GFED = Global Fire Emissions Database.
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chemistry-transport model in contrast to here, thanks to the short lifetime of NO2) and found them
decreasing in January–March over Northern Africa and in August–October over Southern Africa.
Castellanos et al. (2014) used OMI NO2 data to study Southern American fires and also identified a similar
decrease in NOx emission factors of savanna fires in the late season. Since NOx is more efficiently produced
at high MCE, the decrease of NOx emission factors could suggest a decrease in MCE during the late fire sea-
son, although we cannot rule out the influence from the declining nitrogen content in grasses as they
senesce (Mebust & Cohen, 2013). Tang and Arellano (2017) also observed an overall decrease in combustion
efficiency across the fire season in the Amazon basin (with more forest fires than Africa) based on multiple
satellite data sets. Despite the possible agreement, the magnitudes of MCE estimated in our study still remain
uncertain. The maximum EF estimated in the late fire season (Figures 2b–2e) falls outside the 1-sigma range
of the average measured local field data (displayed in gray in the figure). Few measurement data therefore
reach this estimated maximum: we may wonder whether such large values can really persist for a whole
month or whether they are overestimated.

By definition (from equation (1)), the larger EF inferred from the CO inversion fluxes could be explained by
higher Emis, lower BA, or lower Fuel. Emis is constrained by multispecies observations and is consistent with
many other studies as discussed in section 3. For BA and Fuel, both derived from GFED 4.1 s, we observe that
they rapidly decline during the late season. BA and Fuel decrease by 68% and 19%, respectively, from August
to October over Southern Africa. During the same period, the inversion CO emissions decrease by 53% and
the resulting EF increase by 87%. The sharp decrease in BA and Fuel must therefore be the primary explana-
tion for the inversion-derived EFs higher than the GFED 4.1 s ones. Despite the inclusion of small fires in GFED
4.1 s compared to GFED 4 (mainly in the early fire season, see Figure S8), GFED 4.1 s may still miss small fires in
the late season and therefore may overestimate the decline in BA. Seasonal variations of the parameter Fuel
are constrained by few observations. Airborne measurements typically focus on extensive fires (Hoffa et al.,
1999; Korontzi et al., 2003) without smoldering combustion (Andreae & Merlet, 2001). Given the large

Figure 2. Seasonal variation in CO emission factors and MCE of African savanna fires. The gray disks in (a) are the field measurement data that we use to build the
linear regression model of MCE (x-axis) and CO emission factors (y-axis). These data are summarized in Table S2 (Desservettaz et al., 2017; Sinha et al., 2003; Smith
et al., 2014; Ward et al., 1996; Wooster et al., 2011; Yokelson et al., 2003; Yokelson et al., 2011). The blue dot in (a) is the emission factor used by the GFED 4.1 s
database. Average monthly emission factors and MCE from the inversion estimates are plotted for Northern Africa (red disks in (b) and (d)) and Southern Africa (red
disks in (c) and (e)), respectively. The GFED seasonally static emission factors are plotted as blue circles in (b)–(e). The error bars in (a)–(e) represent a 95%
confidence interval (CI). The 95% CI of the inversion results are estimated by a Monte Carlo method (Text S3). The 95% CI of the GFED data are from van der Werf et al.
(2017). Note that the x-axis in (b) and (d) is ordered from July to June. GFED = Global Fire Emissions Database; MCE = modified combustion efficiency.
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variation in the measured EF due to distinct MCE (Figure 2), using an emis-
sion factor averaged from sample measurements is subject to potentially
large uncertainty, and does not well represent fire dynamics. We obviously
need more field measurements to inform equation (1).

Figure 3 analyzes the drivers of seasonal variations in combustion effi-
ciency. In a fire season cycle, the early season with a high MCE
(>0.92) is accompanied by increasing FRP and decreasing precipitation,
while the late season sees an opposite trend, that is, lower FRP and
higher precipitation that produce low MCE. These results suggest that
FRP and precipitation can be used to describe the seasonal cycle of
MCE, probably because fire temperatures and fuel moisture content
are the main drivers of combustion efficiency. In contrast to Africa, the
late dry season in Australian savanna is accompanied by little rain and
hot dry winds and does not induce significant seasonality in fire emis-
sion factors (Meyer et al., 2012).

Another possible driver of MCE is the fuel structure (Meyer et al., 2012;
Meyer & Cook, 2015), or the ratio of grassland fires to woodland fires.
The coarse woody biomass (e.g., stems and woody debris) that have low
surface-area-to-volume ratios cannot burn fast and release heat efficiently,
thus contribute to a low MCE (Urbanski, 2013) and to more CO emissions
per unit carbon burned. van der Werf et al. (2006) speculated that the
increasing CO emissions in the late fire season over Africa were probably
caused by the shift from grassland fires to woodland fires. This view,
although not yet fully validated, has been widely cited in the literature.
Here we make an attempt to overlay monthly burned area with land cover
maps to confirm this conjecture, but we detect fewer woody land cover
affected by burning in the late season than in the early season
(Figure S5). This is evident and robust to different burned area and land
cover maps. Despite such results, we still cannot falsify the point made
by van der Werf et al. (2006) due to the uncertainties of this analysis.
The spatial resolution of burned area and land cover maps is of several
hundred meters, so the fine-scale fire dynamics at the resolution of tens
of meters may not be captured. Land cover maps also have a large uncer-
tainty (e.g., positional and categorical) at fine scales. High-resolution data
may help to justify the role of fuel structure that plays in the seasonal var-
iation of emission factors and MCE.

