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[1] Statistical modeling is at the root of CO2 atmospheric
inversion systems, but few studies have focused on the
quality of their assigned probability distributions. In this
paper, we assess the reliability of the error models that are in
input and in output of a specific CO2 atmospheric inversion
system when it assimilates surface air sample measurements.
We confront these error models with the mismatch between
4D simulations of CO2 and independent satellite retrievals of
the total CO2 column. Taking all sources of uncertainties
into account, it is shown that both prior and posterior errors
are consistent with the actual departures, to the point that the
theoretical error reduction brought by the surface
measurements on the simulation of the Greenhouse gases
Observing SATellite (GOSAT) total column measurements
(15%) corresponds to the actual reduction seen over the
midlatitude and tropical lands and over the tropical oceans.
Citation: Chevallier, F., and C. W. O’Dell (2013), Error statistics
of Bayesian CO2 flux inversion schemes as seen from GOSAT,
Geophys. Res. Lett., 40, 1252–1256, doi:10.1002/grl.50228.

1. Introduction

[2] Measurements of CO2 mole fraction in the atmosphere
carry the imprint of CO2 surface fluxes. However, reversing
the sign of time to infer the latter based on the former is an
ill-posed mathematical problem because both atmospheric
mixing and sparse observation sampling make some of the
flux information vanish away: a given set of measurements
is consistent with an infinite number of CO2 flux maps,
which would not all be judged realistic by carbon experts.
The underdetermination has to be lifted with some regulari-
zation constraint, i.e., by the introduction of some prior
knowledge of the flux maps. This is expressed in the most
generic form with Bayes’ theorem and is implemented in
the atmospheric inversion systems. Since Bayes’ solution
to the inference problem is a probability density function,
the method directly quantifies the uncertainty of the flux
estimate, which is an obvious advantage compared to alterna-
tive (bottom-up) methods for flux estimation [e.g., Zaehle
et al., 2005; IPCC, 2000]. This capability is rarely
highlighted because the Bayesian uncertainty estimates are
considered as very uncertain themselves, with a tendency
toward overconfidence [e.g., Tolk et al., 2011]. Indeed, it

is usually felt that there is not enough evidence to reliably fill
the large covariance matrices that describe each input error
component (as listed in, e.g.,Engelen et al. [2002]). Therefore,
Bayesian posterior errors are often complemented by the
spread of sensitivity tests [e.g., Gurney et al., 2002] when
uncertainties are described. However, given the structure of
Bayes’ theorem, the realism of the inverted fluxes is tied to
the realism of their Bayesian error bars: the credibility of the
posterior errors challenges the credibility of the posterior
fluxes themselves.
[3] In this paper, the quality of the input and output error

statistics of a given atmospheric inversion [Chevallier et al.,
2011] is assessed by studying their consistency with the statis-
tics of the model departures from independent observations.
This inversion ingested air sample measurements of the CO2

mole fractions, and we used independent column-averaged
dry air mole fractions of CO2 (hereafter XCO2) retrieved from
GOSAT over lands and oceans for the year 2010 to evaluate
its error statistics. For our purpose, the GOSAT data have
the advantages of covering most latitudes, hence providing
general statistics and of being simulated by models with errors
caused by transport inaccuracies below the part per million
(ppm) level [Basu et al., 2011]. The method, the inversion
system, and the independent satellite measurements are
presented in sections 2, 3 and 4, respectively. Section 5 pre-
sents the results. Section 6 concludes the paper.

2. Method

[4] Atmospheric inversion systems usually aim at comput-
ing the most likely state xa of gridded fields of surface fluxes,
jointly called x, given a series of mole fraction observations,
jointly called y, and some prior state of the surface fluxes xb.
Under the assumption of unbiased Gaussian-distributed errors
for y and xb and of a linear dependency between the space of
the surface fluxes x and the space of the observations y, the
optimal least squares estimator for x can be obtained from
[e.g., Rodgers, 2000]

xa ¼ xb þK y�Hxbð Þ (1)

