
HAL Id: hal-02957294
https://hal.science/hal-02957294

Submitted on 1 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tropical land carbon cycle responses to 2015/16 El Niño
as recorded by atmospheric greenhouse gas and remote

sensing data
Emanuel Gloor, Chris Wilson, Martyn Chipperfield, Frederic Chevallier,
Wolfgang Buermann, Hartmut Boesch, Robert Parker, Peter Somkuti,

Luciana Gatti, Caio Correia, et al.

To cite this version:
Emanuel Gloor, Chris Wilson, Martyn Chipperfield, Frederic Chevallier, Wolfgang Buermann, et al..
Tropical land carbon cycle responses to 2015/16 El Niño as recorded by atmospheric greenhouse gas
and remote sensing data. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018,
373 (1760), pp.20170302. �10.1098/RSTB.2017.0302�. �hal-02957294�

https://hal.science/hal-02957294
https://hal.archives-ouvertes.fr


 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

01
 J

ul
y 

20
21

 

rstb.royalsocietypublishing.org
Research
Cite this article: Gloor E et al. 2018 Tropical

land carbon cycle responses to 2015/16 El Niño

as recorded by atmospheric greenhouse gas

and remote sensing data. Phil. Trans. R. Soc. B

373: 20170302.

http://dx.doi.org/10.1098/rstb.2017.0302

Accepted: 31 August 2018

One contribution of 22 to a discussion meeting

issue ‘The impact of the 2015/2016 El Niño on

the terrestrial tropical carbon cycle: patterns,

mechanisms and implications’.

Subject Areas:
environmental science

Keywords:
carbon cycle, global warming, fire,

tropical forests

Author for correspondence:
Emanuel Gloor

e-mail: e.gloor@leeds.ac.uk
& 2018 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Electronic supplementary material is available

online at https://dx.doi.org/10.6084/m9.

figshare.c.4224311.
Tropical land carbon cycle responses to
2015/16 El Niño as recorded by
atmospheric greenhouse gas and remote
sensing data

Emanuel Gloor1, Chris Wilson1,2, Martyn P. Chipperfield1,2, Frederic Chevallier3,
Wolfgang Buermann4, Hartmut Boesch5, Robert Parker5, Peter Somkuti5,
Luciana V. Gatti6, Caio Correia6, Lucas G. Domingues6, Wouter Peters7,
John Miller8, Merritt N. Deeter9 and Martin J. P. Sullivan1

1School of Geography, University of Leeds, Leeds, UK
2NCEO, NERC National Centre for Earth Observation, Michael Atiyah Building, University of Leicester, Leicester, UK
3LSCE, L’Orme des Merisiers, Bat. 701, Point courrier 129, Gif sur Yvette Cedex, France
4Institute of Geography, University of Augsburg, Augsburg, Germany
5Department of Physics and Astronomy, University of Leicester, Leicester, UK
6INPE, Sao Jose dos Campos, Brazil
7Wageningen Universiteit en Researchcentrum, Wageningen, Gelderland, The Netherlands
8NOAA/Earth System Research Laboratory/Global Monitoring Division, Boulder, CO, USA
9NCAR Atmospheric Chemistry Division, Boulder, CO, USA

EG, 0000-0002-9384-6341

The outstanding tropical land climate characteristic over the past decades is

rapid warming, with no significant large-scale precipitation trends. This

warming is expected to continue but the effects on tropical vegetation

are unknown. El Niño-related heat peaks may provide a test bed for a

future hotter world. Here we analyse tropical land carbon cycle responses

to the 2015/16 El Niño heat and drought anomalies using an atmospheric

transport inversion. Based on the global atmospheric CO2 and fossil fuel

emission records, we find no obvious signs of anomalously large carbon

release compared with earlier El Niño events, suggesting resilience of tro-

pical vegetation. We find roughly equal net carbon release anomalies from

Amazonia and tropical Africa, approximately 0.5 PgC each, and smaller

carbon release anomalies from tropical East Asia and southern Africa.

Atmospheric CO anomalies reveal substantial fire carbon release from tro-

pical East Asia peaking in October 2015 while fires contribute only a minor

amount to the Amazonian carbon flux anomaly. Anomalously large Ama-

zonian carbon flux release is consistent with downregulation of primary

productivity during peak negative near-surface water anomaly (October

2015 to March 2016) as diagnosed by solar-induced fluorescence. Finally,

we find an unexpected anomalous positive flux to the atmosphere from tropical

Africa early in 2016, coincident with substantial CO release.

