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Interact with me: an Exploratory Study on Interaction Factors for
Active Physical Human-Robot Interaction

Yue Hu1,∗, Mehdi Benallegue1, Gentiane Venture1,2, Eiichi Yoshida1

Abstract— In future robotic applications in environments
such as nursing houses, construction sites, private homes,
etc, robots might need to take unpredicted physical actions
according to the state of the users to overcome possible human
errors. Referring to these actions as active physical human-
robot interactions (active pHRI), in this paper, the goal is
to verify the possibility of identifying measurable interaction
factors that could be used in future active pHRI controllers,
by exploring and analyzing the state of the users during active
pHRI. We hypothesize that active physical robot actions can
cause measurable alterations in the physical and physiological
data of the users, and that these measurements could be
interpreted with users’ personality and perceptions. We design
an experiment where the participant uses the robot to play a
visual puzzle game, during which, the robot takes unanticipated
physical actions. We collect physiological and physical data, as
well as outcomes of two state-of-the-art questionnaires on the
perceptions of robots, CH-33 and Godspeed Series Question-
naires (GSQ), and a pre-experiment personality questionnaire,
to relate the collected data with the users’ perceptions and per-
sonality. The experiment outcomes show that we can extract a
few factors related to personality, perception, physiological, and
physical measurements. Even though we could not draw very
clear correlations, these outcomes give fundamental insights for
the design of novel pHRI experiments.

I. INTRODUCTION

Physical contact is an inevitable feature of many future
robotics applications, where often, the interaction actions
cannot be planned beforehand due to unpredicted events.
Examples of environments and situations in which this may
occur daily are nursing houses, construction sites, packaging
lines, cooking help, and personal care.

When using robots in direct physical contact with humans,
safety is one of the most important concerns. In 2016, the
safety standards for collaborative robots ISO/TS 15066 [1]
was introduced to ensure the physical safety of the users [2],
[3]. However, physical safety should not be the only concern
in human-robot interaction (HRI). As well known, humans
give importance to emotions and perceptions, which are fun-
damental in human-human interactions, therefore perceptions
and mental safety should also be considered in HRI [4].
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Fig. 1: Two possible scenarios for active pHRI: a robot helping in a
nursing house and in a construction environment. In both cases, possible
unpredictable events may occur and autonomous physical actions might be
necessary.

In examples shown in Fig. 1, a collaborative manipulator
could be used in nursing houses to help people in daily tasks
such as wearing shoes, where the user could be uncooperative
or need special care due to, e.g. mood swings, distraction,
loss of stability, etc. In a construction site, robots could help
the workers lifting and positioning pieces, where unpredicted
events caused by wrong evaluations may occur. In both
environments, people may be unaware of surrounding risks,
make wrong decisions, and feel uncomfortable for being
handled in certain ways. In our opinion, the robot should take
actions that are corrective, taking into account the physical
and mental states of the person, while still achieving the
original task. As these could be unpredicted physical actions,
the robot should also take into account the state of the users
by “observing” their reactions to such probing actions.

The current safety standard imposes strict constraints on
the performance of robots, inducing the robots to become
rather “passive” and “slow” during interactions, moreover, it
does not take into account users’ mental state. We believe
that new factors should be taken into account to boost
the efficiency of human-robot interactions from both the
robot and the human side. This means that the robot should
become more active, i.e. with a controller that allows active
interactions not only depending on users’ physical state, but
also perceptions and mental state.

In the context of HRI, robot controllers and human per-
ceptions have been mostly treated in two main research di-
rections, i.e. physical (pHRI) and social (sHRI), which have
been evolving mostly in parallel without much intersections.
In order to achieve our goals, we think it is necessary to
combine tools from both sides.