K ¼ BHT HBHT þ R
� ��1

(2)

where B and R are the covariance matrices of the prior errors
and of the observation errors, respectively, andH is a linear (or
linearized) model of CO2 transport in the atmosphere multi-
plied with an operator that samples the model like the observa-
tions. K is called the gain matrix of the inversion system.
[5] The error statistics of xa are also Gaussian, and their

covariance matrix can be expressed as

A ¼ I�KHð ÞB (3)

where I is an identity matrix.
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[6] In contrast to xa,A does not depend on the actual obser-
vation values y and can therefore be computed before any
data are acquired, provided that the measurement locations
and times are known. As a consequence,A is often less trusted
than xa (e.g., the discussion in Peters et al. [2007], section S4)
even though all ingredients of A are involved in the computa-
tion of xa.
[7] By definition, the covariance matrices A and B and

their projection in observation space HBHT and HAHT are
the asymptotic limit of the error statistics estimated on finite
populations. Here we consider a population of observations
yI that are all independent from the inversion process. If
the errors of the prior xb and of the analysis xa are not corre-
lated with the errors of the independent observations yI, the
following relations apply [e.g., Desroziers et al., 2005]:

E Hxb � yIð Þ Hxb � yIð ÞT
h i

¼ HBHT þ RI (4)

E Hxa � yIð Þ Hxa � yIð ÞT
h i

¼ HAHT þ RI (5)

where RI is the covariance matrix of the errors of yI. RI is
defined with the inversion system as a reference and there-
fore combines measurement errors with covariance RIM

and the errors of H with covariance RIH:

RI ¼ RIM þ RIH: (6)

[8] Representativeness errors are neglected (even though
they may play a role around CO2 flux hot spots) because
they marginally affect the zonal statistics that are studied
here. The left-hand side of equations (4) and (5) involves
the real measurements yI, while the right-hand side is com-
posed of assigned error covariance matrices in the observation
space. The equality occurs when the true (unknown) error
statistics are used. In practice, the matrices B and R have to
be replaced by estimates B̂ and R̂, yielding an estimated gain
matrix K̂ (from equation (2) with inputs B̂, R̂ , and H) and a
posterior error covariance matrix Â from equation (3) with
inputs B̂ and K̂ ). Testing the equalities of equations (4) and
(5) provides an elegant way to confront the assigned error
statistics B̂ and R̂ with empirical evidence. However, we
must recognize that, if observation error R is large relative
to the flux errors, it obscures our ability to test the realism
of B̂, and vice versa. We also note that, followingDesroziers
et al. [2005], the left-hand sides of equations (4) and (5) are
mean squares (MS) and therefore may include residual
biases of the independent measurements yI, while the
right-hand sides are variances that describe random (but
possibly correlated) errors only.

3. Inversion System

[9] Equations (4) and (5) are applied here to the flux inver-
sion scheme of Chevallier et al. [2005b]. This system solves
the variational optimization problem defined by equation (1)
and estimates the matrix A of equation (3) by a randomiza-
tion approach. The randomization method consists of build-
ing an ensemble of perturbed inversions whose inputs follow
the statistics of B̂ and R̂ and whose output therefore follows
the error statistics of Â [Chevallier et al., 2007]. It serves
here to compute HB̂HT and HÂHT in equations (4) and (5).

[10] We study the inversion system when it is used to
invert surface air sample measurements from 91 station
records over the globe for years 2009 and 2010, as described
by Chevallier et al. [2011]. The reader is referred to this
paper for a full description of this configuration and of the
assimilated measurements. It is enough for this letter to
recall that they used the global tracer transport model of
Hourdin et al. [2006], called LMDZ, as part ofH, where their
prior errors (the matrix B̂ in the above equations) have been
designed based on experimental quantification over land
[Chevallier et al., 2006] and empirical considerations over
the ocean and that the observed synoptic variability at each
station was taken as a proxy of the observation uncertainty
(which is driven by transport modeling errors in this case),
with time-correlated errors for continuous measurements
implicitly taken into account in the form of inflated variances.
[11] One change was brought to the configuration of

Chevallier et al. [2011]: the prior information for the terrestrial
vegetation fluxes is now taken from a more recent version
(version 1.9.5.2) of the Organizing Carbon and Hydrology in
Dynamic Ecosystems model [Krinner et al., 2005] because
this version describes the seasonal cycle of vegetation fluxes
better and therefore better represents state-of-the-art prior
information for flux inversion. The prior error covariance
matrix B̂ has been consequently updated based on the method
and data described in Chevallier et al. [2012], including an
account of the space-time resolution of the inverted fluxes.
Over a full year, the total 1-sigma uncertainty for the prior land
fluxes now amounts to about 3.0 GtC yr�1, i.e., about the cur-
rent global terrestrial vegetation sink.

