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5Millennium Nucleus for Cardiovascular Magnetic Resonance, Chile
6Department of Electrical Engineering, Pontificia Universidad Católica de Chile, Chile
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Abstract

4D Flow Magnetic Resonance Imaging (MRI) is the state-of-the-art technique to
comprehensively measure the complex spatio-temporal and multidirectional patterns
of blood flow. However, it is subject to artifacts such as noise and aliasing, which due
to the 3D and dynamic structure is difficult to detect in clinical practice.

In this work, a new mathematical and computational model to determine the quality
of 4D Flow MRI is presented. The model is derived by assuming the true velocity
satisfies the incompressible Navier-Stokes equations and that can be decomposed by
the measurements umeas plus an extra field w. Therefore, a non-linear problem with
w as unknown arises, which serves as a measure of data quality.

A stabilized finite element formulation tailored to this problem is proposed and
analyzed. Then, extensive numerical examples – using synthetic 4D Flow MRI data

∗Both C. Bertoglio and J. Mura are joint last authors, listed in alphabetical order.
†Corresponding author: c.a.bertoglio@rug.nl
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as well as real measurements on experimental phantom and subjects – illustrate the
ability to use w for assessing the quality of 4D Flow MRI measurements over space
and time.

1 Introduction

Time-resolved 3D flow magnetic resonance imaging, known as 4D Flow MRI, has shown in
the last years potential in assessing cardiovascular diseases since it offers full coverage of
the region of interest, therefore allowing for its analysis after the scan [1, 2]. Additionally,
it allows the computation of several hemodynamic parameters, which can be used as new
biomarkers [2]. However, high-quality 4D Flow in subjects involves long time scans (>20
minutes) even with coarse spatio-temporal resolutions making it challenging for everyday
clinical use. In order to accelerate the acquisition time, several strategies have been proposed,
such as parallel imaging [3, 4] which accelerates the acquisition by exploiting the sensitivity
of multiple receivers, and k-space undersampling [5, 6, 7, 8] which exploits data redundancies
in frequency and time. This scan time reduction comes at the price of reducing the signal-
to-noise ratio (SNR). SNR also decreases when reducing the image’s voxel size. Moreover,
the velocity field can only be obtained under a certain predefined range which depends on
the magnetic gradient setup, therefore being potentially subject of velocity aliasing. Other
artifacts may also appear due to subject’s respiration and motion during the scan.

To the best of the author’s knowledge, quality control of 4D Flow in clinics is based on
calculation of peak/mean flows, mean velocities, flow patterns, and stroke volumes [9, 10, 2].
A more systematic approach is to compute the divergence field of the data: assuming the
blood flow is incompressible, jumps in the divergence field may indicate the presence of
artifacts. Indeed, the incompressibility assumption has been used for denoising [11, 12, 9,
13] and as a regularization term during the reconstruction process [14, 15]. However, an
important limitation of the divergence is that any measured velocity will have ”infinitely”
large divergence compared to its reference value which would be zero. Therefore, to the best
of our understanding, only the spatial distribution of the divergence may be used as an error
indicator but not in absolute terms for image quality check. Moreover, it will be shown later
in the article, measurement artifacts may lead to no important changes in the divergence
field.

Therefore, this work introduces an alternative quantitative approach for assessing 4D
Flow quality by verifying the compatibility with the linear momentum conservation part of
the Navier-Stokes, which when being written appropriately, includes also angular momentum
and mass conservation.

The rest of this article is structured as follows. In Section 2, the mathematical model
will be introduced, and a numerical method will be developed and analyzed. In Section 3,
a set of relevant examples, using synthetic data, will be detailed. Numerical computations
of the new model for several types of artifacts and its comparison against the divergence
of the data are also shown. Results with phantom and subject’s 4D Flow MRI are shown
in Section 4. Finally, in Section 5, we discuss potential applications of this metric in the
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context of reconstruction and processing 4D Flow MRI.

2 The mathematical model

2.1 The continuous problem

We assume a physical velocity field u, which satisfies the conservation of linear momentum
of the incompressible Navier-Stokes equations in the vessel lumen Ω:

ρ
∂u

∂t
+ ρ
(
u · ∇

)
u− µ∆u +∇p = 0 in Ω, (1)

where p is the fluid pressure field, and ρ and µ are the density and dynamic viscosity of the
fluid, respectively. We recall that both the convective representation of the advection term
and Laplacian representation of the viscous term are written in a simplified form using that
∇ · u = 0. Moreover, the constitutive model (incompressible Newtonian model) represented
by the stress terms (viscous plus pressure) is derived by enforcing conservation of angular
momentum.