In pHRI, it is implied that direct or indirect contacts
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between human users and robots may occur. Current state-
of-the-art pHRI features topics such as co-manipulation [5],
[6], collaborative object carrying [7], [8], the development of
controllers with human-in-the-loop [9], [10], [11]. In most
of these works, the main focus is given to the robot, i.e.
the development of control frameworks in which the human
is treated either as an external noise, an external force, or
another “robot”. Or, in the case of therapy and rehabilitation
robotics [12], [13], focused on specific rehabilitation goals
for the patient.

In contrast, sHRI focuses mainly on the human counter-
parts, trying to analyze their mental state, comfort, sense
of safety, sociability, and in general users’ perceptions.
These are often studied via specially designed experiments
involving little or no physical interactions with the robot,
and a popular evaluation method is to use post-experiment
questionnaires [14], [15], [16], [17]. Physiological measure-
ments also proved to give useful insights, e.g. galvanic skin
response (GSR) and electrocardiography [18], [19], [20]
have been investigated to evaluate factors such as stress and
anxiety, and eye gazing has been analyzed for engagement
and proactiveness [21], [22]. Similar signals have also been
used in Affective Computing to understand human emotions
[23] and endowing machines with emotional intelligence.

A few works involved both physical and social inter-
actions: evaluation of touch in a nursing situation [24],
responses to hugging [25], rhythmic activities for teamwork
[26]. The main focus of these works remains the evaluation
of social perceptions, where the robot is designed as “social”.
In our case, we are interested in using tools from sHRI to
evaluate the social aspects of people using also robots which
have not been specially designed as “social”, e.g. industrial
manipulators, where the robot does not have to necessarily
display social behaviors or emotional intelligence.

A. Hypotheses and contributions

We define active physical human-robot interaction (active
pHRI) as an interaction during which robots may take phys-
ical actions on the human without prior notifications. Until
now, in HRI there has been generally little or no expectation
that the robot may take unpredicted physical actions, so the
first step is to address the impact of such active actions on
the user. For the robot to take the proper actions, the physical
and mental state of the user needs to be measurable, i.e. a
set of identifiable and quantitative interaction factors. For
example, in a nursing house, if we were able to quantify
and measure in real-time the anxiety of the user related to
their perception of the robot actions, the robot could tune the
motions to achieve different types of contact (softer, closer,
stronger, etc), while maintaining the objective of achieving
a specific task (e.g. helping to stand up).

The goal of this paper is to identify a first possible set of
interaction factors by means of an active pHRI experiment.
Our target is not the assessment of single perceptions (e.g.
fear, satisfaction) or specific objectives (e.g. workload assess-
ment, energy consumption). Rather, inspired by behavioral
psychology, we hypothesize that it is possible to break down

a more comprehensive human state into measurable factors,
and that we can find relationships between the physical
and physiological data and the perceptions and possibly the
personality [27]. We formulate the following hypotheses:

H1 Unpredicted robot actions cause measurable alter-
ations in the users’ physical and physiological data;

H2 Measurable physical and physiological data could
be explained with users’ personality and percep-
tions of the robot.

To easily isolate possible factors, we designed an active
pHRI experiment in which the user uses the robot to play a
visual puzzle game. During the game, the robot takes active
physical actions on the user similar to simple disturbances,
of which the user is not informed beforehand, such that
a natural reaction can be assessed. For the analysis, we
collect physical and physiological data, personality, and
post-experiment questionnaire outcomes related to the users’
perceptions.

To avoid cultural dependencies, the experiments have been
carried out only with Japanese nationals born and raised in
Japan. We collected data from 23 participants (among which
17 were retained in this paper), then, we extracted a series of
factors by post-processing the data. The major contributions
and outcomes of this paper are:

• To the best of our knowledge, the first experiment
addressing the analysis of the human state during active
pHRI;

• First insights on measurable factors, despite the out-
comes showing just a few relevant correlations between
personality and user perceptions with physical and
physiological data;

• Important insights for active pHRI scenarios and exper-
iments analysis and design.

