TABLE 1: Basic facts on AutoDL challenges

2

metric.

Acknowledging the difficulty of engineering universal AutoML solutions, we first organized four preliminary challenges. Each of them focused on a specific

Abstract-This paper reports the results and post-challenge analyses of ChaLearn's AutoDL challenge series, which helped sorting out a profusion of AutoML solutions for Deep Learning (DL) that had been introduced in a variety of settings, but lacked fair comparisons. All input data modalities (time series, images, videos, text, tabular) were formatted as tensors and all tasks were multi-label classification problems. Code submissions were executed on hidden tasks, with limited time and computational resources, pushing solutions that get results quickly. In this setting, DL methods dominated, though popular Neural Architecture Search (NAS) was impractical. Solutions relied on fine-tuned pre-trained networks, with architectures matching data modality. Post-challenge tests did not reveal improvements beyond the imposed time limit. While no component is particularly original or novel, a high level modular organization emerged featuring a "meta-learner", "data ingestor", "model selector", "model/learner", and "evaluator". This modularity enabled ablation studies, which revealed the importance of (off-platform) meta-learning, ensembling, and efficient data management.

Experiments on heterogeneous module combinations further confirm the (local) optimality of the winning solutions. Our challenge legacy includes an ever-lasting benchmark (http://autodl.chalearn.org), the open-sourced code of the winners, and a free "AutoDL self-service". Index Terms-AutoML, Deep Learning, Meta-learning, Neural Architecture Search, Model Selection, Hyperparameter Optimization ✦ t

INTRODUCTION

The AutoML problem asks whether one could have a single algorithm (an AutoML algorithm) that can perform learning on a large spectrum of tasks with consistently good performance, removing the need for *The first three authors contributed equally. The other authors are in alphabetical order of last name. The corresponding author is: Zhengying Liu (zhengying.liu@inria.fr), with Université Paris-Saclay.

human expertise (in defiance of "No Free Lunch" theorems [START_REF] Wolpert | No free lunch theorems for optimization[END_REF], [START_REF] Wolpert | The Lack of A Priori Distinctions Between Learning Algorithms[END_REF], [START_REF] Wolpert | The Supervised Learning No-Free-Lunch Theorems[END_REF]). Our goal is to evaluate and foster the improvement of methods that solve the AutoML problem, emphasizing Deep Learning approaches. To that end, we organized in 2019 the Automated Deep Learning (AutoDL) challenge series [START_REF] Liu | Towards Automated Deep Learning: Analysis of the Au-toDL challenge series 2019[END_REF], which provides a reusable benchmark suite. Such challenges encompass a variety of domains in which Deep Learning has been successful: computer vision, natural language processing, speech recognition, as well as classic tabular data (feature-vector representation).

AutoML is crucial to accelerate data science and reduce the need for data scientists and machine learning experts. For this reason, much effort has been drawn towards achieving true AutoML, both in academia and the private sector. In academia, AutoML challenges [START_REF] Guyon | Analysis of the AutoML Challenge series 2015-2018[END_REF] have been organized and collocated with top machine learning conferences such as ICML and NeurIPS to motivate AutoML research in the machine learning community. The winning approaches from such prior challenges (e.g. auto-sklearn [START_REF] Feurer | Efficient and Robust Automated Machine Learning[END_REF]) are now widely used both in research and in industry.

More recently, interest in Neural Architecture Search (NAS) has exploded [START_REF] Elsken | Neural architecture search: A survey[END_REF], [START_REF] Baker | DESIGNING NEURAL NETWORK ARCHITECTURES USING REIN-FORCEMENT LEARNING[END_REF], [START_REF] Negrinho | DeepArchitect: Automatically Designing and Training Deep Architectures[END_REF], [START_REF] Cai | Proxyless-NAS: Direct neural architecture search on target task and hardware[END_REF], [START_REF] Liu | DARTS: differentiable architecture search[END_REF]. On the industry side, many companies such as Microsoft [START_REF] Fusi | Probabilistic matrix factorization for automated machine learning[END_REF] and Google are developing AutoML solutions. Google has also launched various AutoML [START_REF] Cortes | AdaNet: Adaptive structural learning of artificial neural networks[END_REF], NAS [START_REF] Zoph | Neural Architecture Search with Reinforcement Learning[END_REF], [START_REF] Real | Large-scale evolution of image classifiers[END_REF], [START_REF] Pham | Efficient neural architecture search via parameters sharing[END_REF], [START_REF] Real | AutoML-Zero: Evolving Machine Learning Algorithms From Scratch[END_REF], and meta-learning [START_REF] Finn | Model-agnostic meta-learning for fast adaptation of deep networks[END_REF], [START_REF] Finn | Online meta-learning[END_REF] research efforts. Most of the above approaches, especially those relying on Hyper-Parameter Optimization (HPO) or NAS, require significant computational resources and engineering time to find good models. Additionally, reproducibility is impaired by undocumented heuristics [START_REF] Yang | Nas evaluation is frustratingly hard[END_REF]. Drawn by the aforementioned great potential of AutoML in both academia and industry, a collaboration led by ChaLearn, Google and 4Paradigm was launched in 2018 and a competition in AutoML applied to Deep Learning was conceived, which was the inception of the AutoDL challenge series. To our knowledge, this was the first machine learning competition (series) ever soliciting AutoDL solutions. In the course of the design and implementation we had to overcome many difficulties. We made extensive explorations and revised our initial plans, leading us to organize a series of challenges rather than a single one. In this process, we formatted 66 datasets constituting a reusable benchmark resource. Our data repository is still growing, as we continue organizing challenges on other aspects of AutoML, such as the recent AutoGraph competition. In terms of competition protocol, our design provides a valuable example of a system that evaluate AutoML solutions, with features such as (1) multiple tasks execution aggregated with average rank metric; (2) emphasis on any-time learning that urges trade-off between accuracy and learning speed; (3) separation of feedback phase and final blind test phase that prevents leaderboard overfitting. Our long-lasting effort in preparing and running challenges for 2 years is harvested in this paper, which analyses more particularly the last challenge in the series (simply called AutoDL), which featured datasets from heterogeneous domains, as opposed to previous challenges that were domain specific.

The AutoDL challenge analysed in this paper is the culmination of the AutoDL challenge series, whose major motivation is two-fold. First, we desire to continue promoting the community's research interests on AutoML to build universal AutoML solutions that can be applied to any task (as long as the data is collected and formatted in the same manner). By choosing tasks in which Deep Learning methods excel, we put gentle pressure on the community to improve on Automated Deep Learning. Secondly, we create a reusable benchmark for fairly evaluating AutoML approaches, on a wide range of domains. Since computational resources and time cost can be a non-negligible factor, we introduce an any-time learning metric called Area under Learning Curve (ALC) (see Section 2.3) for the evaluation of participants' approaches, taking into consideration both the final performance (e.g. accuracy) and the speed to achieve this performance (using wall-time).