Let us denote umeas the 4D Flow measurement field. We assume that there exist a field
w, that satisfies:

u = umeas + w in Ω (2)

∇ ·w = 0 in Ω (3)

w = 0 on ∂Ω, (4)

with ∂Ω being the whole boundary of Ω. By writing (1) in weak form, and using relations
(2)-(4), we can formulate the following weak problem: Find (w(t), p(t)) ∈ H1

0 (Ω) × L2
0(Ω)

such that∫
Ω

ρ
∂w

∂t
· v + ρ

(
(umeas + w) · ∇

)
w · v + ρ

(
w · ∇

)
umeas · v + µ∇w : ∇v− p∇ · v + q∇ ·w

= −
∫

Ω

ρ
∂umeas
∂t

· v + ρ
(
umeas · ∇

)
umeas · v + µ∇umeas : ∇v (5)

for all (v, q) ∈ H1
0 (Ω)× L2

0(Ω).
The following remarks are in order.

Remark 1 The left-hand-side of Problem (5) resembles the incompressible Navier-Stokes
equation, up to two additional terms. Unfortunately, none of these terms are (semi-)positive-
definite. Therefore, the analysis of the well posedness of this continuous problem (existence,
uniqueness, time-stability) becomes challenging. However, those properties can be ensured at
the discrete level by including adequate stabilization terms and constraints on the physical
constants.
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Remark 2 Equation (1) uses the so-called convective form of the advective term. While
alternative forms of Equation (5) could be derived starting from other forms for the advection
(e.g., conservative), the resulting discrete problem will need to be stabilized to become a
solvable problem, leading to the same expression for the bilinear form. There will be, however,
a difference in right-hand-side terms. There is, however, no particular reason to choose
one above the other since all formulations are consistent with perfect (i.e., divergence-free)
measurements.

Remark 3 An alternative formulation can be introduced by re-defining Equation (3) as

∇ ·w = −∇ · umeas +
1

|Ω|

∫
∂Ω

umeas · n, (6)

where the second term in the right-hand-side is needed to enforce the compatibility with respect
to the boundary condition (4). However, as will be show later on, this leads w to have in
general larger values than using the divergence-free model, even in places with no or little
measurement errors, reducing its potential utility.

Remark 4 The regularity assumptions required to solve for w are stronger than the usual
perturbations in real data, which are often not additive in nature and present strong jumps
in space and time. Therefore, we do not aim that w is capable of “correcting” the data (e.g.
by computing umeas +w) as it may be the purpose of e.g. data assimilation approaches. The
field w rather aims to provide a complementary metric to detect defects in the measurements.

Remark 5 The choice of homogeneous Dirichlet boundary conditions is based on its con-
sistency with the case of perfect measurements. In contrast, natural boundary conditions are
not consistent: if w = 0 everywhere the pressure p cannot become the physical pressure on
boundaries where homogenous Neumann boundary condition is enforced.

Remark 6 Note that the so-called “Stokes estimator” (STE) method for pressure recon-
struction [16] is recovered dropping the first three terms of the left-hand-side.

2.2 Stabilized finite element formulation

The tetrahedral mesh with characteristic element size h obtained from the segmented medical
image is denoted by Ωh, which is the discrete domain over we define the following functions
spaces

Vh = {w ∈ [H1
0 (Ωh)]

3 : w ∈ [P1(K)]3∀K ∈ Ωh}

and
Qh = {q ∈ L2

0(Ωh) ∩H1(Ωh) : q ∈ P1(K)∀K ∈ Ωh}.

In order to aim for the clinical applicability, it is crucial to use fast and robust numerical
schemes. For the spatial discretization, we adopt Vh and Qh as spaces for w and p, respec-
tively, using stabilized finite elements to ensure solvability. For the time discretization, we
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consider a backward Euler method with fixed time step τ to avoid GCL-type conditions. In
order to avoid a root-finding problem at each time step the non-linear term on w will be
treated semi-implicitly.

The resulting fully discrete stabilized formulation reads as follows. Given w0 = 0, for
k ≥ 1 find (wk, pk) ∈ Vh ×Qh such that

Bk(wk, pk; v, q) = Lk(v, q) (7)

for all (v, q) ∈ Vh ×Qh. The stabilized bilinear form is defined as:

Bk(w, p; v, q) := Ak(w, p; v, q) + Skconv(w; v) + Skpress(w, p; v, q) (8)

with

Ak(w, p; v, q) :=

∫
Ω

ρ

τ
w · v + ρ

(
(ukmeas + wk−1) · ∇

)
w · v + ρ

(
w · ∇

)
ukmeas · v (9)

+µ∇w : ∇v− p∇ · v + q∇ ·w

being the bilinear form associated to the non-stabilized weak form of (5), while the convection
stabilization term is given by

Skconv(w; v) :=

∫
Ω

ρ

2

(
∇ · (ukmeas + wk−1)