B. Paper organization

This paper is organized as follows: in section II we
describe the details of the experiment, including the design
choices, the control of the robot, the description of the setup,
and the experiment protocol; in section III we illustrate the
performed experiments, the factor extraction, and relevant
factors; in section IV we analyze and discuss the obtained
results; in section V we summarize the outcomes and give
an outlook of our next steps.

II. EXPERIMENT DESCRIPTION

The experiment has been designed to allow the users to
have an intuitive direct physical interaction with the robot,
and at the same time, allowing them to feel the action of
the robot on the users. In the following subsections, we will
illustrate the design choices, the control of the robot, the
hardware equipment, and the experimental protocol.

A. Design and tools choices

Active pHRI scenarios could involve a high variety of
factors, so we designed the first experiment to be a simple
one, to allow for a straightforward identification of possible
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Fig. 2: The user uses the robot as a joystick to play the visual puzzle game.

factors. As shown in Fig. 2, during the experiment, the
user has to use the robot as a joystick to play a visual
puzzle game, shown on a screen. The user has to match
the pieces by moving the end-effector (EE) of the robot in
space, coming into an intuitive direct physical contact with
the robot. During the interaction, the robot performs actions
on the user by pushing or pulling with an active force. The
game and the action can be seen in the video attachment. The
visual game approach is similar to rehabilitation robots [12],
where patients often play visual games using a robot arm
with direct physical contact. However, in these cases, the
interaction is guided and the objective is to perform specific
rehabilitation programs via the game, with little focus on
social perceptions and mental state.

As stated in the hypotheses, we aim at measuring the
physical and physiological data of the users. Among the
available physiological measurements, we decided to adopt
GSR, Photoplethysmography (PPG), and eye-tracking. GSR
is a well-known indicator of arousal, its variations allow us
to measure the intensity of arousal to stimuli [28], [29]. The
PPG measurement is used as an alternative to the Heart
Rate Variation (HRV), which is another popular indicator.
From the PPG signal, it is possible to extract the Pulse Rate
Variability (PRV) [30], which is related to mental stress,
where higher PRV (with respect to the baseline conditions)
indicates higher mental stress [31], [32]. Eye blinking fre-
quency (EBR) and eye blinking duration (EBD) have been
related to mental load, where higher EBR and shorter EBD
correspond to higher mental load [33], [34]. From a standard
eye tracker, it is also possible to obtain the gazing direction,
which is another important indicator [21], [22].

For the physical data, we collect motion data, ground
reaction forces, and interaction forces with the robot. From
these data, it is possible to extract a series of information
regarding the overall behavior of the user towards the robot
(e.g. distances, forces exerted).

One of the most common tools used in sHRI to evaluate
the post-experiment perceptions of the users towards the
robot is questionnaire. Among the questionnaires available
in the literature, we decided to adopt CH-33, which has
been established as a measurement of psychological safety
towards robots [4], and the Godspeed Series Questionnaire
(GSQ) [35], which is one of the most popular questionnaires
in HRI [36]. As personality has been shown to be relevant

in HRI [27], [37], we decided to adopt a simplified version
of the Big Five, one of the most commonly used personality
traits questionnaire [38]. All the questionnaires are available
online at [39].

B. Robot control

To play the game using the robot, the user has to come
into contact with its EE. The users are free to move the robot
in any direction, and the 3D Cartesian space motion of the
robot EE is projected into the 2D movement of the target
piece. The rotation of the piece is a direct mapping of the
joint angle of the last joint before the EE. If the robot is
released, it stops all the motions.

We assume the robot to be torque-controlled when the
user is in contact, and in position control otherwise. We
implement a controller that runs at a frequency of 100
Hz, implemented using a Quadratic-Programming (QP) [40]
formulation which allows us to take into account joint limits,
joint velocity limits, and joint torque limits. During the game,
the robot takes a timed action on the user, i.e. every ∆T , an
active force fa is applied. The direction of fa is opposite to
the estimated EE velocity direction at the instant the active
force starts to be applied. The magnitude is proportional to
the force exerted by the user on the EE, bounded in specified
minimum and maximum, to ensure that the force is perceived
yet at the same time safe for the user.