As far as we know, the AutoDL challenges are the only competitions that adopt a similar any-time learning For domain-specific challenges such as AutoCV, AutoCV2, AutoNLP and AutoSpeech, the challenge results and analysis are presented in [START_REF] Liu | Towards Automated Deep Learning: Analysis of the Au-toDL challenge series 2019[END_REF] and some basic information can be found in Table 1. During the analysis of these previous challenges, we already had several findings that were consistent with what we present in this paper. These include the winning approaches' generalization ability on unseen datasets. which is an enormous asset in many applications needing a quick turnover and for users having modest computational resources.

Finally, from the research point of view, a burning question is whether progress was made in "metalearning", the art of learning from past tasks to perform better on new tasks? There is evidence that the solutions provided by the participants generalize well to new tasks, since they performed well in the final test phase. To attain these results, seven out of the nine top ranking teams reported that they used the provided "public" datasets for meta-learning purposes.

In Section 5.1 we used ablation studies to evaluate the importance of using meta-learning and in Section 5.4

we analyzed how well the solutions provided metageneralize.

Thus, while we are still far from an ultimate Au-toML solution that learns from scratch for ALL domains (in the spirit of [START_REF] Real | AutoML-Zero: Evolving Machine Learning Algorithms From Scratch[END_REF]), we made great strides with this challenge towards democratizing Deep Learning by significantly reducing human effort. The intervention of practitioners is reduced to formatting data in a specified way; we provide code for that at https://autodl.chalearn.org, as well as the code of the winners.

The contributions of this work are:

• We provide a viable and working example system that evaluates AutoML and AutoDL solutions, using average rank, multiple-task execution and any-time learning metric;

•

We provide an end-to-end toolkit We explore the possibility of combining different approaches for a stronger approach and it turns out to be hard, which suggests the local optimality of the winning methods;

•

We study the impact of some design choices (such as the time budget and the parameter t 0)

and justify these choices.

The rest of this work is organized as follows. In Section 2, we give a brief overview of the challenge design (see [START_REF] Liu | Towards Automated Computer Vision: Analysis of the AutoCV Challenges 2019[END_REF] for detailed introduction). Then, descriptions of winning methods are given in Section 4 and in Appendix. Post-challenge analyses, including ablation study results, is presented in Section 5. Lastly, we conclude the work in Section 6.

CHALLENGE DESIGN

Data

In AutoDL challenges, raw data (images, videos, audio, text, etc) are provided to participants formatted in a uniform tensor manner (namely TFRecords, a standard generic data format used by TensorFlow). (2) having a relatively large number of test examples to ensure reasonable error bars (at least 1 significant digit) [START_REF] Guyon | What Size Test Set Gives Good Error Rate Estimates?[END_REF].

For the datasets of AutoDL challenge, we are not releasing their identities at this stage to allow us reusing them in future challenges. Some potential uses are discussed in Section 6. However, we summarize their name, domain and other meta-features in Table 2.

These datasets will appear in our analysis frequently.

Blind testing

A hallmark of the AutoDL challenge series is that the months. Obviously, since they made so many submissions, the participants could to some extent get used to the feedback datasets. For that reason, we also had:

2) A final phase using ten fresh datasets. Only ONE FINAL CODE submission was allowed in that phase.

Since this was a complete blind evaluation during BOTH phases, we provided additional "public" datasets for practice purposes and to encourage metalearning.

We ran the challenge on the CodaLab platform (http://competitions.codalab.org), which is an open source project of which we are community lead. Co-daLab is free for use for all. We use to run the cALCulations a donation of Google of $100,000 cloud credits.

We prepared a docker including many machine learning toolkits and scientific programming utilities, such as Tensorflow, PyTorch and scikit-learn. We ran the jobs of the participants in virtual machines equipped with NVIDIA Tesla P100 GPUs. This is because all teams adopted a domain-dependent approach and some teams simply used the code of Baseline 3 for certain domains (text in this case).

Metric

The AutoDL challenge encouraged learning in a short time period both by imposing a small time budget of 20 minutes per task and by using an "any-time learning" metric. Specifically, within the time budget, the algorithm could make several predictions (as many as they wanted), along the whole execution. This allowed us to use as performance score the Area under the Learning Curve (ALC):

ALC = 1 0 s(t)d t(t) = T 0 s(t) t′ (t)dt = 1 log(1 + T /t 0) T 0 s(t) t + t 0 dt (1)
where s(t) is the performance score (we used the NAUC score introduced below) at timestamp t and t is the transformed time

t(t) = log(1 + t/t 0) log(1 + T /t 0) . (2
)
Here T denotes the time budget in seconds (e.g. T = 1200) and t 0 is a pre-defined time parameter, also in seconds (e.g. t 0 = 60). Examples of learning curves can be found in Figure 2). The participants can train in increments of a chosen duration (not necessarily fixed) to progressively improve performance, until the time limit is attained. Performance is measured by the NAUC or Normalized Area Under ROC Curve (AUC) [START_REF] Brazdil | A comparison of ranking methods for classification algorithm selection[END_REF] suggests that average rank is satisfying, compared to other ranking methods, in terms of rank correlation with unseen tasks. We are running similar experiments on AutoDL data and those results hold.

N AU C = 2 × AU C -

Baseline 3 of AutoDL challenge

As in previous challenges (e.g. AutoCV, AutoCV2, AutoNLP and AutoSpeech), we provided 3 baselines (Baseline 0, 1 and 2) for different levels of use: Baseline 0 is just constant predictions for debug purposes, Baseline 1 a linear model, and Baseline 2 a CNN (see [START_REF] Liu | Towards Automated Computer Vision: Analysis of the AutoCV Challenges 2019[END_REF] for details). In the AutoDL challenge, we provided additionally a Baseline 3 which combines the winning solutions of previous challenges (i.e. Baseline 3 first infers the domain/modality from the tensor shape and then apply the corresponding winning solution on this domain). And for benchmarking purposes, we ran Baseline 3 on all 66 datasets in all AutoDL challenges (public or not) and the results are shown in Figure 3. Many participants used Baseline 3 as a starting point to develop their own method. For this reason, we describe in this section the components of Baseline 3 in some details.