)
w · v

and the pressure stabilization term as

Skpress(w, p; v, q) :=
δh2

µ

∫
Ωh

(
ρ
(
(ukmeas + wk−1) · ∇

)
w + ρ

(
w · ∇

)
ukmeas +∇p

)
·
(
ρ
(
(ukmeas + wk−1) · ∇

)
v + ρ

(
v · ∇

)
ukmeas +∇q

)
with δ > 0 some user-defined parameter. Finally, the right-hand-side is given by

Lk(v, q) :=

∫
Ω

ρ

τ
wk−1 · v + `k(v, q)

with

`k(v, q) :=

∫
Ω

fk · v− µ∇ukmeas : ∇v +
δh2

µ

∫
Ωh

fk ·
(
ρ
(
(ukmeas + wk−1) · ∇

)
v + ρ

(
v · ∇

)
ukmeas +∇q

)
and fk = −ρ(ukmeas − uk−1

meas)/τ − ρ
(
ukmeas · ∇

)
ukmeas. Additional theoretical properties of

Problem (5) in terms of its solvability and time stability of the solution are shown in Appendix
A.

Remark 7 The stabilization term Skconv is in general not consistent with the solution of (5).
However, it is consistent when the measurements are perfect since, in such case w = 0 and
∇ · umeas = 0. The stabilization term Skpress is weakly consistent due to the inclusion of h2.
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3 Numerical experiments using synthetic data

3.1 Procedure for synthetic data generation

All testcases were created in the following way:

• A reference flow u is created using a finite element solver setup on an unstructured mesh
of an aorta with a coarctation using high spatial and temporal resolutions. Physiolog-
ically relevant boundary conditions were set. The geometry with boundary conditions
and resulting velocity field are shown in Figure 1. The simulation details are given in
Appendix B.

(a) (b)

Figure 1: Boundary conditions for the simulation with the reference solution obtained for
generate synthetic data sets. In (a) boundary conditions, (b) Velocity vector field in the
reference mesh at peak systole.

• The results of the simulation where interpolated in time with a time step of 0.03 s,
hence downsampled by a factor of 30.

• In order to simulate the 4D Flow MRI acquisition, a complex magnetization field was
computed for every component of the reference velocity as: Mj = m0 exp (iφ0 +
iπuj/venc) with j = 1, 2, 3, with u1, . . . , u3 the time undersampled velocity fields. The
value of φ0 was assumed to be constant in space and time and equal to 7.5 · 10−2 rad ,
and m0 assumed constant and equal to 0.5 on the volume. The venc parameter setup
will be explained in short. The background magnetization field was computed without
any dependence on the velocity as M0 = m0 exp (iφ0).

• Each magnetization field M0, . . . ,M3 was interpolated into a fine voxel-mesh with an
element size of hb = 1 mm. Then, a smoothing filter on space via convolution with
a Gaussian kernel with a standard deviation of 5hb was applied, in order to take into
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account partial volume effects. The filtered magnetization was interpolated into a grid
mesh with the desired image resolution of 2 × 2 × 2 mm3 around the reference mesh.
Such interpolation was performed using a piecewise linear Lagrangian interpolator.
Then, the four components were arranged as a multidimensional array, which will
serve to create the images, denoted as M0,M1,M2,M3.

• We perturbed the magnetizations adding noise and aliasing by:

– The venc parameter was set lower than the peak true velocity. Therefore, when
the velocity (in absolute value) exceeds the venc, the reconstructed velocity will be
wrapped. Two venc parameters as the 150% and 70% of the maximum reference
velocity were chosen, resulting in the values of 123 and 57 cm/s, respectively.

– The magnetization Mj, j = 0, . . . , 3 includes Gaussian noise, having real and
imaginary parts independent noise realizations with standard deviation 0.25. This
results in a velocity noise with a variance of 17.73% of the maximum reference
velocity, in the high venc case, and a variance of 11.41% in the lower venc case.

• Then, the 4D Flow measurements are given by

umeas =
venc

π
angle(M̃j/M̃0),

with / representing an element-wise division of the arrays and M̃j corresponding to the
magnetization perturbed with the noise. Here, the time step index has been omitted
in the description for the sake of readability.

• An image mask is created from the reference simulation on the uniform-grid mesh.
Then, a new semi-structured tetrahedral mesh following the aortic shape is created
using the algorithm reported in [17]. The velocity is defined as a P1 finite element field
on such mesh to visualize the results and quantify the errors to the reference solution
interpolated to the same mesh. The different velocity measurements generated are
shown in Figure 2, first column from left to right.

3.2 Results

Problem (7) was solved using synthetic velocity measurements. In all the cases, δ = 1 was
used for the pressure stabilization term, chosen as the smallest possible value regarding a
local neighborhood insensitive to δ.

The results are shown in Figure 2 at the time of peak systole. For every data set, the two
alternative formulations defined by Equations (3) and (6), refered now as Model A and Model
B were tested, resulting in the fields wA and wB, respectively. Moreover, the difference field
δu = utrue − umeas is shown for comparison with w. Finally, the values for |∇ · umeas| are
shown.