The active force is applied only when the user is inter-
acting, therefore when the robot is in torque control. The
time interval ∆T is counted only over the time during which
the cuff is pressed, i.e. for the user, the interval between
each active force is unknown. The active force is not applied
instantaneously, but over a duration of ∆Ta � ∆T .

C. Equipment and sensors

The robot we use for the experiment is a Sawyer col-
laborative robot (Rethink Robotics), which has 7 degrees of
freedom. It is torque-controlled and equipped with Series
Elastic Actuators, and it complies with the safety standards
ISO/TS 15066. The robot can avoid self-collisions, it has
joint torque sensors in all the joints, which are also used
to estimate the external wrench at the EE. With Sawyer, to
trigger the torque control mode, the user has to press the cuff
button located at the EE, as shown in Fig. 2.

To measure the user’s state during the experiment, we use
the following equipment and sensors:

• GSR and PPG sensor, Shimmer3 GSR+ Unit (Shimmer
Sensing), a wireless sensor with Bluetooth that records
GSR and PPG data locally on an SD card. The GSR is
recorded via two single-use gel-type electrodes, while
the PPG via an earlobe clip optical sensor;

• Eye tracker, Pupil Core (from Pupil Labs), which is an
open-source eye-tracking platform connected via USB-
C. We use a single eye tracker on the right eye;

• Camera-based motion capture system from Motion
Analysis, with 11 cameras;

• 4 Bertec force plates, synchronized with the motion
capture system.
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Fig. 3: Motion capture markers (23 in total), Pupil Core eye tracker, and
Shimmer3 GSR+ Unit for GSR and PPG.

Typical locations for the electrodes of the GSR are the
palm of the hands, however, given the interactive nature of
our experiment, the electrodes have been positioned at the
back of the neck (see Fig. 3), which also provides reliable
measurements [29].

For the motion capture, we use a set of 23 markers: three
on the head, one on each hand and two on each elbow, two
on the front of the torso, four on the back and one on each
shoulder, and three on each foot. All the markers are pre-
positioned on wearables: gloves, shirt, cap, and socks that can
be worn on top of the users’ clothes, such that the users can
feel more comfortable without the need of changing clothes.
The positioning of all the sensors and markers is shown in
Fig. 3. All the data are synchronized via the Cortex software
(Motion Analysis) and sampled at 100 Hz, except for the eye
tracker which is sampled at 125 Hz and the force plates at
500 Hz.

D. Experiment protocol

Every experiment follows strictly the same protocol. Be-
fore the experiment, the participants read the experiment
protocol which explains the setup and the procedure by
themselves, to minimize the interaction with the instructor.
The participants are then asked to watch a pre-recorded
video with audio and subtitles in Japanese, explaining how
to interact with the robot and how to play the game. The
participants are not informed about the possibility of the
robot to perform independent actions, as we are interested
in the natural reaction to unexpected actions by the robot on
the user. The protocol is provided online at [39].

Then the experiment proceeds as follows:
1) The participant completes the simplified version of the

Big Five personality traits questionnaire consisting of
15 questions.

2) The participant is equipped with sensors and markers.
3) The participant rests for about 10 minutes during which

the GSR and PPG baselines are recorded.
4) The participant performs two trial sessions, during

which the robot is completely passive, i.e. no active

force is applied. These sessions serve the user to get
used to the robot.

5) The active session, involving the active force, is per-
formed three times consecutively. The number of ses-
sions has been chosen as a trade-off between making
the users used to the experiment and keeping them
motivated to play the game.

6) At the end of all sessions, the two questionnaires about
robot perception are asked to be completed, CH-33 [4],
and GSQ [35], one after the other, with the questions
of each presented in a randomized order.