Vision domain: winning method of AutoCV/Au-toCV2

The wining solution of AutoCV1 and AutoCV2 Challenges [START_REF] Liu | Towards Automated Computer Vision: Analysis of the AutoCV Challenges 2019[END_REF], i.e., kakaobrain, is based on Fast Au-toAugment [START_REF] Lim | Fast autoaugment[END_REF], which is a modified version of the AutoAugment [START_REF] Cubuk | Autoaugment: Learning augmentation strategies from data[END_REF] approach. Instead of relying on human expertise, AutoAugment [START_REF] Cubuk | Autoaugment: Learning augmentation strategies from data[END_REF] The backbone architecture used is ResNet-18 (i.e.,

ResNet [START_REF] He | Deep residual learning for image recognition[END_REF] with 18 layers).

Text domain: winning method of AutoNLP

For the text domain, Baseline 3 uses the code from the 2nd place team upwind flys in AutoNLP since we and heavy but more accurate models like LSTM [START_REF] Hochreiter | Long short-term memory[END_REF] and BERT [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF]. They first use light models (such as linear SVC), but the meta-controller switches eventually to other models such as neural networks, with iterative training. If the AUC drops below a threshold or drops twice in a row, the model is switched, or the process is terminated and the best model ever trained is chosen, when the pool is exhausted. with smaller numbers of filters/channels/kernels) and

VggVox [START_REF] Chung | Voxceleb2: Deep speaker recognition[END_REF], finally (bidirectional) LSTM [START_REF] Hochreiter | Long short-term memory[END_REF], with attention mechanism. This strategy allows to make fast early predictions and progressively improves models performance over time to optimize the anytime performance metric.

Tabular domain

As there were no previous challenge for the tabular with ReLU activation and batch normalization. We keep the same architecture for all datasets in this domain. DAE loss is a L1 loss on non-missing data and classifier loss is a sigmoid cross entropy.

AUTODL CHALLENGE RESULTS

The AutoDL challenge (the last challenge in the Au- to our challenge rules, only teams that provided a description of their approach (by filling out some fact sheets we sent out) were eligible for getting a ranking in the final phase. We received 8 copies of these fact sheets and thus only these 8 teams were ranked. These teams are (alphabetical order): DeepBlueAI, DeepWisdom, frozenmad, Inspur AutoDL, Kon, PASA NJU, surromind, team zhaw. One team (automl freiburg) made a late submission and isn't eligible for prizes but will be included in the post-analysis for scientific purpose.

The final ranking is computed from the performances on the 10 unseen datasets in the final phase.

To reduce the variance from diverse factors such as randomness in the submission code and randomness of the execution environment (which makes the exact ALC scores very hard to reproduce since the walltime is hard to control exactly), we re-run every submission several times and average the ALC scores.

The average ALC scores obtained by each team are shown in Figure 4 (the teams are ordered by their final ranking according to their average rank). From this figure, we see that some entries failed constantly on some datasets such as frozenmad on Yolo, Kon on Marge and PASA NJU on Viktor, due to issues in their code (e.g. bad prediction shape or out of memory error).

In addition, some entries crashed only sometimes on certain datasets, such as Inspur AutoDL on Tal, whose cause is related to some preprocessing procedure on text datasets concerning stop words. Otherwise, the error bars show that the performances of most runs are stable.

WINNING APPROACHES

A summary of the winning approaches on each domain can be found in Table 3. Another summary using a categorization by machine learning techniques can be found in Table 4. We see in 6).

DeepWisdom (AutoDL challenge winner) shows significant improvement over baseline 3, which included top methods of previous challenges in the series.

workflow shared by almost all teams (see Figure 5).

We note that the module "data" includes not only traditional data of example-label pairs but also metadata, metric, budgets and past performances. These are all potential useful information for meta-learning.

Data are ingested by a Data Ingestor that consists of many sub-modules such as preprocessing, data augmentation, feature engineering and data loading management. Ingested data are then passed to the model/learner for learning and then they are both used by an Evaluator for evaluation (e.g. with a train/validation split). A Meta-learner can be applied (offline due to our challenge protocol) to accelerate all sub-modules of the model/learner AND optionally improved the Model Selector and the Data Ingestor, based on the meta-data of the current task and poten-tially a meta-dataset of prior tasks (e.g. those provided as public datasets). We believe that this AutoML workflow concisely summarizes the increasingly sophisticated AutoML systems found nowadays and provides the direction for a universal AutoML API design in the future (which is work in progress). This workflow will also be useful for the analysis in Section 5.

The more detailed descriptions for the approaches of the top-3 winning teams and automl freiburg can be found in the Appendix.

POST-CHALLENGE ANALYSES

We carry out post-challenge analyses from different aspects to understand the results in depth and gain useful insights. One central question we ask ourselves is how the components (such as meta-learning, data loading and ensemble), in each approach, affect the January 8, 2022 DRAFT speech/times series, text, tabular (and then another cycle in this order). More information on the task can be found in Table 2.

final performance and whether one can combine these components from different approaches and possibly obtain a stronger AutoML solution. These questions are addressed in Section 5.1 and 5.2. For the reader to gain a global understanding of the relationship between different components, we visualize the overall AutoML workflow in Figure 5.

Apart from a local analysis of components, we also try to gain a global understanding of the AutoML generalization ability of all winning approaches in Section 5.4. The impact of some design choices of the challenge is studied in Section 5.3 and 5.5 and more discussions follow in later sections.

Ablation study

To analyze the contribution of different components in each winning team's solution, we asked 3 teams (DeepWisdom, DeepBlueAI and automl freiburg) to carry out an ablation study, by removing or disabling certain component (e.g. meta-learning, data augmentation) of their approach. We will introduce in the following sections more details on these ablation studies by team and synthesize thereafter.

DeepWisdom

According to the team DeepWisdom, three of the most important components leading to the success of their approach are: meta-learning, data loading and data augmentation. For the ablation study, these components are removed or disabled in the following manner: to the small number of meta-test datasets relevant to automl freiburg's approach.

Combination study

In this section, instead of removing certain components for each winning method, we combine components from different teams. We start from a "base" C.4 with the usage of AutoFolio [START_REF] Lindauer | Aut-oFolio: an automatically configured algorithm selector[END_REF], using meta-features specific of the current task. The recommended set of hyperparameters is found by applying BOHB [START_REF] Falkner | BOHB: Robust and Efficient Hyperparameter Optimization at Scale[END_REF] off-platform on the public datasets.

method
We construct new combined methods using the following procedure:

1) Start from a base method, which is one of 2. The error bars are computed from 3 repeated runs for each method. We see that combining different components from different teams do not improve the ALC score in general.

between the ALC performance and the considered components.