For the non-perturbed measurements (first row, (a)-(d)), w grows in zones where con-
vective effects in the flow are more significant, i.e., mostly after the coarctation. It can be
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observed that when the measurements have no perturbations, wA is negligible compared with
umeas. The exceptions are the convection-dominated regions where w achieves values below
30% of umeas. This could be attributed to the possibility that larger errors in the gradient of
the measurements are more challenging to handle with the proposed stabilized finite element
scheme. The divergence field shows similar behaviour. In contrast, wB presents very large
values in a few spatial locations in spite that the measurements are perturbed only by the
spatial blurring.

In the pure aliased case (second row, (e)-(h)), the divergence appears to be larger after
the coarctation, where aliasing is present. However, in the ascending aorta it appears to
detect aliasing only in a few places. This could be related by the fact that in the case of
a ”straight” flow, a wrapped velocity field does maintain the divergence. In contrast, w
on both models considerably grows where aliasing occurs, compared to the non-perturbed
case, but not as much as δu. Also, a coupling among the components of the field appears,
therefore w on both models, does not point exactly as δu. Note that also not all points with
aliasing are detected, most likely due to the homogenous Dirichlet boundary condition. In
the case of wB, it turns out that its magnitude grows considerably in the regions where no
aliasing is present, while the growth of wA does concentrate around the aliasing.

For the pure noise case, wB presents higher values than wA. Nevertheless, both present
a similar “random” behaviour as δu but with lower magnitude in the case of wA due to its
higher regularity. For the case with noise and aliasing, a combination of the two aforemen-
tioned behaviours is obtained. Note that since the velocity-to-noise ratio is proportional to
the venc, in this case it is smaller than what is shown in the “pure noise scenario” with a
larger venc. The divergence field shows again a small sensitivity to aliasing and exhibits an
overall increment in the presence of noise.

Regarding the differences between both corrector fields, in summary wB presents larger
values in artifact-free zones. wA, on the other hand, can better detect localized perturbations
in the measurements. Moreover, as mentioned in Remark 5 and as it can be appreciated
on Figure 2, the field w does not match δu due to its higher regularity than the perturbed
measured velocities.

Consequently, since the purpose of w is to simply detect faults in the data, we recommend
and adopt Model A for the rest of the manuscript.

Aditionally, a correlation study of the fields ‖w‖ and |∇ · u| for every case with respect
to ‖δu‖ was performed. Only the results obtained by the Model A were used. Pearson
and Spearman correlation coefficients were computed for each field at the moment of peak
systole. Moreover, a rank of significant association was computed between the values of
the fields using the Maximal Information Coefficient estimator (MICe) from [18]. All these
values are shown in Tables 1–4.
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(a) umeas non per-
turbed

(b) w model A (c) w model B (d) δu (e) |∇ · umeas|

(f) umeas aliased (g) w model A (h) w model B (i) δu (j) |∇ · umeas|

(k) umeas noisy (l) w model A (m) w model B (n) δu (o) |∇ · umeas|

(p) umeas

aliased+noisy
(q) w model A (r) w model B (s) δu (t) |∇ · umeas|

Figure 2: Measurement, wA,B, error and divergence field for different measurements: (a)-(e)
non perturbed , (f)-(j) aliased, (k)-(o) noisy and (p)-(t) aliased and noisy.
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‖w‖ |∇ · umeas|
Pearson coeff. 0.1493 -0.0186

Spearman coeff. 0.2214 0.0588
MICe 0.0366 0.0141

Table 1: Non perturbed data

‖w‖ |∇ · umeas|
Pearson coeff. 0.5939 0.2023

Spearman coeff. 0.2510 0.1258
MICe 0.2540 0.1292

Table 2: Only aliased data

‖w‖ |∇ · umeas|
Pearson coeff. 0.0026 0.0035

Spearman coeff. 0.0080 -0.0002
MICe 0.0060 0.0053

Table 3: Only noisy data

‖w‖ |∇ · umeas|
Pearson coeff. 0.4911 0.2045

Spearman coeff. 0.1534 0.0681
MICe 0.1303 0.0360

Table 4: Noisy + aliased data

The ‖w‖ field shows better correlation with‖δu‖ than |∇ · umeas| in cases where aliasing
is present in the measurements. Without aliasing, for both fields the correlation is much
lower, having ‖w‖ a slightly better performance. The MICe coefficient shows higher level of
significance between the fields when aliasing is present as well.