This article is part of a discussion meeting issue ‘The impact of the 2015/

2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms

and implications’.
1. Introduction
Tropical forests play a vital role in the Earth system, hosting greater than 50% of

global terrestrial biodiversity (e.g. [1]), storing two-thirds of global plant

biomass (e.g. [2]) and regulating climate by virtue of their exchanges of

carbon, water and energy with the atmosphere. They also play an important
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....... ....... ...... . ...... ...... . .
mean annual temperature trend 1981−2016 (°C per decade)

−0.3 −0.1 0.1 0.3 >0.5

mean annual precipitation trend 1981−2016 (mm per decade)

−275 −175 −75 25 125 225

Figure 1. Climate trends for tropical and subtropical forest biome based on CRU (Climate Research Unit) TS 3.24 climatology [4]. Stippling denotes statistically
significant trends.
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role in sustaining endangered fauna, and their continued pres-

ence is essential for preserving their rich biodiversity. More

generally, tropical biomes are home to great cultural diversity

and growing economies, and will need to support half the

global population by 2050 [3]. Thus they have a large impact

on livelihoods in these climates. The continued functioning

and productivity of vegetation in the tropics is, however,

dependent on its response to changing climatic conditions.

The dominant climate change signatures across the tropics

are rapid warming and an increase of extreme events, severe

floods and anomalously dry conditions (figure 1 and e.g. [5]).

El Niño events may provide a test bed to examine tropical

vegetation responses, likely to be dominated by the response

of forests, to these increasingly higher temperatures, paralleled

usually by drier than usual conditions. This is because during

El Niño events strong positive temperature excursions tend to

be spatially correlated with negative precipitation anomalies.

These anomalies occur in tropical Southeast Asia, tropical

South America and to a lesser extent tropical West Africa

and southern Africa (roughly below 108 S, e.g. [6,7]).

It has been known since at least the 1970s that El Niño

events co-occur with periods of anomalously large atmos-

pheric CO2 growth rates [8]. There is not only a strong

correlation between the El Niño Index (in essence atmos-

pheric sea surface pressure difference between Darwin and

Tahiti in the tropical Pacific) and global atmospheric CO2

growth rate anomalies but also a slightly weaker correlation

with tropical land surface temperature anomalies (e.g. [9]).

The mechanism causing the correlation with temperature

is not entirely clear. One component is increased biomass

burning. It has further been argued that the effect of water

limitation on vegetation performance is important at the

local scale, but temperature anomalies are more important

at larger scales owing to cancelling effects [10]. The strong

correlation between atmospheric growth rate anomalies

and El Niño Index suggests that the variation of tropical

land carbon uptake and release contributes prominently to

anomalous atmospheric CO2 growth during positive El Niño

phases. Nonetheless, ocean air–sea gas exchange does also
play a role. Measurements of this process in the tropical

Pacific reveal that during El Niño outgassing in the tropics

is reduced, i.e. ocean carbon pool response is in the opposite

direction to land carbon pools [11]. This is because the tro-

pical Pacific thermocline upward tilt towards South

America is reduced during El Niño phases of ENSO (El

Niño Southern Oscillation), which hinders upwelling of

carbon-rich waters along the tropical South American west

coast and thus carbon efflux from the sea to the atmosphere

is reduced. The decrease over a full El Niño period for the

1997/98 event has been estimated using ocean data to be

0.6+0.1 PgC ([11,12]). Recent estimates of global air–sea

gas exchange based on air–sea partial pressure difference

measurements and gas exchange parameterization by Feely

et al. [13] suggest a smaller anomaly over the 2015/16

period of the order of 0.1–0.2 PgC.

Similar to the other contributions to this volume, we

attempt to analyse whether, and to what extent, the response

of tropical land vegetation during the 2015/16 El Niño event

is different from responses during previous similar events,

and thus may be a harbinger of future responses not just to

climate oscillations but climate variation on top of a rapidly

increasing temperature background. There have been, for

example, reports indicating that increased temperatures inde-

pendent from El Niño have an effect on fire probability in the

tropics [14]. There have also been reports indicating that dry

seasons may get drier across the tropics [15]. It is not clear

what the effect of tropical vegetation productivity may be,

given both stimulating (rising CO2) and limiting (e.g. the

increase in leaf–air water vapour pressure difference) factors.

The overarching theme of this article is thus whether

the 2015/16 events reveal signs of anomalously increasing

vegetation strain.