In summary, this limited set of combination experiments did not reveal a significant advantage of mixing and matching modules. The solution of the overall winner DeepWisdom stands out.

Varying the time budget

Up till now, all our experiments are carried out within a time budget of 20 minutes, which may seem relatively small in this age of Big Data and Deep Learning.

To investigate whether this time budget was sufficient and whether the approaches can perform better with a larger time budget, we run the same experiments as those in Section 5.2 with exactly the same setting (the same algorithms and the same tasks) except that we change the time budget from 20 minutes (T = 1200) to 2 hours (T = 7200). And this time, we focus on the final NAUC instead of the ALC for a fair comparison.

The results are visualized in Figure 10.

In Figure 10, each point corresponds to an approach-task pair such as (DB+HPO, Monica1). The tasks are shown in the legend and the approaches are annotated in some cases. We see that most points are close to the diagonal, which means that having a longer time budget does not improve the final NAUC performance in general. This suggests that most runs achieve convergence within 20 minutes, which is consistent with what we found when visualizing the learning curves (for example in Figure 2). This finding further justifies our design choice of having a time budget of 20 minutes for all tasks.

Among all the 72 points, only 13 points out of them have a NAUC difference larger than 0.05 and these

AutoML generalization ability of winning methods

One crucial question for all AutoML methods is whether the method can have good performances on unseen datasets. If yes, we will say the method has AutoML generalization ability. To quantitatively measure this ability, we propose to compare the average rank of all top-8 methods in both the feedback phase and the final phase, then compute the Pearson correlation (Pearson's ρ) of the 2 rank vectors (thus similar to Spearman's rank correlation [START_REF]Spearman's rank correlation coefficient[END_REF]).

Concretely, let r X be the average rank vector of top teams in the feedback phase and r Y be that in the final phase, then the Pearson correlation is computed by ρ

X,Y = cov(r X , r Y)/σ r X σ r Y .
The average ranks of top methods are shown in 2, this is a feat from the AutoML community.

Thus it's highly plausible that we are moving one step closer to a universal AutoML solution.

Impact of t 0 in the ALC metric

We recall that the Area under Learning Curve (ALC) is defined by

ALC = 1 0 s(t)d t(t) = T 0 s(t) t′ (t)dt = 1 log(1 + T /t 0) T 0 s(t) t + t 0 dt (3)
where Thus t 0 parameterizes a weight distribution on the learning curve for computing the ALC. When t 0 is small, the importance weight at the beginning of the curve is large. Actually when t 0 varies from 0 to infinity, we have

t(t) = log(1 + t/t 0) log(1 + T /t 0) (4)
lim t0→0 + ALC(t 0) = s(0) and lim t0→+∞ ALC(t 0) = 1 T T 0 s(t)dt.
So a different t 0 might lead to different ALC ranking even if the learning curve s(t) is fixed. It is then to be answered whether the choice of t 0 = 60 in AutoDL challenge is reasonable. For this, we reflect the impact of t 0 on the ALC scores and the final average ranking in Figure 12. Observation and discussion can be found in the caption. We conclude that t 0 does affect the ranking of ALC scores but the final ranking is robust to changes of t 0 , justifying the choice of t 0 and the challenge setting.

CONCLUSION

Automating solution available as a self-service 6 . Students using it in their projects have tested its efficacy on new tasks, demonstrating its ease-of-use. While this alone is a great outcome, our post-challenge analyses allowed us to pave the way to greater future improvements by analyzing module by module the contributions of the winning teams. First, it is remarkable that, in spite of the complexity of building a fully automated solution, and despite the fact that we did not impose any workflow or code skeleton, the top ranking teams converged towards a rather uniform modular architecture. Our ablation studies revealed that the modules that may yield largest future improvement include When t0 is large, similar weight is applied on the whole learning curve, performances are uniformly averaged, so being a little bit slow at the beginning is not that bad, and it is more important to have good final performance when the time budget is exhausted (fixed-time learning). The tabular dataset Carla is taken as example. The fact that two learning curves cross each other is a necessary condition for the impact of t 0 on their ranking on this task. Learning curves of top teams on this dataset are shown in 12a. The impact of t 0 on the ALC scores of these curves is shown in 12b. We see that when t 0 changes, the ranking among participants can indeed change, typically the ALC of frozenmad is larger than that of Kon but this is not true for large t 0 . In 12c, the fact that the average rank (over all 10 final phase datasets) varies with t 0 also implies that t 0 can indeed affect the ranking of ALC on individual tasks. However, we see that the final ranking (i.e. that of average rank) is quite robust against changes of t 0 . Very few exceptions exist such as PASA NJU and Inspur AutoDL. Overall, t 0 proved to have little impact, particularly on the ranking of the winners, which is another evidence that top ranking participants addressed well the any-time learning problem.

"meta-learning" and "ensembling": Regarding metalearning, at this stage, it is fair to say that strategies employed are effective, but not very sophisticated.

They rely on pre-selecting off-platform, using provided "public data", one of the most promising neu- The meta-trainer includes several solutions such as TextCNN, RCNN, GRU, and GRU with attention [START_REF] Kim | Convolutional neural networks for sentence classification[END_REF], [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF]. Hyperparameters are set after a neural network architecture is selected. Also a weighted ensembling is adopted among top 20 models based AUC scores.

C.2 Approach of DeepBlueAI (2nd prize)

The DeepBlueAI solution is a combination of methods that are specific to each modality. Nevertheless, three concepts are applied across all modalities: 1) optimizing time budget by reducing the time for data processing, start with light models and parameters setting to accelerate first predictions; 2) dataset adaptive strategies and 3) ensemble learning.

For images, the DeepBlueAI team applies a strategy adapted to each specific dataset. As for model selection, FastText [START_REF] Joulin | Bag of tricks for efficient text classification[END_REF], TextCNN [START_REF] Kim | Convolutional neural networks for sentence classification[END_REF],

BiGRU [START_REF] Cho | Learning phrase representations using RNN encoder-decoder for statistical machine translation[END_REF] are used by their system that generate different model structures and set of parameters adapted to each dataset. The size of the dataset, the number of categories, the length of the text, and whether the categories are balanced are considered to generate the most suitable models and parameter settings. On the contrary, if training is fast and prediction is slow, the frequency is reduced. This strategy can improve to higher early scores.

In order to improve generalization, multiple light-GBM models are used to make an ensemble with a bagging method.