4 Numerical examples using real 4D Flow MRI data

4.1 Experimental phantom

A realistic thoracic aortic phantom was scanned using a clinical 1.5 T MR scanner (Philips
Achieva, Best, The Netherlands) with a four-element phased-array body coil. The phantom
was made of flexible silicone and a 11 mm orifice coarctation made of Technyl was placed
in the descending aorta (for further details of the setup and the phantom see [19, 20]). A
blood mimicking fluid made with 60 % water and 40 % glycerol (Orica Chemicals, Watkins,
CO) was used in the system. The fluid has a density of 1.119 g/cm3, dynamic viscosity of
0.0483 P and T1 value of 900 ms, which are in the range of values for human blood. The
acquision was performed with a venc of 350 cm/s and using a cartesian sampling sequence
with no k-space undersampling involved. In MRI, the noise level of the image increases when
decreasing the voxel size. Therefore, three isotropic voxel sizes (coarse: 2.5mm, mid: 2.0mm
and fine: 1.5mm) were acquired in order to investigate the results of w in front of different
resolutions and SNR levels.

Figure 3 shows the 4D Flow measurements together with their result for w at the moment
of peak systole. Also the divergence of the measurements are included.

First, note that for all three resolutions w tends to grow in zones where the flows becomes
convection dominated, and not necessarily where the velocities are high, see Figure 3 (a) and
(b). For instance, in the three regions of high velocity, the inflow tube and the descending
aorta post stenosis, the inflow tube presents a negligible w value, where we expect The
flow to be closer to a Stokes flow. This observation agrees with the results obtained in the
synthetic case. However, real measurements have an additional source of error, namely the
measurement technique assumes that the velocity field is constant within the time window
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of observation, in this case 40 ms. This induces to larger errors in the data that are not
present in the synthetic case, possibly explaining the higher w values observed in the coarse
voxel case.

When decreasing the voxel size, as expected from the reduction of the signal-to-noise
ratio, w increases with the appearance of artifacts in the measurements. This occurs in
the ascending aorta, in the stenosis, and in the inferior part of the arch. For all voxel sizes
the divergence shows an increment post stenosis, with much lower values in the rest of the
domain. Therefore, at least in this experiment the divergence of the measurements seems
not to be capable of detecting spatial regions with decreased measurement quality, it only
captures the regions where the velocity is larger.

4.2 Subjects

Two healthy volunteers were scanned in the previously described 1.5 Tesla scanner using a
4-channel torso coil. The local committee approved the study, and informed written consent
was obtained from the participants. The acquisition parameters were: FOV in the range
of 192 × 192 × 162 and 224 × 224 × 162 mm3, voxel resolution of 2.0 × 2.0 × 2.5 mm3,
temporal resolution dt = 34 ms, venc = 150 cm/s, 25 cardiac phases, flip angle of 6o and
TR/TE = 4.9 ms/2.9 ms. From the resulting data, only the aorta was segmented in order to
apply our in-house mesh generation algorithm. Afterwards, the problem was solved assuming
a blood density of ρ = 1.2 gr/cm3 and a dynamic viscosity of µ = 0.035 P , same values
taken for the simulation with synthetic data. A study of the impact of these parameters on
the solution w is presented in Appendix C.

Figure 4 shows the 4D Flow measurements, their divergence and the resulting w at peak
systole. In all the cases w grows when flow artifacts appear in the measurements.

Volunteer 1 shows a highly regular blood flow which results in a small w. The divergence
presents no large peaks. This suggests that the measurements are mostly perturbed by noise.
Only in the ascending aorta w takes slightly higher values, probably due to larger convective
effects in that region. The divergence field shows a concentrated spike on the top of the
aortic arch likely to be caused by a boundary artifact, which is not detected by w due to
the homogenous boundary condition.

Volunteer 2 shows a case where the velocity measurements are more perturbed, in particu-
lar on three different locations. In the ascending aorta, closer to the heart, the measurements
presents discontinuities at certain locations. This is confirmed by the high values of w, while
the divergence seems almost not to be perturbed, compared to other regions. In the aortic
arch, all three fields appear to be perturbed. A last small region with larger w and divergence
values appear in the distal part of the descending aorta.

5 Conclusion

We presented a new mathematical model – including a tailor-made discretization – to detect
imperfections in full-field velocity measurements as 4D Flow MRI can obtain it. The derived
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(a) umeas coarse (b) w (c) |∇ · umeas|

(d) umeas coarse (e) w (f) |∇ · umeas|

(g) umeas coarse (h) w (i) |∇ · umeas|

Figure 3: Results for aortic phantom data, for three spatial resolutions of the measurements:
measurements (left), (mid )w, and (right) divergence of the measurements.
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(a) umeas for volunteer 1 (b) w (c) |∇ · umeas|

(d) umeas for volunteer 2 (e) w (f) |∇ · umeas|

Figure 4: 4D Flow measurements, the corresponding w, velocity and divergence fields for
the volunteers at the time of peak systole.
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model uses data consistency with the incompressible Navier-Stokes equations, leading to a
new vector field w, used as an indicator to check the compatibility of the data with the
physics induced by Navier-Stokes.