Our analysis is based primarily on a large-scale atmos-

pheric approach that as the main tool uses an inverse

model of atmospheric transport (INVICAT [16]) to extract

information about the surface CO2 exchange between land

vegetation and atmosphere contained in spatio-temporal

variations of atmospheric CO2. Our approach is helped by
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new data from tropical South America measured by INPE (Insti-

tuto Nacional de Pesquisas Espaciais), Sao Jose dos Campos,

Brazil. We focus on the inter-annual variation of fluxes, which

should be more robustly estimable than absolute flux magni-

tudes. To put our results into context we relate the fluxes to

climate controls, and to distinguish processes, to some

extent, we employ solar-induced chlorophyll fluorescence

and atmospheric carbon monoxide measured from space.

We aim to address the following questions: How anomalous

is the global CO2 flux anomaly? What are the climate

deviations/excesses on land? Where and when do flux

anomalies occur and how large are they? How much is due

to fire and under what conditions? How much is due to

reduction in primary production versus changes in respiration?

And finally, are there signs of land vegetation responses out-

side the usual El Niño patterns given the unprecedented

temperatures during the 2015/16 event?
373:20170302
2. Data and methods
(a) Estimating atmospheric growth rate anomalies
A possible approach to estimate atmospheric CO2 growth rate

anomalies Dg, suggested to our knowledge first by Jones et al.
[17], is as follows:

DgðtÞ ¼ DC
Dt
ðtÞ �AF � FFðtÞ: ð2:1Þ

Here C is the atmospheric carbon content (in the form of CO2),

t is time, FF is the global emissions from fossil fuel burning

and cement manufacture, and AF is the long-term mean air-

borne fraction, the ratio of the annual atmospheric carbon

growth rate and fossil fuel emissions. Thus AF . FF(t) is the

expected average increase of atmospheric carbon growth rate

for given fossil fuel emissions FF(t) in year t. Fossil fuel emis-

sion estimates used here are from Boden et al. [18], which are

based on energy statistics and the observed atmospheric CO2

record (the Mauna Loa record) AF � ca 0.55. The growth rate

is calculated as the difference of annual means centred on 31

December/1 January (i.e. mean from 1 July to 30 June). As a

sensitivity test, we have repeated this calculation using AF ¼

0.49 (mean over 1901–2015) with similar overall conclusions.

(b) Carbon flux estimation from atmospheric CO2

patterns with inverse modelling of atmospheric
transport

The most robust information provided by atmospheric CO2

concentration records is the global atmospheric inventory

and how it changes over time. This reveals, for example,

very clearly the well-known rapid increase of atmospheric

CO2 over the last decades. In addition to the global infor-

mation, the widespread surface station observation network,

maintained by various groups and in particular NOAA/

ESRL (electronic supplementary material, figure S1), exhibits

spatio-temporal patterns that reflect regional-scale variation

in CO2 exchange between the land surface and oceans with the

atmosphere. Thus, in principle, these patterns should allow

us to trace back the spatial distribution and strength of regional

surface fluxes, provided the relationship between fluxes

and the concentration patterns they cause can be established.

This relationship involves the representation of the processes
of atmospheric advection and dispersion, which can be esti-

mated fairly well using numerical fluid dynamics models of

the atmospheric flow (atmospheric transport models) (e.g.

[19]). The relation to the actual atmospheric flow is established

by using wind and cloud convection transport fields derived

from regular observations of the state of the atmosphere for

the purpose of weather prediction. Flux estimation reduces

then to a least-squares minimization problem of the difference

between a linear combination of concentration fields result-

ing from localized fluxes in space and time sampled at the

same time and location as the observations and the actual

observations. This problem turns out to be poorly constrained

by the number of available in situ measured data and thus a

possible approach is to instead optimally combine a set of

prior flux ‘guesses’ fp with the flux estimates that replicate

concentration data most closely [20], i.e. to minimize

J(f) ¼ (f� fp)t � B�1 � (f� fp)þ (c�Hf)t � R�1 � (c�Hf) ð2:2Þ

with respect to f. B is the a priori flux error covariance

matrix, c is a vector containing the observed atmospheric

concentrations and H is the transport-model-calculated

matrix, which relates surface fluxes to the atmospheric con-

centration signal they cause at the sampling sites. This

approach solves for small deviations from a prescribed

flux model. For this problem, an explicit expression for the

posterior flux error covariance matrix Apost can be derived

[21]: Apost ¼ [H t . R21 . H 1 B21]21.

We show here the results from such an approach based on

the inverse of the atmospheric transport model TOMCAT [22].

We resolve fluxes monthly and spatially on a grid 5.68 � 5.68
longitude by latitude and the model is forced by ERA-Interim

meteorology. The prior flux model includes three components:

(i) annually changing fossil fuel emissions, (ii) monthly net land

gains or losses which do not change from year to year,

based on the CASA (Carnegie–Ames–Stanford) land bio-

sphere model (average climatology for 2003–2011), and

(iii) air–sea fluxes. The CASA model estimates primary pro-

ductivity as the product of solar photosynthetically active

radiation (PAR), land vegetation chlorophyll content (esti-

mated using Normalized Difference Vegetation Index (NDVI)

measured from space) and a light use efficiency. Respiration

is estimated using a carbon cycle model that includes soils [23].