C.3 Approach of PASA NJU (3rd prize)

The PASA NJU team modeled the problem as three [START_REF] Chen | Neural feature search: A neural architecture for automated feature engineering[END_REF] method uses RNN as the controller to generate the feature sequence, they used the same method and speed up the process by parallelizing it. Finally, at the Model stage, the goal is to search for a good model and hyperparameters. For this, they use hyperopt [START_REF] Bergstra | Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures[END_REF],

which is an open-source package that uses Bayesian optimization to guide the search of hyperparameters.

C.4 Approach of automl freiburg

In contrast to other teams, automl freiburg adopts a domain-independent approach but focused only the computer vision tasks (i.e. image and video datasets) of this challenge. While for all other tasks automl freiburg simply submitted the baseline to obtain the baseline results, they achieved significant improvement on the computer vision tasks w.r.t. the baseline method. To improve both efficiency and flexibility of the approach, they first exposed relevant hyperparameters of the previous AutoCV/AutoCV2 winner code [START_REF] Brain | AutoCLINT, Automatic Computationally LIght Network Transfer[END_REF] and identified well-performing hyperparameter configurations on various datasets through hyperparameter optimization with BOHB [START_REF] Falkner | BOHB: Robust and Efficient Hyperparameter Optimization at Scale[END_REF]. They then trained a cost-sensitive meta-model [START_REF] Xu | SATzilla2012: Improved algorithm selection based on cost-January 8, 2022 DRAFT sensitive classification models[END_REF] with Auto-Folio [START_REF] Lindauer | Aut-oFolio: an automatically configured algorithm selector[END_REF] -performing hyperparameter optimization for the meta-learner -that allows to automatically and efficiently select a hyperparameter configuration for a given task based on dataset meta-features. The proposed approach on the CV task is detailed next.

First, they exposed important hyperparameters of the AutoCV/AutoCV2 winner's code [START_REF] Brain | AutoCLINT, Automatic Computationally LIght Network Transfer[END_REF] such as the learning rate, weight decay or batch sizes. Additionally, they exposed hyperparameters for the online execution (which were hard-coded in previous winner solution) that control, for example, when to evaluate during the submission and the number of samples used. To further increase the potential of the existing solution, they extended the configuration space to also include:

• An EfficientNet [START_REF] Tan | EfficientNet: Rethinking model scaling for convolutional neural networks[END_REF] (in addition to kakaobrain's [START_REF] Brain | AutoCLINT, Automatic Computationally LIght Network Transfer[END_REF] ResNet-18) pre-trained on ImageNet [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF];

• The proportion of weights frozen when finetuning;

• Additional stochastic optimizers (Adam [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF],

AdamW [START_REF] Loshchilov | Decoupled weight decay regularization[END_REF], Nesterov accelerated gradient [START_REF] Nesterov | A method for unconstrained convex minimization problem with the rate of convergence o (1/kˆ2)[END_REF]) and learning rate schedules (plateau, cosine [START_REF] Loshchilov | SGDR: stochastic gradient descent with warm restarts[END_REF]);

• A simple classifier (either a SVM, random forest or logistic regression) that can be trained and used within the first 90 seconds of the submission.

After the extension of the configuration space, they optimized the hyperparameters with BOHB [START_REF] Falkner | BOHB: Robust and Efficient Hyperparameter Optimization at Scale[END_REF] across 300 evaluation runs with a time budget of 300 seconds on eight different datasets (Chucky [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF],

Hammer [START_REF]The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions[END_REF], Munster [START_REF] Lecun | Mnist handwritten digit database[END_REF], caltech birds2010 [START_REF] Welinder | Caltech-UCSD Birds 200[END_REF], cifar100 [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF], cifar10 [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF], colorectal histology [START_REF] Kather | Multi-class texture analysis in colorectal cancer histology[END_REF] and eurosat [START_REF] Helber | Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification[END_REF]). These eight datasets were chosen from meta-training data to lead to a portfolio of complementary configurations [START_REF] Xu | Hydra: Automatically configuring algorithms for portfolio-based selection[END_REF], [START_REF] Feurer | Practical automated machine learning for the automl challenge 2018[END_REF]. Additionally, they added a robust configuration to the portfolio of configurations that performed best on average across the BOHB [START_REF] Falkner | BOHB: Robust and Efficient Hyperparameter Optimization at Scale[END_REF]. Afterwards, for each dataset i, the best found configuration λ * i is evaluated on the other datasets j ∈ {1, 2, ..., N }, j ̸ = i to build the performance matrix (configurations × datasets). For training and configuring the meta-selection model based on performance matrix and the meta-features of the corresponding tasks, the approach uses AutoFolio [START_REF] Lindauer | Aut-oFolio: an automatically configured algorithm selector[END_REF]. At meta-test time, the model fitted by AutoFolio uses the meta-features of the test tasks in order to select a well-performing configuration. eight datasets. Then, they evaluated each configuration of the portfolio for 600 seconds on all 21 image datasets they had collected. In addition, they searched for a tenth configuration (again with BOHB), called the generalist, that they optimized for the average improvement across all datasets relative to the already observed ALC scores. In the end, the meta-train-data consisted of the ALC performance matrix (portfolio configurations × datasets) and the meta-features from the 21 datasets. These meta-features consisted of the image resolution, number of classes, number of training and test samples and the sequence length (number of video frames, i.e. 1 for image datasets). In addition, they studied the importance of the meta features for the meta-learner, and selected an appropriate subset. To optimize the portfolio further, they applied a greedy submodular optimization [START_REF] Feurer | Practical automated machine learning for the automl challenge 2018[END_REF], [START_REF] Xu | Hydra-MIP: Automated algorithm configuration and selection for mixed integer programming[END_REF] to minimize the chance of wrong predictions in the online phase. Based on this data, they trained a cost-sensitive meta-model [START_REF] Xu | SATzilla2012: Improved algorithm selection based on cost-January 8, 2022 DRAFT sensitive classification models[END_REF] with AutoFolio [START_REF] Lindauer | Aut-oFolio: an automatically configured algorithm selector[END_REF], which applies algorithm configuration based on SMAC [START_REF] Hutter | Sequential model-based optimization for general algorithm configuration[END_REF], [START_REF] Hutter | Sequential model-based optimization for general algorithm configuration[END_REF] to efficiently optimize the hyperparameters of the metalearner. Since the meta-learning dataset was rather small, HPO for the meta-learner could be done within a few seconds. Lastly, they deployed the learned Auto-Folio model and the identified configurations into the initialization function of the winner's solution code.

The workflow of this approach is shown in Figure 15.