Synthetic data experiments show the ability of the proposed approach to detect typical
artifacts in 4D Flow MRI images, such as noise and aliasing, more robustly than computing
the divergence of the measurements. With real 4D Flow MRI, we showed how w increases
as the data quality decreases. That indicator mark regions where the data could be misrep-
resenting the blood flow, which is a valuable information when further flow quantification
needs to be performed. In our experiments, we observed how some of these errors were not
detected using the divergence as indicator.

At representative spatial and temporal resolutions of the data, computations of the pro-
posed finite element discretization results take about 50 seconds without any parallelization
using standard personal computers. That makes its clinical application feasible, since most of
the burden lies in the blood lumen segmentation, where several flow markers are quantified.

Our work still presents some limitations. Concerning the numerical scheme, more ad-
vanced discretizations could be investigated to reduce the vector values arising from the
discretization itself, particularly in convection-dominated regions. Moreover, the proposed
discretization of w can not fully capture strong discontinuities in the measurements, e.g., in
aliasing-contaminated measurements, mainly due to the regularity of the solution imposed
by the discrete spaces used in this work. Therefore future work could consist in investigating
the application of Discontinuous Galerkin approaches.

Another limitation of this study concerns the measurement generation in the synthetic
data example. The analysis did not consider variability, due to a time blurring effect after
several cardiac cycles, which occurs in the MRI measurement process due to sequential filling
of the frequency space, respiratory motion artifacts, among others.

A Well posedness analysis of the discrete solution

A.1 Existence and uniqueness of the discrete solution

The purpose is now to determine if problem (7) is well-posed by verifying if it fullfills Lax-
Milgram theorem.

First, note that ukmeas ∈ [H1(Ωh)]
3 for all k since the velocity data is bounded and

interpolated to P1 finite elements.
Denote the space of the whole solution vector W = Vh × Qh, then we can prove the

following results.

Lemma 1 The operator ‖ · ‖W : W → R defined by

‖(v, q)‖2
W := β‖v‖2

H1(Ωh) + Skpress(v, q; v, q)

is a norm on W = Vh ×Qh for β > 0.
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Proof The first term defines a norm in Vh and the second term is a seminorm in W , so
‖ · ‖W is a seminorm in W . It remains to proof that ‖(v, q)‖W = 0 ⇒ (v, q) = 0. Indeed,
the first two terms have to be zero and therefore v = 0. Therefore, ∇q is a constant and
also zero-valued since q ∈ Qh. �

Proposition 1 For v,w ∈ Rd,C ∈ Rd×s the following relation holds:

w ·Cv ≤ ‖C‖∞‖w‖1‖v‖1 ≤ d‖C‖∞‖w‖2‖v‖2

with ‖ ‖m denoting the `m-norm in Rd.

Proof Directly from the proposition’s definition. �

Lemma 2 There exists α > 0 such that:

Bk(w, p;w, p) > α‖(w, p)‖2
W (10)

∀ (w, p) ∈ W\{0} under the condition:

ρ/τ + C−2
Ω µ/2− ρ3‖∇ukmeas‖∞ > 0. (11)

Proof Using standard arguments, Poincaré’s inequality and Lemma 1 the following relation
holds:

Ak(w, p; w, p) + Skconv(w; w) =

∫
Ω

ρ

τ
‖w‖2

2 + µ‖∇w‖2
2 + ρ(w · ∇)ukmeas ·w

≥
(
ρ

τ
+

µ

2C2
Ω

)
‖w‖2

L2(Ωh) + ρ

∫
Ω

(w · ∇)ukmeas ·w +
µ

2
‖∇w‖2

L2(Ωh)

≥
(
ρ

τ
+

µ

2C2
Ω

− ρ3‖∇ukmeas‖∞
)
‖w‖2

L2(Ωh) +
µ

2
‖∇w‖2

L2(Ωh)

≥ β‖w‖2
H1(Ωh)

with
β = min(ρ/τ + C−2

Ω µ/2− ρ3‖∇ukmeas‖∞,
µ

2
) > 0

under condition (11). By adding the remaining term Skpress(w, p; w, p), relation (10) follows
directly from the definition of the norm. �

Lemma 3 There exists a constant M > 0 such that:

|Bk(w, p; v, q)| ≤M‖(w, p)‖W‖(v, q)‖W

for all (w, p), (v, q) ∈ W .
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Proof Since

|Bk(w, p; v, q)| ≤ |Ak(w, p; v, q)|+ |Skconv(w; v)|+ |Skpress(w, p; v, q)|,

using Cauchy-Schwarz inequality and adding the missing norm terms in w we obtain

|Skpress(w, p; v, q)| ≤ ‖(w, p)‖W‖(v, q)‖W .