We have chosen annually repeating and balanced land

vegetation–atmosphere CO2 flux prior estimates because

our interest is in extracting the information on inter-annual

variations contained in atmospheric data. For our prior esti-

mates of air–sea fluxes, we treat separately the fluxes

associated with the pre-industrial carbon cycle (two hemi-

spherical loops with CO2 outgassing in the tropics and CO2

uptake at high latitudes) and uptake of carbon induced by

the anthropogenic perturbation of atmospheric CO2 (with

fluxes steadily increasing and located primarily in the north-

ern Atlantic and Southern Ocean) [24,25]. For the former,

we use the monthly resolved climatology based on air–sea

partial pressure differences and an air–sea gas exchange coef-

ficient parameterization, compiled by Takahashi et al. [26], to

which we add a constant and spatially uniform flux such that

the fluxes are globally in balance on an annual basis. For the

latter, we use the spatial air–sea flux pattern of Khatiwala

et al. [25] (their figure 1b), which we scale with global net

ocean uptake taken from the Global Carbon Project analysis

[27]. This approach leads to improved a posteriori data
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model fits compared with inversions which use air–sea flux

prior compilations based on interpolation algorithms of air-

to-sea partial pressure measurement differences alone

(specifically [26]). The minimization of J(f) is done using a

quasi-Newtonian method (L-BFGS implemented in M1QN3

minimizer) with gradients calculated with the adjoint of the

TOMCAT atmospheric transport model, ATOMCAT [16]. We

assume a prior flux uncertainty of 200% per grid cell and

we assume that there is no flux error correlation given the com-

parably coarse resolution. Atmospheric data are from 81 sites

mainly measured by NOAA/ESRL and include in addition

the planetary boundary layer (PBL) mean (below 2500 m)

and the free troposphere mean (above 2500 m) of vertical pro-

file data in the Amazon measured by INPE, Sao Jose dos

Campos, Brazil (e.g. [28]) (electronic supplementary material,

figures S1 and S2). Observational data have an uncertainty

of 1 ppm plus an estimate of representation error derived by

averaging the absolute prior concentration variation between

the model grid cell containing the measurement location

and the surrounding grid cells. This leads to overall obser-

vational uncertainties of between 1 and 6 ppm, depending on

the measurement location. To assess the influence of the

Amazon vertical profile data, we have also performed an inver-

sion without these data. The effect of including the data is to

reduce the magnitude of flux anomalies while the timing and

location of anomalies are not affected much (see §3).

(c) Gravity anomalies as an indicator of vegetation
water stress

One cause of plant water stress is negative deviations (or

anomalies) of the abundance of soil water (or soil water con-

tent) from the climatological mean representative for a region.

A proxy for soil water content over large spatial scales can be

measured from satellites because large-scale land surface

water content anomalies cause Earth gravity anomalies. Such

gravity anomalies are being estimated from space by the twin

satellite mission GRACE (Gravity Recovery and Climate Exper-

iment [29]), with the satellites following each other closely on a

polar orbit. Instruments on the satellites measure the distance

between the two satellites, which increases when the front sat-

ellite is approaching a positive gravity anomaly and decreases

again once the front satellite has passed the anomaly and

the rear satellite is approaching the anomaly. To confirm the

realism of the gravity anomaly data measured from space,

we compare gravity anomaly anomalies with precipitation

anomalies measured by TRMM (Tropical Rainfall Measuring

Mission [30]; electronic supplementary material, figure S3).

The signatures of the two data types are very consistent

(taking into account that gravity anomalies are to first order

equal to cumulative precipitation anomalies). To calculate

monthly gravity anomaly anomalies, we subtract monthly

mean values calculated using the full 2002–2016 record from

the continuous record of monthly mean values.