4. Independent Measurements

[12] The independent observations yI are here XCO2

measurements retrieved from the GOSAT spacecraft over
the Sun-lit part of the globe. At nadir, the retrievals have a
footprint diameter of about 10 km. The GOSAT mission is
the foremost operational space mission dedicated to carbon.
It is a joint effort of the Japanese Ministry of Environment
(MOE), the National Institute for Environment Studies
(NIES), and the Japan Aerospace Exploration Agency
(JAXA). The spacecraft has been launched in January 2009.
We use the retrievals produced by NASA’s Atmospheric
CO2 Observations From Space (ACOS) project in partnership
with the JAXA and NIES GOSAT teams. The Bayesian
retrieval algorithm directly uses a detailed radiative transfer
model and has been described inO’Dell et al. [2012]. For each
sounding, it yields a statistically optimal estimation of XCO2, a
characterization of its specific vertical weighting (under the
form of an averaging kernel) and of its uncertainty R̂IM

� �
,

along with other variables that influence the radiances, like
surface pressure and aerosol optical depth. In this work, we
utilize the latest version, build 2.10, of the ACOS/GOSAT
retrieval algorithm. This version is functionally similar to the
previous version 2.9 documented by O’Dell et al. [2012],
except that the aerosol formulation was changed to allow a
greater ability for the retrieval to accurately fit for aerosol
contamination and more completely account for cross-talk
errors with carbon dioxide via path length modifications. In
addition, a revised filtering and bias correction scheme has
been developed specifically for version 2.10. This scheme is
an extension of the approach of Wunch et al. [2011], which
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characterized the errors in versions 2.8 and 2.9 of the ACOS
data using a simple assumption of XCO2 spatial uniformity in
the Southern Hemisphere to assess errors and biases in the
retrievals. To develop postprocessing filters and a reasonable
bias correction, the latest work performs an error assessment
of GOSAT gain H andM data over land, as well as glint mode
data over the ocean, by using not only the “Southern Hemi-
sphere Approximation” of Wunch et al. [2011] but also via
comparisons to multiple transport models, each of which uses
input fluxes optimized by assimilating surface CO2 measure-
ments. This approach, including the filters and bias correction,
will be described in more detail in an upcoming publication
[O’Dell et al., paper in preparation, 2013]. In addition, sound-
ings with a ground level higher than 2000 m above sea level,
or for which the model-minus-observation ground elevation
difference is larger than 1000 m, are left out for the present
study because they may be poorly simulated by the global
transport model. About 10,000 retrievals over land or ocean
pass the screening tests each month and are used here.
[13] The single-sounding measurement errors, represented

by R̂ IM, are taken directly as the posterior XCO2 error from
the Bayesian retrieval and are a combination of instrument
noise, interference, and smoothing error [Connor et al.,
2008]. They have not been artificially inflated nor modified
to account for the effects of the bias correction. Correlations
of the measurement errors (implying regional biases)
between different soundings have not been quantified but
are likely to be substantial despite the bias correction,
because retrieval biases related to aerosol, surface brightness,
and topography are likely to be spatially and/or temporally
correlated. Because they are not presently quantified, the off-
diagonal terms of equations (4) and (5) will not be studied here
nor will aggregates of retrievals be formed to study the error
statistics at scales coarser than individual soundings. The sta-
tistics of the uncertainty of the transport model LMDZ in the
simulation of XCO2, characterized here by R̂ IH, is taken from
the statistics of the differences between two simulations of
GOSAT retrievals using two different transport models
[Chevallier et al., 2010]: the corresponding standard devia-
tions are about 0.5 ppm.