For the other terms, we can integrate the convective term by parts (hence canceling out
the convective stabilization) and the pressure and divergence terms. Proceeding then using
Cauchy-Schwarz:

|Ak(w, p; v, q) + Skconv(w; v)| ≤
(ρ
τ

+ ρ‖∇ukmeas‖∞
)
‖w‖L2(Ωh)‖v‖L2(Ωh)

+ρ‖ukmeas + wk−1‖∞‖w‖L2(Ωh)‖∇v‖L2(Ωh)

+µ‖∇w‖L2‖∇v‖L2 + ‖∇p‖L2(Ωh)‖v‖L2(Ωh) + ‖∇q‖L2(Ωh)‖w‖L2(Ωh)

≤
(
ρ

τβ
+
ρ

β
‖∇ukmeas‖∞ +

ρ

β
‖ukmeas + wk−1‖∞ +

µ

β

)
‖(w, p)‖W‖(v, q)‖W

+
1√
β
‖∇p‖L2(Ωh)‖(v, q)‖W +

1√
β
‖∇q‖L2(Ωh)‖(w, p)‖W .

And to end the proof we need to bound the pressure gradient:

‖∇p‖L2(Ωh) ≤ ‖ρ
(
(ukmeas + wk−1) · ∇

)
w + ρ

(
w · ∇

)
ukmeas +∇p‖L2(Ωh)

+‖ρ
(
(ukmeas + wk−1) · ∇

)
w + ρ

(
w · ∇

)
ukmeas‖L2(Ωh)

≤
√

µ

δh2
‖(w, p)‖W + ‖ρ(ukmeas + wk−1)‖L2(Ωh)‖∇w‖L2(Ωh) + ‖ρ∇ukmeas‖L2(Ωh)‖w‖L2(Ωh)

≤
(√

µ

δh2
+

1√
β
‖ρ(ukmeas + wk−1)‖L2(Ωh) +

1√
β
‖ρ∇ukmeas‖L2(Ωh)

)
‖(w, p)‖W .

�

Lemma 4 There exists a constant C > 0 such that:

|Lk(v, q)| ≤ C‖(v, q)‖W .

Proof We proceed using Cauchy-Schwarz inequality and adding the reminder terms to obtain
the W -norm:

|Lk(v, q)| ≤ ρ

τ
‖wk−1‖L2(Ωh)‖v‖L2(Ωh) + |`k(v, q)|

≤ ρ

τ
√
β
‖wk−1‖L2(Ωh)‖(v, q)‖W + |`k(v, q)|.
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The last term can be bounded as:

|`k(v, q)| ≤ ‖fk‖L2(Ωh)‖v‖L2(Ωh) + µ‖∇ukmeas‖L2(Ωh)‖v‖L2(Ωh)

+

√
δ
h2

µ
‖fk‖L2(Ωh)

√
δ
h2

µ
‖
(
ρ
(
(ukmeas + wk−1) · ∇

)
v + ρ

(
v · ∇

)
ukmeas +∇q

)
‖L2(Ωh)

≤

(
1

β
‖fk‖L2(Ωh) +

µ

β
‖∇ukmeas‖L2(Ωh) +

√
δ
h2

µ
‖fk‖L2(Ωh)

)
‖(v, q)‖W .

�

Theorem 1 There exists a unique solution in W of Problem (7) under condition (11) for
all k > 0.

Proof Since w0 = 0 ∈ [H1(Ω)]3, the bilinear and linear forms fulfill the requirements of the
Lax-Milgram Theorem (i.e. Lemmas 2–4) for k ≥ 1. �

A.2 Time stability of the discrete solution

We can furthermore prove the following energy balance:

Theorem 2 For (wk, pk) solution of Problem (7), with `(v, q) = 0 it holds

‖wk‖2
L2(Ω) ≤ ‖wk−1‖2

L2(Ω) (12)

under the condition
µ ≥ C2

Ω3ρ‖∇ukmeas‖∞ (13)

Proof Testing (7) with v = wk and q = pk and using similar arguments as in Lemma 2, it
is obtained

ρ

2τ
‖wk‖2

L2(Ωh) −
ρ

2τ
‖wk−1‖2

L2(Ωh) = −µ‖∇wk‖2
L2(Ωh) −

∫
Ω

(
ρ
(
wk · ∇

)
ukmeas

)
·wk

− ρ

2τ
‖wk −wk−1‖2

L2(Ωh) − Skpress(wk, pk; wk, pk),

where the two first terms in the right-hand-side come from the continuous problem, and
the two last terms are dissipative due to the numerical scheme. Bounding the former using
Poincaré’s inequality and the later by zero we obtain