(d) Estimation of fire carbon release to the atmosphere
from remotely sensed air column carbon monoxide
inventories

We use daytime CO air column inventories estimated from

MOPITT radiometer data on the TERRA satellite [31] to esti-

mate carbon emissions from fires. To do so, we first estimate
carbon monoxide fluxes from monthly CO air column

anomalies. We then convert the carbon monoxide fluxes to

carbon fluxes, assuming they are from fires, by multiplying

the carbon monoxide fluxes with a biomass burning emission

ratio of 1/74 ((ppm CO2)/(ppb CO)) [32] although this ratio

may vary with the type of fire. The MOPITT CO record we

are using is v. 6 (L3V95.2.3) [33]), which covers March 2000

to December 2016. This version uses both thermal infrared

(TIR) and near-infrared (NIR) radiances and so, compared

with the other two MOPITT products (TIR-only and NIR-

only), it provides the maximum sensitivity to surface-level

CO. Nonetheless, because of the non-uniform weighting

function of the retrievals, column content estimates may con-

tain a bias (an underestimate of column CO if signals are

concentrated to the lower troposphere) (electronic sup-

plementary material, figure S5). The retrieval calculations

include a time-invariant prior and so retrieved anomalies

stem entirely from the radiometric data.

To estimate the CO flux F from atmospheric total column

CO, we use the mass balance equation for a fixed volume V:

@CO

@t
¼ F þ f

CH4

tCH4

þ SNMHC �
CO

tCO
�r � (CO � u),

with f � 0.85 the fraction of CH4 oxidized to CO, tCH4
� 9 year

the lifetime of CH4 in the atmosphere, tCO � 0.1 year the life-

time of CO in the atmosphere, SNMHC the CO volume source

due to the oxidation of non-methane hydrocarbons, and u the

air flow velocity vector. We apply the equation to the total air

volume above a fixed region to obtain a relation between a

CO flux perturbation DF at the Earth’s surface and the DCO

anomalies it causes:

DF ¼ @DCO

@t
þ DCO

tCO
þ
ð
@V

DCO � hu, nidf � @DCO

@t
þ DCO

tCO
,

where n is an outwards directed unit normal vector orthog-

onal to a vertical wall @V surrounding the surface region of

interest and df is an infinitesimal area element of @V. The con-

tribution of in- and outflows into and out of the air volume

above the region is negligible if region boundaries are

chosen such that DCO � 0.
(e) Solar-induced fluorescence
Photosynthesis is associated with fluorescence. A small frac-

tion of solar radiation trapped by chlorophyll escapes

instead of being used to fix CO2. This fraction is re-emitted

into the atmosphere from the leaf at larger wavelengths (in

the range of 670 and 800 nm, e.g. [34]) compared with the orig-

inally trapped radiation. Fluorescence has been shown to be

related to productivity [35,36] and thus we use it here as a

proxy for productivity. We specifically use here solar-induced

fluorescence (SIF) data retrieved from GOSAT (Greenhouse

Gases Observation Satellite [37]) measurements at 772 nm

using the physically based retrieval technique described in

Frankenberg et al. [38]. The bias correction procedure, which

is an essential part of the post-retrieval processing, was per-

formed using the European Space Agency Climate Change

Initiative land cover maps [39]. GOSAT measurements over

permanently non-vegetated areas (where zero fluorescence

can be assumed) were identified using these maps in order

to derive radiance-dependent calibration curves on a monthly

basis. Based on these monthly curves, a two-dimensional spline

interpolation was used along time and radiance dimensions
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to obtain the bias correction term for any given GOSAT

sounding. This ensures that the time dependence of the

instrument-related bias is taken into account. The retrievals

are available for the period April 2009 to September 2016.

Monthly compilations of SIF retrievals exhibit missing

values. To obtain sufficient data coverage we, therefore, calcu-

late quarterly (three-monthly) means and similarly calculated

anomalies for three-month periods. Despite lumping three

months together, there are still pixels with no retrievals. To cal-

culate quarterly anomalies we kept track of the number of

existing retrievals on an individual pixel basis and averaged

on a pixel basis. For the comparison of anomalies for specific

areas and three-monthly periods, we calculated region mean

anomalies including only those pixels for which retrievals exist.
year

gr
a

2005 2010 2015

Figure 3. Tropical land gravity anomaly anomalies measured by the
GRACE satellites and global CO2 growth rate anomalies Dg estimated
using equation (2.2).
3. Results
(a) How anomalous is the global carbon cycle response

to the 2015/16 El Niño event compared with earlier
El Niño events?

The largest annual global atmospheric CO2 increase rates

recorded with modern analytical tools (i.e. since 1959) occurred

in 2015 and 2016, with values of 2.94 and 2.85 ppm, respect-

ively (NOAA/ESRL, Boulder, Colorado, USA; ftp://aftp.

cmdl.noaa.gov/products/trends/co2/co2_gr_gl.txt), which

are slightly larger than the increase in 1998 (2.81 ppm).

While of concern per se, to detect changes of El Niño land

vegetation responses at the global scale, the nonlinearly

increasing fossil fuel contribution to the atmospheric CO2

growth rate needs to be separated from other flux contri-

butions. As explained in §2a, to achieve this, we assume a

constant fossil fuel airborne fraction, which we subtract from

the atmospheric carbon inventory growth rate (figure 2).