During each session, the record of the data starts about 10
seconds before the participants start the interaction with the
robot, and ends about 10 seconds after the last interaction.
This is to ensure that signals such as GSR and PPG are at
their baseline levels before and after each session.

The total of 5 sessions lasts about 20 minutes, where
a single session (trial or active) lasts about 2-3 minutes,
during which the participants play the game that consists of
3 rounds, lasting 30 seconds each. The game can be restarted
and the participants are asked to keep playing until instructed
otherwise. Since the game is a task for the participants to
interact with the robot, the winning and/or losing is not the
goal of the experiment. In this paper, we set ∆Ta = 1
and ∆T = 5, so during each session, about 5-15 active
forces may occur. Each experiment is video-recorded from
two perspectives, from the front and the back.

All our experiments have been approved by the local ethics
committee at the National Institute of Advanced Industrial
Science and Technology (AIST) in Tsukuba, Japan. Before
the experiment, participants have received proper information
and given informed consent to participate in the study.

III. METHOD AND RESULTS

We performed the experiment with a total of 23 par-
ticipants, of which only the data of 17 participants were
usable due to technical issues, e.g. sensors not recording,
unexpected external interferences. Of these 17 participants,
6 are females and 11 are males, with ages between 20 and
33 years old. All the participants are Japanese, born and
raised in Japan. From a pre-experiment questionnaire (see
additional material), all the participants have no or very little
prior experience with robots in general.

A. Data collection and post-process

We collected data from the questionnaires presented in
section II-A and all the sensors listed in section II-C,
following the protocol detailed in section II-D.

Motion capture data have been processed with Cortex
software (Motion Analysis) first, then post-processed with
DhaibaWorks [41]. In DhaibaWorks we use a human model
that is scaled according to the height, weight, and gender
of each participant, and the Sawyer model that is the same
used in the robot controller. The human model motions
are obtained via inverse kinematics by mapping recorded
marker positions to virtual markers, while the robot motions
by using the recorded joint angles. From DhaibaWorks we
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(a) Close (b) Far

Fig. 4: Two participants with different behaviors.

extracted the poses of the participants, including specific
body parts such as head, hands, and feet, from which we
computed distances between the participant and the robot.
We are interested in these data as participants showed overall
different attitudes to the robot. Fig. 4 shows two examples.
The participant in Fig. 4a keeps the EE very close to the
face during part of the experiment, prefers to stand facing
the screen, and uses one hand on the cuff and one hand to
hold the arm of the robot. On the contrary, the participant in
Fig. 4b keeps a far distance from the robot by putting both
hands on the EE, and prefers to face the robot looking at the
screen by turning the head. This can be seen better in the
video attachment.

From the eye tracker, we can extract data such as gaze
direction, EBR, and EBD. The gaze direction is used to
determine where the participants are looking at, i.e. at the
robot, at the screen, or elsewhere. Specifically, we use
collision detection [42] to categorize the gaze location, by
modeling the gaze as a cone directed as the gaze direction
with an angle of 10◦. We compute the total gazing time to
each location only during three time intervals: the play of the
game, before starting, and after ending the interaction, given
that for the rest of the session, the user may be looking at the
robot due to the necessity of using the buttons to restart/reset
the game, and this is not relevant for our analysis.

From the Shimmer3 sensor, we obtained the GSR and
PPG data, the latter being post-processed to obtain the PRV.
Differently from the rest of the data, for GSR and PPG we
have a pre-experiment record of the baseline that is used to
evaluate the changes that occurred during the experiment.