5. Results

[14] Results are gathered for the year 2010. Distinction is
made between the lands and the oceans north of 20�N
(respectively referred to as LN20N and SN20N in the follow-
ing), the lands and the oceans south of 20�S (called LS20S and
SS20N, respectively), and the lands and the oceans between
20�S and 20�N (LTROP and STROP). Since we cannot
distinguish between random errors and systematic ones (see
previous paragraph), and following the usual practice [e.g.,
Desroziers et al., 2005], we use the root mean square (RMS)
to characterize the statistics of the model-minus-observation
departures, rather than the standard deviation.
[15] The root mean square of the prior departures is shown

in Figure 1a for the six zones: they range between about 1.3
and 1.9 ppm, the largest value being for LN20N. For a single
year, like here, the RMS hardly differs from the standard
deviation (not shown). The mean square (MS) of the prior
departures (shown in pink in Figure 1b) represents the left-
hand side of equation (4). The components of the correspond-
ing right-hand side are shown in Figure 1b as a stacked
histogram. The component coming from the uncertain surface

fluxes, HB̂HT, have RMS values of about 1.0 ppm (between
0.8 in SS20S and 1.2 ppm in LTROP). The RMS of the
component from the model uncertainty, R̂ IH , is about 0.5
ppm. The quadratic means of the retrieval posterior error, for
single soundings, are about 1.4 ppm over land and 1.2 ppm
over ocean. Consistent with the initial hypotheses (section
2), all statistics on the right-hand side are unbiased, so that
their RMS equals their standard deviation and their MS is their
variance. Unsurprisingly, the variance equality of equation
((4) is not strictly achieved (Figure 1b), but a fair agreement
is seen for all regions studied, with variance differences of less
than 0.8 ppm2, the assigned error statistics being conserva-
tively pessimistic.
[16] Figure 2a displays the corresponding RMS of the

posterior departures (i.e., after the assimilation of surface
air sample measurements): the values range between 1.1
ppm (STROP) and 1.5 ppm (LN20N). They are in fair
agreement with the assigned error statistics that differ by less
than 0.2 ppm. The HÂHT values (Figure 2b) correspond to
standard deviations between 0.2 ppm (SN20N) and 0.6
ppm (LTROP). They constitute a small part of the posterior
departure error budget that is dominated by the retrieval
errors (Figure 2b).
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Figure 1. (a) The resulting root mean square (RMS)
values. (b) The components of equation ((4) as mean square
values (MS) with the left-hand side (the prior departures to
the independent GOSAT data) marked with pink circles
and with the right-hand side (the assigned statistics)
presented as a stacked histogram.
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[17] To evaluate the performance of an observation
system, it is usual to compute error reductions, defined as
(1� sa/sb)� 100, in %, where sa is the posterior error
standard deviation and sb is the prior error standard devia-
tion for a given target quantity such as carbon fluxes [e.g.,
Hungershöfer et al., 2010]. Considering the total columns
measured by GOSAT and including the retrieval and transport
model errors, our results lead to theoretical error reductions in
predicted GOSAT XCO2, brought by the surface network,
between 14% (LN20N) and 17% (STROP). The error reduc-
tion seen in the actual mismatches is slightly larger, between
16% and 18%, except in the midlatitude oceans where no error
reduction is seen in practice. In the midlatitude oceans, the
assigned prior error statistics appear to be overestimated, while
the posterior errors are about right.