The anomalies in 2015 and 2016 were positive and when

summed up were approximately 1.7 PgC, with the 2016

anomaly being approximately twice as large as the 2015

anomaly. Including the reduction in CO2 outgassing from

tropical oceans during positive El Niño episodes based on

the air–sea flux estimates summarized in Feely et al. [13],

then the total flux anomaly of global land carbon to the

atmosphere was approximately 1.9–2.1 PgC over the 2 years

(2015–2016).

A comparison with the 1997/98 El Niño anomaly reveals

that the 2015/16 anomaly was not extraordinarily large,
certainly of a smaller magnitude than the 1997/98 anomaly.

This conclusion does not depend much on the period

chosen to estimate the airborne fraction (see §2a). From a veg-

etation process response point of view, the 1997/98 anomaly

is, however, somewhat unusual in that it includes a strong

direct human-impact large-scale peat drainage component

which in 1997/98 led to ‘catastrophic’ peatland/peat forest

fires and carbon release [40]. Thus part of the 1997/98 posi-

tive anomaly is unrelated to climate-induced variation in

productivity and respiration of living vegetation or soil

respiration in a strict sense. A noticeable indirectly El Niño-

related aspect revealed by growth rate anomalies (figure 2)

is the negative (land carbon uptake) anomalies from roughly

2008 onwards.

(b) Temperature and soil water content anomalies
In the spirit of using climate excursions associated with El Niño

to examine tropical vegetation (primarily forest) response/sen-

sitivity to elevated temperatures and drier than usual

conditions, we briefly summarize here measures of

vegetation stress related to climate. The first and primary

measure is plant water stress caused by negative deviations

(or anomalies) of the abundance of soil water (or soil water con-

tent) from the climatological mean representative for a region.

We use here monthly gravity anomaly anomalies measured by

http://www.cpc.ncep.noaa.gov
http://www.cpc.ncep.noaa.gov
http://www.cpc.ncep.noaa.gov
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GRACE (see §2c) as a proxy for soil water stress. Although

these anomalies include both below- and above-ground

water anomalies our use here as a vegetation water stress

indicator is supported by anti-correlation between annual

pan-tropical land/tropical South American land gravity

anomaly anomalies and global atmospheric CO2 growth rate

anomalies Dg (see §2a) shown in figure 3 (Pearson r ¼ 20.69

and 20.72, and p ¼ 0.0046 and 0.0025, respectively).

The main features of vegetation water deficits during the

2015/16 El Niño period according to both gravity anomaly

and precipitation data (figure 4; electronic supplementary

material, figures S3 and S3b, S4) are as follows: (i) In the
Amazon Basin, an east-to-west spreading and steadily

increasing area with large water deficit, with this process start-

ing at the beginning of 2015 (figure S3). The deficit reached its

peak and covers the entire basin by the first quarter of 2016,

with water deficit remaining high throughout the basin until

the final quarter of 2016; the most pronounced negative pre-

cipitation anomaly occurred during the final quarter of 2015

all across the basin. (ii) In Africa a considerable water deficit

developing south of roughly 108 S during the first three quar-

ters of 2016, although the anomaly is not as strong as for

Amazonia. The most pronounced precipitation anomaly for

the region southward of 108 S occurred during the final
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quarter of 2015, i.e. a bit earlier than in the other two regions.

A second notable feature is excessively hot conditions in the

Congo Basin (west equatorial Africa; host to most of the

remaining African humid forests) around February 2016,

while according to gravity anomalies and precipitation esti-

mated by TRMM there were no very clear indications of

drought conditions but this will need further investigation.

(iii) In tropical Southeast Asia strong negative precipitation

anomalies and associated water stress during the second

half of 2015. These three regions experienced strongly elevated

temperatures nearly synchronously with the substantially

drier than usual conditions, with peak temperatures all

exceeding existing historical records (figure 4; electronic

supplementary material, figure S3).
Among the three continents, the climate anomalies for the

Amazon seem to be the strongest, with temperature and pre-

cipitation anomalies centred around the last three months of

2015 and first three months of 2016, and with the effects of

precipitation anomalies on soil moisture lasting over nearly

all of 2016, reflecting the time it takes for water deficits to pro-

pagate through the catchment (electronic supplementary

material, figure S4).

Overall the observed climate anomalies are similar to the

canonical El Niño patterns as described, e.g. by Dai & Wigley

[42], with the tropical Asian precipitation anomaly being

somewhat weaker. The possible exception is the Congo

Basin, which was excessively hot during the first quarter

of 2016.
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Figure 7. Total column carbon monoxide anomalies during 2015/16 of total air column carbon monoxide measured from space (MOPITT [33]).