APPENDIX D BENCHMARK RESULTS

The numerical results of Baseline 3 and DeepWisdom's performance (ALC and final NAUC) on all 66 AutoDL datasets are shown in Table 6. TABLE 6: Numerical values of 3 and DeepWisdom's performances on all AutoDL datasets. The ALC score is computed using equation (3) with t 0 = 60 (as in AutoDL challenge). The NAUC score is computed using the last prediction within a time budget T = 1200 seconds. "n pred" stands for number of predictions made within the time budget.

 Winning solutions and post-challenge analyses of the ChaLearn AutoDL challenge 2019 Zhengying Liu*, Adrien Pavao*, Zhen Xu*, Sergio Escalera, Fabio Ferreira, Isabelle Guyon, Sirui Hong, Frank Hutter, Rongrong Ji, Julio C. S. Jacques Junior, Ge Li, Marius Lindauer, Zhipeng Luo, Meysam Madadi, Thomas Nierhoff, Kangning Niu, Chunguang Pan, Danny Stoll, Sebastien Treguer, Jin Wang, Peng Wang, Chenglin Wu, Youcheng Xiong, Arb ër Zela, Yang Zhang .

 application domain. These included: AutoCV for images, AutoCV2 for images and videos, AutoNLP for natural language processing (NLP) and AutoSpeech for speech recognition. Then, during NeurIPS 2019 we launched the final AutoDL challenge that combined all these application domains, and tabular data. All these challenges shared the same competition protocol and evaluation metric (i.e. ALC) and provided data in a similar format. All tasks were multi-label classification problems.

 However it was not clear which components in theAutoML workflow contributed the most, which we will clarify in this work thanks to extensive ablation studies. In this work, we focus on the final AutoDL challenge with all domains combined together. Some of the principal questions we aimed at answering in this challenge ended up being answered, with the help of fact sheets that participants filled out, and some from the post-challenge experiment, as detailed further in the paper. The main highlights are now briefly summarized. First of all, were the tasks of the challenge of a difficulty adapted to push the state-of-the-art in Automated Deep Learning? On one hand YES, since (1) the top two ranking participants managed to pass all final tests without code failure and delivered solutions on new tasks (trained and tested without human intervention), performing significantly better than the baseline methods, within the time/memory constraints, and (2) all teams used Deep Learning as part of their solutions. This confirms that Deep Learning is well adapted to the chosen domains (CV, NLP, speech). As further evidence that we hit the right level of challenge duration and difficulty, 90% of teams found the challenge duration sufficient and 50% of teams found the time and computational resources sufficient. On the other hand NO, since (1) all of the top-9 teams used a domain-dependent approach, treating each data modality separately (i.e. using hard-coded if..else clauses and will probably fail on new unseen domains such as other sensor data); and (2) the time budget was too constraining to do any Neural Architecture Search; and (3) complex heterogeneous ensembles including non Deep Learning methods were used. Secondly, was the challenge successful in fostering progress in "any-time learning"? The learning curve examples in Figures 2 and 12a show that for most datasets, convergence was reached within 20 minutes (more experimental results presented in Section 5.3). A fast increase in performance early on in the learning curve demonstrates that the participants made a serious effort to deliver solutions quickly,

Fig. 1 :

 1 Fig. 1: Distribution of AutoDL challenge dataset domains with respect to compressed storage size in gigabytes and total number of examples for all 66 AutoDL datasets. We see that the text domain varies a lot in terms of number of examples but remains small in storage size. The image domain varies a lot in both directions. Video datasets are large in storage size in general, without surprise. Speech and time series datasets have fewer number of examples in general. Tabular datasets are concentrated and are small in storage size.

Fig. 2 :

 2 Fig. 2: Learning curves of top-9 teams (together with one baseline) on the text dataset Viktor from the Au-toDL challenge final phase. We observe different patterns of learning curves, revealing various strategies adopted by participating teams. The curve of DeepWisdom goes up quickly at the beginning but stabilizes at an inferior final performance (and also inferior anytime performance) than DeepBlueAI. In terms of number of predictions made during the whole train/predict process (20 minutes), many predictions are made by DeepWisdom and DeepBlueAI but (much) fewer are made by the other teams. Finally, although different patterns are found, some teams such as team zhaw, surromind and automl freiburg show very similar patterns.

 formulates the search for the best augmentation policy as a discrete search problem and uses Reinforcement Learning to find the best policy. The search algorithm is implemented as a Recurrent Neural Network (RNN) controller, which samples an augmentation policy S, combining image processing operations, with their probabilities and magnitudes. S is then used to train a child network to get a validation accuracy R, which is used to update the RNN controller by policy gradient methods. Despite a significant improvement in performance, AutoAugment requires thousands of GPU hours even with a reduced target dataset and small network. In contrast, Fast AutoAugment [25] finds effective augmentation policies via a more efficient search strategy based on density matching between a pair of train datasets, and a policy exploration based on Bayesian optimization over stratified k-folds splits of the training dataset. The winning team (kakaobrain) of AutoCV implemented a light version of Fast AutoAugment, replacing the 5-folds by a single fold search and using a random search instead of Bayesian optimization.

January 8 ,

 8 2022 DRAFT found that upwind flys's code was easier to adapt in the challenge setting and gave similar performance to that of 1st place (DeepBlueAI). The core of upwind flys's solution is a metacontroller dealing with multiple modules in the pipeline including model selection, data preparation and evaluation feedback. For the data preparation step, to compensate for class imbalance in the Au-toNLP datasets, upwind flys first cALCulates the data distribution of each class in the original data. Then, they randomly sample training and validation examples from each class in the training set, thus balancing the training and validation data by up-and downsampling. Besides, upwind flys prepares a model pool including fast lightweight models like LinearSVC [28],