B. Factor extraction

From the above-mentioned data, we extracted a series
of factors, mainly based on statistical analysis, including
percentage differences between stimuli (i.e. active force
application) and the average of each session or the baseline
(GSR, PRV). Given H1, we considered the active force
application by considering a window of 3 seconds from the
start of the stimuli, to which we will refer as action window.
For the analysis, only the second trial session and the 3 active
sessions (4 out of the 5 sessions) have been considered, the
first trial session has not been considered due to the high
amount of other external stimuli that affected the experiment,
e.g. frequent help from the instructor.

A list of factors is shown in Table I. The factors in Group
1 are computed for all sessions (considering each session
independently), while the factors of Group 2 are computed
only for the active sessions, as they refer to percentage
differences between the action window and the average
during the session. The participants’ gender, personality,
and questionnaire outcomes are also included as part of
the factors (not shown in Table I). The post-experiment
questionnaire CH-33 consists of 33 questions rated on a 7
points Likert scale and projected onto 6 factors, as shown in
Fig. 5a, while GSQ is a series of 5 questionnaires rated on a
5 points semantic differential scale, resulting in 5 factors as
shown in Fig. 5b. The personality test projects into 5 factors
on a scale of 0-100, as shown in Fig. 5c. For the details of
these factors, please refer to [4], [35], and [38], respectively.
From Fig. 5 we can observe that there is no specific trend of
the questionnaire outcomes, indicating that the participants
had overall different perceptions of the robot. This confirms
that it might be interesting to analyze the correlation between
the factors to identify relationships between perceptions,
personality, and measurements, as per H2.

C. Relevant correlations

As most of the collected data are not Gaussian, we used
Spearman’s correlation for non-parametric data. In particular,
the following correlations have been carried out to test our
hypotheses:

• Personality and gender with the questionnaire outcomes;
• Personality, gender, and questionnaire outcomes with all

the extracted factors for all the sessions;
• Personality, gender, and questionnaire outcomes with

the percentage difference between the average of each
factor over the active sessions and the trial session (ED
factors).

We considered as relevant those that scored correlation
coefficient |r| > 0.6 and p-value p < 0.05, and that show
interesting trends over the sessions (e.g. present in more than
one session). These factors are reported in Table II. We ran
the T-test for repeated samples on the factors of Group 1, for
each active session with respect to the trial session, in order
to verify possible significant changes when the active force
is exerted. From the tests, most of the factors did not show
significant differences, mostly with p > 0.5. A few factors
showed significant difference with only one session with
p < 0.1, while we verified that GSR diff showed p < 0.1
for all three active sessions.

From Table II we can see that the correlation between
Extraversion and CoP is consistent over all the sessions
with negative correlation factors, indicating that extrovert
participants approached the robot closer compared to the
introvert ones. Anthropomorphism and Animacy from GSQ
also show relevant correlation with GSR diff, with positive
correlation indicating that the more the participants perceived
the robot as anthropomorphic and animated, the lower their
GSR level was during the sessions with respect to the base-
line. However, the correlation weakens as the participants
go through the sessions, with Anthropomorphism scoring
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Factor Explanation
Group 1: average over each session including the trial session

CoP Center of pressure distance between the participant and
the robot base

Walking Amount of walking as total number of steps/time
Head dist Distance between head and robot EE
Head ort Orientation of the head
Feet dist Distance between the feet and robot base
Feet ort Orientation of the feet

Hand ext Extension of the arms as sum of distances from each
hand to the torso, normalized by height

LHand loc Location of the left hand, i.e. robot arm, wrist, or EE
Cuff frq Frequency of pressing the interaction cuff

Gaze time diff game Difference between gazing time at the robot and the
screen during the game

Gaze time diff before Difference between gazing time at the robot and the
screen before starting the interaction

Gaze time diff after Difference between gazing time at the robot and the
screen after ending the interaction

GSR diff Difference of GSR between the baseline and the session
PRV diff Difference of PRV between the baseline and the session

Group 2: percentage difference between action window and the rest of the
session, for each active session

EBR diff AF Eye blinking rate
EBD diff AF Eye blinking duration
Pupil diff AF Pupil dimension

EE force diff AF Forces measured at the robot EE
GRF force diff AF Ground reaction forces, normalized with body weight

TABLE I: All factors excluding personality, gender, and questionnaires. Factors in
Group 1 are computed for all the sessions, while those in Group 2 excluding the trial
session. In the table, “diff” means percentage difference, while “AF” refers to the
average during the action windows.