Table 1. Tropical land carbon flux anomalies.

region period

net carbon flux to atmosphere biomass burning carbon flux

(PgC) (PgC)

tropical South America Sep 2015 to June 2016 0.5+ 0.3 0.05 – 0.1

tropical Africa Nov 2015 to July 2016 0.6+ 0.3 0.08 – 0.16

southern Africa Jan 2016 to May 2016 0.2+ 0.1

tropical Southeast Asia Sep 2015 to Dec 2015 0.2+ 0.1 0.3 – 0.4
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(c) Carbon fluxes estimated from atmospheric CO2 and
inverse modelling of atmospheric transport

What do atmospheric inversion results suggest? Motivated

by the relation between inter-annual variation of the global

atmospheric CO2 growth rate and gravity anomaly anomalies
on tropical land, we compare land CO2 flux anomalies with

gravity anomaly anomalies for tropical South America as

measured by the GRACE satellite mission (figure 5). The

flux anomalies are calculated from the net flux estimates,

which include all processes, also including in particular

fossil fuel emissions. The main outstanding feature is the
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fairly close synchronicity of positive flux anomalies (fluxes to

the atmosphere) with negative gravity anomaly anomalies

and vice versa (Pearson r ¼ 20.42 for monthly means, p ,

1023), which is consistent with the global record (figure 2).

This result demonstrates the inversion’s ability to detect

and attribute expected flux anomalies from the atmosphere

data. Splitting up the flux estimates by those regions with

notable climate anomalies we find the following (figure 6).

According to our calculations, four regions released signifi-

cant amounts of carbon during the 2015–2016 period:

tropical South America, tropical Africa, southern Africa and

tropical East Asia. The losses from tropical South America

and tropical Africa are similar in magnitude while losses

from tropical East Asia and southern Africa are smaller

(table 1). The timing of peak carbon losses differs between
the regions, with a peak in October 2015 for tropical East

Asia, February 2016 for southern Africa, February and March

2016 for tropical Africa, November to December 2015 and

March to April 2016 for tropical South America.

(d) Disentangling processes contributing
to flux anomalies

CO2 estimates based just on atmospheric CO2 concentration

data and inversion of atmospheric transport provide net

fluxes but cannot discern between the different underlying

processes, such as biomass burning, or changes in vegetation

productivity and respiration processes (e.g. by living trees/

vegetation and/or dead organic matter in soils). Here, in

addition, we analyse information from atmospheric total
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column carbon monoxide (CO) for the period 2000–2017,

retrieved from the MOPITT (Measurements of Pollution in

the Troposphere) radiometer on the NASA TERRA polar

orbiting satellite, as an indicator of release of carbon via fire

(figure 7) [31] and solar-induced fluorescence (SIF) retrieved

from GOSAT radiance measurement as an indicator of land

vegetation productivity and covering the period April 2009

to September 2016 (figure 8).

Monthly CO air column anomalies, DCO, from MOPITT

reveal a strong two to three-month-long release pulse from

tropical East Asia centred on October 2015, followed by

release from tropical South America during November and

December 2015, and a pulse from the Congo Basin in Febru-

ary 2016 (figure 7). We apply the mass balance approach

described in §2d to estimate CO flux anomalies from the

three regions for which the MOPITT CO retrievals exhibit dis-

tinct positive anomalies (figure 7) with region boundaries

chosen such that DCO � 0 along the boundaries (figure 7;

electronic supplementary material, table S1). We find quite

small carbon emissions from biomass burning from tropical

South America and Africa (0.1–0.2 PgC each) and larger

emissions from tropical East Asia (0.3–0.4 PgC) (table 1).

The main feature revealed by monthly SIF anomalies

(figure 8) is a strong decrease over tropical South America,

particularly during October to December 2015 and to lesser

extent subsequent months. When spatially integrated over

tropical South America, the decrease during October to

December 2015 is approximately 20%. To obtain a rough esti-

mate of the associated decrease in carbon uptake, we use an

estimate of tropical South American vegetation annual pro-

ductivity (gross primary productivity, GPP) estimated by

Jung et al. [43] based on CO2 flux measurement between

the atmosphere and forest canopies. The annual productivity

of tropical South American vegetation according to Jung et al.
[43] is approximately 18 PgC. According to SIF, we obtain a

three-month reduction in productivity in this region of 20%

and thus obtain a reduction of carbon uptake of approxi-

mately 0.9 PgC during this quarterly period. Given limited

evaluation of the SIF–GPP relationship in the tropics, this

estimate needs to be taken with some caution. For the other

quarterly periods, fluorescence anomalies are lower and

signs of change less coherent across large regions.
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(e) Discussion and conclusion
From a climate perspective, the outstanding development in

the tropics on land over the past decades is rapid warming.