6. Discussion and Conclusions

[18] There is a need to strengthen the statistical rigor of
atmospheric inversions because their setup usually includes a
fair level of empiricism that affects the performance of the
method. To this end, the Bayesian framework provides a
paradigm against which actual systems can be benchmarked.
In particular, perfect systems satisfy a series of statistical prop-
erties [e.g., Desroziers et al., 2005] that can, at the minimum,
contribute to evaluating them and may even help tuning the
assigned error statistics [Michalak et al., 2005; Winiarek
et al., 2012]. In the present paper, we have evaluated the con-
sistency between the statistics of model-minus-observations

departures and the carbon flux error statistics that have been
assigned in an atmospheric inversion assimilating surface air
sample measurements. The departures have been computed
from independent measurements of the CO2 total column
retrieved from GOSAT. The detailed structure of the prior er-
ror covariance matrix cannot be seen from such measurements
because atmospheric transport blurs it, but a broad picture of
its realism is obtained. We have seen that the RMS of the prior
departures is less than 2.0 ppm, a value that gives an upper
boundary for the prior flux errors when projected in the
space of XCO2. The assigned uncertainty for these prior flux
errorsHB̂HT actually varies between 0.9 and 1.2 ppm when
projected in the space of XCO2. When summed with retrieval
error statistics and transport model error statistics, the model
uncertainty nears the actual error budget, with a slight
overestimation, which demonstrates the realism of HB̂HT.
Note that the lack of vertical resolution of the GOSAT
XCO2 data (accounted for in H) only allows evaluating very
broad features of B̂ without distinguishing between
variances and correlations in this matrix. Ideally, we would
like to focus on the uncertainty within the boundary layer in
order to study the flux errors at higher resolution, but note
that the transport model errors RIM would interfere more
in this case.
[19] Incidentally, the statistics of the prior model-minus-

observations departures also provide an indication about
the level of observation bias that the inversion can tolerate
when assimilating these observations [Chevallier et al.,
2005a]. Indeed, equation ((1) shows that biases in the obser-
vations drive the analysis if they are commensurate with the
prior departures. Hence, biases should ideally be much
smaller (e.g., tenfold smaller) than the departure statistics.
This rule of thumb indicates that keeping the retrieval
XCO2 systematic errors within a couple of tenths of a ppm
is important for flux inversion using these data. The near
closure of the posterior error budget suggests that the residual
biases of ACOS retrievals, which have been already empiri-
cally corrected from gross biases, are not far from this target.
[20] The RMSs of the departures after assimilation of

surface air sample measurements were shown to be less than
1.6 ppm and are marginally larger than the retrieval errors.
They fairly agree with the theoretical error statistics that
top them by a few tenths of ppm only. This systematic
agreement in the six regions studied indicates that the
inversion system correctly estimates that posterior uncer-
tainties become negligible compared to the single-sounding
retrieval errors and that the retrieval errors are fairly repre-
sented. The level of uncertainty of the GOSAT XCO2 data does
not allow assessing the quality of Â further (in particular, a
possible underestimation or overestimation by twofold can
hardly be noticed), but these data provide a first factual
evidence of its realism. The fact that the uncertainty of the
simulated XCO2 field becomes negligible compared to retrieval
errors, even over tropical lands, implies a high challenge for
the current GOSAT data to complement the information
provided by the current surface network. Finally, we note that
the skewness of the posterior departures (which is dominated
by retrieval errors) is less than 0.4 for the six regions defined
in the paper, which suggests that modeling the retrieval errors
by a normal distribution is a fair assumption.
[21] We have seen that the assimilation of surface air

sample observations does improve the simulation of the total
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column. The inversion system fairly represents the actual
values of the uncertainty reduction for the simulation of
the GOSAT data (16–18%), even slightly underestimating
them, except in the midlatitude oceans where no error reduc-
tion is seen in practice. Based on the GOSAT data only, it is
not possible to identify what, in the inversion setup, prevents
the error reduction over the midlatitude oceans; it could be
too large prior flux errors assigned over the midlatitude
oceans or transport inaccuracies between these oceans and
the surface stations, which would not be well reflected in
the surface observation errors. The good agreement obtained
over the rest of the globe without any tuning shows that an
inversion system can, in principle, yield reliable error statistics
at the large flux scale that corresponds to the imprint of column
measurements even within a Gaussian linear framework and
therefore fairly diagnose its strengths and weaknesses. Finally,
we argue that consistency checks of the inversion error statis-
tics, like those presented here, should be part of the standard
evaluation toolbox of atmospheric inversions. We suggest that
this error analysis framework could be usefully applied to
most carbon flux inversion systems which are confronted with
multiple data sources.
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