2. 4 . 3

 43 Speech domain: winning method of Au-toSpeech Baseline 3 uses the approach of the 1st place winner of the AutoSpeech challenge: PASA NJU. Interestingly, PASA NJU, has developed one single approach for the two sequence types of data, i.e. speech and text. As time management is key for optimizing any time performance, as measured by the metric derived from the ALC, the best teams have experimented with various data selection and progressive data loading approaches. Such decisions allowed them to create a trade-off between accelerating the first predictions while ensuring a good and stable final AUC. For instance PASA NJU truncated speech samples from 22.5s to 2.5s, and started with loading 50% of the samples for the 3 first training loops, however preserving a similar balance of classes, loading the rest of the data from the 4th training loop. As for feature extraction, MFCC (Mel-Frequency Cepstral Coefficients) [31] and STFT (Short-Time Fourrier Transform) [32] are used. In terms of model selection and architectures, PASA NJU progressively increases the complexity of their model, starting with simple models like LR (Logistic Regression), LightGBM at the beginning of the training, combined later with some light weight pre-trained CNN models like Thin-ResNet-34 (ResNet [27] but

 domain in AutoDL challenge series, the organizers implemented a simple multi-layer perceptron (MLP) baseline. Tabular datasets consist of both continuous values and categories. Categorical quantities are converted to normalized indices, i.e. by dividing indices (starting from 1) by the total number of categories. Tabular domains may have missing values (missing values are replaced by zero) as well. Therefore, to cope with missing data, we designed a denoising autoencoder (DAE) [34] able to interpolate missing values from available data. The architecture consists of a batch normalization layer right after input data, a dropout, 4 fully connected (FC) layers, a skip connection from the first FC layer to the 3rd layer and an additional dropout after 2nd FC layer. Then we apply a MLP classifier with 5 FC layers. All FC layers have 256 nodes (expect the last layers of DAE and classifier) January 8, 2022 DRAFT

 toDL challenges series 2019) lasted from 14 Dec 2019 (launched during NeurIPS 2019) to 3 Apr 2020. It has had a participation of 54 teams with 247 submissions in total and 2614 dataset-wise submissions. Among these teams, 19 of them managed to get a better performance (i.e. average rank over the 5 feedback phase datasets) than that of Baseline 3 in the feedback phase and entered the final phase of blind test. According

(a)Fig. 3 :

 a3 Fig. 3: Performance gain in the Final AutoDL challenge We plot ALC final NAUC performances of Baseline 3 and Deep Wisdom (the winners of the final AutoDL challenge) on ALL 66 datasets of the AutoDL challenge series benchmark. Different domains are shown with different markers. The dataset name is shown beside each point except the top-right area, which is zoomed in Appendix B, together with numerical values (Table6).

Fig. 4 :

 4 Fig. 4: ALC scores of top 9 teams in AutoDL final phase averaged over repeated evaluations (and Baseline 3, for comparison). The entry of top 6 teams are re-run 9 times and 3 times for other teams. Error bars are shown with (half) length corresponding to the standard deviation from these runs. Some (very rare) entries are excluded for computing these statistics due to failures caused by the challenge platform backend. The team ordering follows that of their average rank in the final phase. The domains of the 10 tasks are image, video,

•

 Meta-learning (ML):Here meta-learning includes transfer learning, pre-train models, and hyperparameter setting and selection. Meta learning is crucial to both the final accuracy performance and the speed of train-predict life-January 8, 2022 DRAFT

Fig. 5 :

 5 Fig. 5: Global AutoML workflow shared by most participating teams. Dotted arrows indicate optional (i.e. not used by everybody) connections between different components. Components in green are studied in ablation study in Section 5.1. Components in blue are studied both in Section 5.1 and Section 5.2. The modules in the grey shaded area are executed on the CodaLab competition platform (i.e. online). Meta-learner runs in most cases offline (e.g. with the provided public datasets). Model selector can be executed online but pre-trained with meta-learner offline.

Fig. 6 :

 6 Fig. 6: Ablation study for DeepWisdom: We compare different versions of DeepWisdom's approach, with one component of their workflow disabled. "Deep-Wisdom \ ML" represents DeepWisdom's original approach but with Meta-Learning disabled. "DA" code for Data Augmentation and "DL" for Data Loading. The method variants are ordered by their average rank from left to right. Thus we observe that removing Data Augmentation does not make a lot of difference, while removing both Meta-Learning and Data Loading impacts the solution a lot. See Section 5.1.1 for details.

Fig. 7 :

 7 Fig. 7: Ablation study for DeepBlueAI: Comparison of different versions of DeepBlueAI's approach after removing some of the method's components. "DeepBlueAI \ AS" represents their approach with Adaptive Strategy disabled. "EL" codes for Ensemble Learning and "STR" for Scoring Time Reduction. For each dataset, the methods are ordered by their average rank from left to right. While disabling each component separately yields moderate deterioration, disabling all of them yields a significant degradation in performance. See Section 5.1.2.

Fig. 8 :•

 8 Fig. 8: Ablation study for automl freiburg: Comparison of different versions of automl freiburg's approach. Since the approach addresses only computer vision tasks, only results on image datasets (Ray, Cucumber) and video datasets (Fiona, Yolo) are shown. Average and error bars of ALC scores are computed over 9 runs. "automl freiburg \ HPO" represents automl freiburg's approach with default AutoFolio hyperparameters. Likewise, "MLG" stands for the generalist configuration and "MLR" for randomly selecting a configuration from the pool of the most complementary configurations. See Section 5.1.3.

DeepWisdom 2) 9 .From Figure 9 ,Figure 6 Fig. 9 :

 29969 Figure 6 on the image and video datasets (i.e. Ray, Fiona, Cucumber and Yolo). This means that for computer vision tasks, adjusting hyperparameters such as batch size and number of examples for preview only has limited effect on the ALC score. The potential gain in speed may be neutralized by its harm in accuracy;

January 8 ,

 8 2022 DRAFT point are annotated with corresponding names. Most of these annotated points correspond to the team DeepBlueAI combined with the HPO component from automl freiburg, meaning that this specific combination leads to a larger variance on the final NAUC. This can be explained by the fact that when AutoFolio (automl freiburg's HPO component which finds the prior task that is the most similar to the current one and recommends a hyperparameter configuration found offline for this prior task, see Figure 15 in Appendix C.4) chooses a hyperparameter configuration, the criterion it uses is based on the ALC performances obtained with automl freiburg's base method, which however is not what is being used since the base method is that of DeepBlueAI. So AutoFolio is making performance predictions based on the wrong matrix of past performances (details in Appendix C.4), corrupting the selection of hyperparameters and leading to a larger variance of the final NAUC score.

Fig. 10 :

 10 Fig. 10: Time budget comparison. Comparison of final NAUC performance on 2h vs 20min time budget runs. Points with a NAUC difference (between two settings) larger than 0.05 are annotated. There are only 13 of these out of 72 points in total.

Figure 11 ,

 11 Figure 11, with a Pearson correlation ρ X,Y = 0.91 and p-value p = 5.8×10 -4 . This means that the correlation is statistically significant and no leaderboard overfitting is observed. Thus the winning solutions can indeed generalize to unseen datasets. Considering the diversity of the final phase datasets and the arguably out-of-distribution final-test meta-features shown inTable 2, this is a feat from the AutoML community.