The 2015/16 El Niño adds a positive temperature anomaly

on top of this already rapidly warming ‘background’. It

thus provides a natural sensitivity experiment of tropical

forest vegetation subject to high temperatures in the future.

Because of the already elevated background temperatures,

vegetation responses might be more severe compared with

responses observed during previous El Niño events. Based

on just the global atmospheric CO2 record, we do not find

any obvious sign of anomalously large carbon release

during the 2015/16 El Niño compared with El Niño events

in the past. This does not exclude compensating effects at

continental to regional scales. At these scales, there is a

strong spatial correlation between positive temperature

peaks and negative soil water anomalies diagnosed via grav-

ity anomaly anomalies. Soil water content anomalies are

expected to be related to land carbon exchange anomalies,
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which are indeed consistent with a correlation of anomalies

on land with the global atmospheric CO2 record. By far the

largest negative near-surface water content anomalies

occurred in the Amazon Basin during the final quarter of

2015 and the first quarter of 2016 for the available record

(2002–2017). Negative anomalies also occurred during an

approximately two month period in tropical East Asia

centred on October 2015 and Southern Africa during the

first two quarters of 2016. We estimated continental scale

CO2 flux values based on atmospheric concentration data

from surface station networks complemented by vertical pro-

file data in the Amazon. The results of these calculations

should be taken with some caution, because uncertainty in

model transport can lead to biased flux results (e.g. [44]).

Despite this, the inter-annual variability may still be robust

because transport modelling biases will affect all years in a

similar way, meaning that correlations with environmental

variables can still be reliable. In our study, high correspon-

dence between tropical South American flux anomalies and

negative precipitation anomalies gives some confidence in

the results, as well as the covariation in time with climate

anomalies and atmospheric CO anomalies. We find roughly

equal net flux anomalies from the Amazon and tropical

Africa of around 0.5 PgC each, and somewhat smaller posi-

tive flux anomalies from tropical East Asia and southern

Africa. According to atmospheric CO anomalies, our analysis

attributes anomalous carbon release from tropical East Asia

to fires peaking in October 2015, while consistent with fluor-

escence data from space, biomass burning played a smaller

role in the Amazon where the flux anomaly was reasonably

consistent with the downregulation of primary productivity

during peak negative water anomaly (final quarter of 2015

and first quarter of 2016). The one feature in our results

that seems somewhat unexpected, as this is not usually a

region considered to be affected significantly by El Niño, is

the anomalous flux from tropical Africa coincident with sub-

stantial CO release from the Congo Basin, during the first

quarter of 2016. Our estimate of CO2 released by fires from

tropical Africa explains one-third of the flux anomaly esti-

mated by the atmospheric transport inversion. Although

there was a weak water deficit diagnosed by GRACE, which

may have caused an anomalous decrease in productivity, SIF

data do not give strong support to this mechanism. Thus, in

addition to changes in productivity, enhanced heterotrophic

respiration may have contributed also to this signal.

Finally, we examine how our results summarized together

with main controls in table 2 compared with the recent

analyses of Liu et al. [45] based primarily on satellite data.
For the comparison, it is important to realize that the Liu

et al. study calculated anomalies with reference to flux esti-

mates from the year 2011, a La Niña year. It is well

established that during La Niña years global CO2 growth

rate anomalies are strongly negative. Thus Liu et al.’s point

of reference is quite different from ours. Taking this into

account, our results are similar with the exception of Africa.

At the pan-tropical level, Liu et al. [45] estimate a difference

of flux from land to atmosphere of 2.5 PgC for the period

May 2015 to April 2016 compared with January 2011 to

December 2011. Their specific choice is likely motivated by

maximum positive anomalies. If we use a similar criterion

and thus use the period July 2015 to June 2016, we find a

difference of 2.4 PgC. With regards to tropical Africa, in con-

trast to Liu et al. [45], we find a substantial carbon loss from

tropical Africa at the same time as the very strong heat peak

in the Congo Basin (the beginning of 2016) when a clear CO

anomaly also occurred. Our rough biomass burning estimate

cannot explain this result on its own—thus some downregula-

tion of tropical forest productivity or enhanced respiration

would be needed to explain it. In comparison with Liu et al.
[45], our inverse calculations also attribute less carbon release

from southern Africa during the 2015–2016 El Niño period.
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