Factor 1 Factor 2 Correlation coeff
Trial session

Extraversion CoP -0.74 **
Anthropomorphism GSR diff 0.71 *

Animacy GSR diff 0.69 *
Active Session 1

Extraversion CoP -0.73 *
Anthropomorphism GSR diff 0.66 *

Animacy GSR diff 0.72 **
Active Session 2

Extraversion CoP -0.73 **
Animacy GSR diff 0.65 *

Active Session 3
Extraversion CoP -0.81 **

Difference between average of active and trial session
Extraversion Hand Ext ED 0.61
Performance Walking ED 0.71 *
Acceptance Walking ED 0.67 *
Toughness Walking ED 0.65 *
Toughness Feet Ort ED 0.65 *
Likeability Walking ED 0.64
Animacy PRV Diff ED -0.67 *

Personality and questionnaires
Openness Toughness -0.64
Openness Agency 0.77 **
Openness Likeability -0.68 *

Agreeableness Agency 0.67 *

TABLE II: Extracted relevant factors with correlation coefficient
> 0.6 and p-value < 0.05. Those with * indicate p-value <
0.005, and ** indicates p-value < 0.001. “ED” refers to the
percentage difference between the average of the three active
sessions and the trial session.

(a) CH-33 (b) GSQ (c) Personality

Fig. 5: Results of the questionnaires CH-33 (a) on a scale of 1-7, GSQ (b) on a scale of 1-5, and personality (c) on a scale of 0-100, for the 17 participants
considered in this study, the error bar shows the mean and standard deviations of the factor for all the participants.

|r| < 0.6 for active sessions 2 and 3, and Animacy for
active session 3. This trend indicates that the participants
had variations in the GSR level over the sessions that were
not strongly related to their perception of the robot.

In Table II we can also observe a few correlations with
the ED factors. In particular, more extrovert participants tend
to have a wider extension of their arms during the active
sessions with respect to the trial session. This may indicate
that extroverts tend to impose on the robot more with their

body with respect to introverts. Participants who perceived
the robot as tougher (less likely to break down), more
performant, acceptable, and likable, walked more during
the active sessions. Also, those who perceived the robot as
tougher, had feet more oriented towards the screen during
the active sessions. High scores in these factors indicate
overall a higher confidence on the robot capabilities as
well as comfort they felt during the interaction with the
robot, therefore, these correlations may indicate that the
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participants who felt overall more comfortable and confident
in the robot, felt more comfortable to walk around while
manipulating the robot (e.g. the second participant shown
in the video attachment) and/or also preferred to be more
oriented towards the screen rather than the robot (e.g. the
first participant shown in the video attachment), which may
also indicate higher trust in the robot.

We also obtained relevant correlations between partic-
ipants’ personality and the way they perceive the robot.
Specifically, the more open the participants, the less they
perceived the robot as tough and likable, and the more they
perceived the robot as an agent. The more the participants
are agreeable, the more they perceived the robot as an agent.

IV. DISCUSSION

H1 states that the active force can cause measurable
alterations in the participants’ data. However, from the T-test,
only the GSR diff showed significant changes, implying that
possible alterations are not measurable via the other factors
presented in Table I. This also may mean that the ED factors
should be interpreted with caution. H2 states that the mea-
surable data can be related to the questionnaire outcomes.
However, only two of the factors in Table I showed relevant
correlations, namely the CoP and GSR diff. The former
indicates that extroverted people seem to be approaching the
robot from a closer distance, and the latter that the people
who perceive the robot as anthropomorphic and animated
could be more stressed/anxious when interacting with the
robot with respect to resting conditions.