5. Revisiting the Mismatch Between Top-Down and
Bottom-Up Emission Estimates

The seasonal variation in MCE is consistent with a transition from flaming-
dominated to smoldering-dominated fires in the late season. The flaming
combustion that typically occurs at ~1,400 K involves thermal cracking of
biomass, formation of flammable volatile compounds, and rapid oxidation
into highly oxidized gases (e.g., NOx and CO2). Smoldering combustion
mainly involves gas-solid reaction at fuel surface (i.e., surface oxidation),
which produces incompletely oxidized pyrolysis products at 800–
1,000 K, such as CO, CH4, NH3, and organic aerosols. The flaming to smol-
dering transition should drive up CO emissions in the late season and
explain some of the 1- to 2-month delayed peak in inversion CO emissions
compared to GFED 4.1 s. We cannot explain all of this delay because we
may overestimate the true increase in emission factors in the late season.
We likely need more observations to constrain the seasonal variations of

Figure 3. Evolution of MCE with fire radiative power and precipitation over
Northern Africa (a) and Southern Africa (b). We first estimate the seasonal
variation of fire radiative power (spatial average) and precipitation (burned
area weighted average) with 2005–2016 data (Text S2). Then each month is
plotted according to its fire radiative power (x-axis) and precipitation (y-axis)
with the color representing the monthly average MCE. MCE = modified
combustion efficiency.
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burned area, fuel combustion, and emission factors. Ground-based air sampling of fresh smoke plumes are
currently biased towards the flaming combustion and often miss the smoldering combustion with low
MCE that can occur over periods of days to weeks after the fire passage. For instance, of the 55
measurement data over Southern Africa (Table S2), 42 samples were measured during June–August, while
only 13 samples were for September.

As mentioned in section 3, themismatch in seasonality of CO emissions is also evident for other pyrolysis spe-
cies over Africa. Figures 4c and 4d show satellite column retrievals of CO, NH3, NO2, and AOD over Africa. The
columns of CO from MOPITT (Deeter et al., 2017) and IASI (George et al., 2015), NH3 from IASI (Van Damme
et al., 2017), and AOD from Multiangle Imaging SpectroRadiome (Multiangle Imaging SpectroRadiome
Science Team, 2015) follow each other well and all peak 1–2 months later than burned area and FRP.
These species are primarily emitted by fires (CO as an example in Figure S6) and corresponding satellite retrie-
vals represent an integral of gases of a range of ages from fresh smoke plumes through to aged smoke.
According to field measurements (Table S2 and Figure S3), fire emission factors of CH4, NH3, and particulate
matter increase linearly with MCE decreasing. As MCE decreases during the late season, fires emit more CH4,
NH3, and aerosols per unit of area burned. This could partly explain the mismatch in seasonal variations
between burned area and satellite observed column concentrations. The OMI NO2 columns (Boersma
et al., 2011) are broadly consistent with the seasonal cycle of burned area and FRP, because NO2 is mainly
produced from flaming fires, and the smoldering combustion in the late season does not increase its emis-
sion factor. All the features discussed above remain robust during 2005–2016 on the basis of decadal time
series of data analyzed in Figure 4.

Figure 4. Seasonal variation of burned area and pyrogenic species concentrations observed by satellite over Northern
Africa (a and c) and Southern Africa (b and d). The normalized seasonal data are estimated using the curve fitting
method as described in Text S2. GFED = Global Fire Emissions Database; GFAS = Global Fire Assimilation System;
MISR = Multiangle Imaging SpectroRadiome; AOD = aerosol optical depth; IASI = Infrared Atmospheric Sounding
Interferometer; OMI = Ozone Monitoring Instrument; MOPITT = Measurements Of Pollution In The Troposphere.
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6. Conclusions

We analyzed the mismatch in African fire emissions between top-down and bottom-up estimates using
Bayesian atmospheric inversion and independent related data sets. The results lead us to hypothesize that
emission factors of CO (and of other incompletely oxidized species) tend to be increased by rising precipita-
tion and declining FRP during the flaming to smoldering transition in the late fire season, which would partly
explain the 1–2 month delayed peak in inversion fire emissions compared to GFED 4.1 s (and GFAS 1.2). This
mechanism alone may not bring top-down and bottom-up estimates in total agreement, because we may
overestimate the true increase in emission factors in the late season, for instance through imperfect knowl-
edge of the seasonality of burned area and fuel combustion. More high-resolution observations (in particular
for smoldering combustion with low MCE) are needed to further improve the understanding of African
fire emissions.
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