ρ

2τ
‖wk‖2

L2(Ωh) −
ρ

2τ
‖wk−1‖2

L2(Ωh) ≤ (−µC−2
Ω + 3ρ‖∇ukmeas‖∞)‖wk‖2

L2(Ωh),

which combined with condition (13) leads to relation (12). �

Remark 8 Condition (13) is very conservative and in the test cases we observe that the
condition is not satisfied. However, in our computations, we have never obtained instabilities,
even in situations with temporal jumps in the data as when velocity aliasing appears.
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B Reference synthetic aortic flow

Synthetic data was generated in a drawn-aortic mesh with a mild coarctation in the descend-
ing aorta and consist of 2,752,064 tetrahedrons and 510,755 vertices. An incompressible
Navier-Stokes problem was solved with a monolithic formulation with P1/P1 finite elements
and with Temam and PSPG stabilizations. The boundary conditions were set as follows.
At Γinlet the following velocity profile was imposed:

uinlet = ustokes f(t) n,

where ustokes corresponds to a profile resulting from solving a transient Stokes problem with
a non-homogenoeus Neumann boundary condition on Γinlet in the same geometry, while f(t)
is a given waveform defined as

f(t) =

sin(
πt

T
) if t ≤ T

π

T
(t− T )e−κ(t−T ) if Tc > t > T.

Here, T gives the opening time of the heart valve, Tc the total duration of the cardiac cycle
and 1/κ represents the typical time for the closing of the valve. Then, a non-slip condition
for the velocity at the walls Γwall was imposed. Finally, a three-element Windkessel boundary
condition for the rest of the outlets was applied, i.e.:

µ
∂u

∂n
− pn = −P`(t)n on Γw,`, ` = 1, . . . , K

where K denotes the number of outlets. The term P`(t) is computed by solving the equations:

P` = Rp,` Q` + π`

Q` =

∫
Γ`

u · n

Cd,`
dπ`
dt

+
π`
Rd,`

= Q`,

(14)

where Rp,` and Rd,` represent the resistance of the vasculature proximal and distal to Γ`, re-
spectively, and Cd,` the compliance of the distal vessels. The Windkessel constants (Rp, C,Rd)
were tuned by hand in order to have a standard physiological flow regime to achieve approx-
imately 70%/30% split in the peak flow rate between the descending aorta and supra-aortic
branches [19, 21].

For the physical parameters of the fluid and the constants of the Windkessel models
see Table 5. Additionally, blackflow stabilization was added in every outlet of the system
[22]. The initial conditions are set as u0 = 0 and π0

` = 85 mmHg for ` = 1, . . . , K, which
correspond to approximately the periodic state of the 3D-0D system. The simulation was
performed with a total time of Tf = 0.8 s with a timestep of dt = 0.001 s.
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Parameter Value
ρ (gr · cm3) 1.2
µ (P ) 0.035
U (cm · s−1) 75
Tc (s) 0.80
T (s) 0.36
κ (s−1) 70

Γ1 Γ2 Γ3 Γ4

Rp (dyn · s · cm−5) 480 520 520 200
Rd (dyn · s · cm−5) 7200 11520 11520 4800
C (dyn−1 · cm5) 4 · 10−4 3 · 10−4 3 · 10−4 4 · 10−4

Table 5: Physical parameters and numerical values of the three-element Windkessel param-
eters for every outlet.

(a) ||w||H1 for volunteer 1 (b) ||w||H1 for volunteer 2

Figure 5: Comparison between norms of the corrector field under three different dynamic
viscosity values.

C Viscosity sentivity study

In order to know how sensitive is the corrector field w to variations of the dynamic viscosity
parameter µ, we computed two fields using the values µ− = 0.0175 P and µ+ = 0.070 P
with the 4D Flow data set acquired for the healthy volunteers. These values are in a 50%
range of reference value for human blood used in this work (µ0 = 0.035 P ), more concretely,
we computed the H1-norm time curves of the corrector field over time, which are shown in
Figure 5. Note that, as the second volunteer has relatively higher velocities, the effect of the
viscosity will be “hidden” by the dominance of the convective forces within the fluid.

It can be seen that higher differences start to appear during diastole, when the Reynolds
number are relatively small compared with the starting of the cycle. This can be explained by
the dominance of drag forces in a low velocity regime. In Volunteer 1, the relative difference
of the H1-norm is no more than a 15% of the values obtained using µ0. The latter can be
confirmed from the Figure 6, in which the fields are shown at t = 0.6 s, corresponding to
the time instant where differences are maximal. In conclusion, within a reasonable interval
of viscosity values no major differences in the corrector fields are observed. Therefore, we
can safely adopt the reference value µ0 = 0.035 P .
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(a) w using µ− for volunteer 1 (b) w using µ0 for volunteer 1 (c) w using µ+ for volunteer 1

(d) w using µ− for volunteer 2 (e) w using µ0 for volunteer 2 (f) w using µ+ for volunteer 2

Figure 6: Corrector fields at t = 0.6 s. The arrow scale have been remained the same with
respect to the scaling used in the rest of this work for a better comparison.
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