Even if we could not find an adequate number of factors
satisfying our hypotheses, we cannot neglect the relevance
of the obtained results. The outcomes give important insights
into active pHRI experiments. We adopted a game-style task
and a simple disturbance-style action in order to have a
smaller number of variables for which the isolation of factors
could have been less affected by random noise. However,
this might have been the main limitation of our experiment,
as the action seems to have not been strongly perceived by
the participants. Therefore, in the design of active pHRI
experiments, it could be advisable to use different types
of “actions”, for example, a collaborative one or one that
has different objectives. We also tried to break down the
different participants’ attitudes observed in section III-A,
however, these did not show up significantly in the resulting
relevant factors, therefore, a different way of quantifying
such attitudes may be advisable. GSQ was chosen due
to its popularity in HRI, however, Animacy and Anthro-
pomorphism showed high correlation, and as a matter of
fact, it has been shown that there are some flaws in the
GSQ [43]. We think this may affect the overall outcome
of the questionnaire, so it may not be well suited for active
pHRI. Personality appears to give interesting insights into
the way participants approach and behave with the robot.
As a matter of fact, the relationship between personality and
personal spatial zones have been studied in literature [27],
and the correlations between Extraversion and CoP and hand
extension, both go in the direction of a possible relationship

between the two. Therefore, we consider the investigation of
personality and distances to be important.

It is also worth noting that none of the factors showed rel-
evant correlations with gender, indicating that in active pHRI
experiments, gender may not be influential. The restriction
on cultural background has been introduced to avoid cultural
dependencies, however, it also represents a limitation for
which the outcomes may not be generalizable for different
cultural backgrounds. Last but not least, the participants have
been recruited via open calls, many of them seemed to have
little interest in the content of the experiment itself, and
many had several experiences with other types of laboratory
experiments as well. We think that this has effects on the
outcomes that are not negligible, therefore, we deem it
important to consider also the participants’ habituation levels
and mindsets towards laboratory experiments.

V. CONCLUSIONS AND FUTURE DEVELOPMENTS

In this study, we were interested in analyzing the percep-
tions and state of humans with respect to an active physical
interaction with a robot. We hypothesized that this action can
cause alterations in measurable physical and physiological
data, and that these data can be related to personality, gender,
as well as the perception of the users. However, results did
not show many correlations with the extracted factors.

This study was an exploratory study meant as a first
attempt to verify the possibility of identifying measurable
interaction factors that could be useful for the development
of active pHRI controllers, by combining tools from both
pHRI and sHRI. Despite only a few factors having been
uncovered, we obtained insightful observations and advice
for the design of active pHRI, based on the advantages and
pitfalls of our experiment. We consider these findings useful
for researchers who may be interested in developing active
pHRI experiments, while with future more consistent find-
ings on interaction factors, we believe it will be fundamental
for those who develop controllers for pHRI applications, as
measurable quantities are necessary as inputs for controllers.
Assuming that the interactions have specific objectives (e.g.
helping to stand up or to lift pieces), the interaction factors
could be used as weighted objectives to modify the motions
of the robot according to the users’ state. However, the
inclusion of these factors in a control framework is out of the
scope of this paper and will be considered for future work.

The findings of this paper will be taken into account in
our next experiment. We will also target a higher number
of participants to collect more consistent data, including
qualitative data that were not considered in this study, which
could help understanding better the results. To be able to
identify as many factors as possible, we deemed necessary,
for the time being, to use many sensors and equipment.
However, to target real-world scenarios, less invasive setups
will also be considered. From the future experiments, we
expect to be able to extract further factors that can relate the
human physiological, physical, and mental state with respect
to different robot actions. Furthermore, Affective Computing
methodologies, classification and/or factor analysis on the



8

data may lead to interesting outcomes and will be considered
for further studies.
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