Fig. 11 :

 11 Fig. 11: Task over-modeling: We compare performance in the feedback and the final phase, in an effort to detect possible habituation to the feedback datasets due to multiple submissions. The average rank of the top-8 teams is shown. The figure suggests no strong over-modeling (over-fitting at the metalearning level): A team having a significantly better rank in the feedback phase than in the final phase would be over-modeling (far above the diagonal). The Pearson correlation is ρ X,Y = 0.91 and p-value p = 5.8 × 10 -4 .

 Machine Learning and in particular Deep Learning, which has known recent successes in many application areas, is of central interest at the moment, to cut down the development cycle time, as well as to overcome the shortage of machine learning engineers. Our challenge series on AutoDL, and in particular the last one addressing the ubiquity of AutoDL solutions, allowed us to make great strides in this direction. To our knowledge, the solution of the winners, which was open-sourced, has no equivalent in academia or in the commercial arena. It is capable of training and testing effective models in 20 minutes to solve tensor-based multi-label classification problems. It has extensively been benchmarked on the 66 datasets of the entire challenge series, featuring a wide variety of types of data and dataset sizes. We have made the winners'

(a)

 a Learning curves for the Carla (b) Impact of t0 on the ALC scores for task Carla.(c) Average rank among AutoDL final phase participants, using different t0. The legend is hidden and is the same as that of Figure 12b.

Fig. 12 :

 12 Fig.12: Any-time learning vs. fixed-time learning: We evaluate the impact of parameter t 0 on the ALC scores and the final rank. This parameter allows us to smoothly adjust the importance of the beginning of the learning curve (and therefore the pressure imposed towards achieving any-time learning). When t0 is small, the ALC puts more emphasis on performances at the beginning of the learning curve and thus favors fast algorithms.

TABLE 3 :ForestTABLE 4 :

 34 ral architectures from the literature (typically based on ResNet for image, video, and speech, and BERT for text), pre-trained on large datasets (ImageNet for image and video). The submitted models were then fined-tuned on the challenge platform. One interesting twist has been the progressive tuning of weights starting from top layers, monitoring the depth of tuning as a hyperparameter. Most other hyperparameters however were frozen. There were pre-optimized outside the platform, which is another form of metalearning. Our post-challenge studies did not reveal an improvement in performance when hyperparameters were optimized on the platform, using a stateof-the-art Bayesian optimization method. Regarding ensembling, a wide variety of techniques were tried.Our ablation studies and combination studies revealed that one of the simplest methods is also the most effective: averaging predictions over the past few selected models. Second, our challenge put pressure on the participants to deliver fast solutions (in less than 20 minutes), and yielded technical advances in fast data loading, for instance. Our evaluation metric (Area under Learning curve) had two parameters allowing us to monitor both the total time budget and the dilation of the time axis (related to the importance put on getting good performance early on). The ranking of participants was robust against changes in both parameters and no significant improvements were gained by giving more time to the methods. On the flip side, the evaluation involving a learning curve as a function of time put emphasis on effectiveness of implementation, which were difficult to decouple from algorithm advances. In future challenges, we might want to factor out this aspect and are considering to rather use learning curves as a function of number of training examples or the computational operations (FLOPs), which should provide more reproducibility, more environment stability and less emphasis on engineering. Also, due to the small time budget of the AutoDL challenge, computationally expensive model search was not considered and could be the object of further work. To stimulate research in that direction, we have a Neural Architecture Search (NAS) challenge in preparation. To prevent participants to guess the data modality, the inputs are coded in a way, which makes it unobvious to recognize. This should avoid that participants leverage prior domain knowledge. Other challenges are under way. We started organizing a meta-learning challenge series 7 to evaluate metalearning under controlled conditions rather than keeping it outside of the evaluation platform, as in the AutoDL challenge. Our goal is to encourage research on meta-learning in various settings, including fewshot learning. Beyond supervised learning, we are also interested in reinforcement learning. An AutoRL challenge is in preparation. ACKNOWLEDGMENTS This work was sponsored with a grant from Google Research (Z ürich) and additional funding from 4Paradigm, Amazon and Microsoft. This work was supported by the ANR (Agence Nationale de la Recherche, National Agency for Research) Chair of Artificial Intelligence HUMANIA ANR-19-CHIA-0022. It has been partially supported by ICREA under the ICREA Academia programme. We also gratefully acknowledge the support of NVIDIA Corporation with the donation of the GPU used for this research. The team automl freiburg has partly been supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant no. 716721. Further, automl freiburg acknowledges Robert Bosch GmbH for financial support. It received in kind support from the institutions of the co-authors. We are very indebted to Olivier Bousquet and André Elisseeff at Google for their help with the design of the challenge and the countless hours that André spent engineering the data format. The special version of the CodaLab platform we used was implemented by Tyler Thomas, with the help of Eric Carmichael, CK Collab, LLC, USA. Many people contributed time to help formatting datasets, prepare baseline results, and facilitate the logistics. We are very grateful in particular to: Stephane Ayache (AMU, France), Hubert Jacob Banville (INRIA, France), Mahsa Behzadi (Google, Switzerland), Kristin Bennett (RPI, New York, USA), Hugo Jair Escalante (IANOE, Mexico and ChaLearn, USA), Gavin Cawley 7. https://metalearning.chalearn.org/ January 8, 2022 DRAFT Summary of the top ranking solutions and their average rank in the final phase. The participant's average rank (over all tasks) in the final phase is shown in parenthesis (automl freibug and Baseline 3 were not ranked in the challenge). Each entry concerns the algorithm used for each domain and is of the form "[preprocessing / data augmentation]-[transfer learning/meta-learning]-[model/architecture]-[optimizer]" (when applicable). learned offline on meta-training tasks with BOHB. Transfer-learning on unseen meta-test tasks with AutoFolio. Models: EfficientNet [pre-trained on ImageNet with AdvProp], ResNet-18 [KakaoBrain weights], SVM, Random first few frames, apply stem CNN to reduce to 3 channels][Pre-trained on ImageNet][ResNet-18(selected offline)] [MFCC/STFT feature][LR, LightGBM, Thin-ResNet-34, VggVox, Machine learning techniques applied to each of the 5 domains considered in AutoDL challenge.Offline meta-training transferred with AutoFolio[START_REF] Lindauer | Aut-oFolio: an automatically configured algorithm selector[END_REF] based on meta-features (automl freiburg, for image and video)Offline meta-training generating solution agents, searching for optimal sub-operators in predefined sub-spaces, based on dataset meta-data.(DeepWisdom) MAML-like method[START_REF] Finn | Model-agnostic meta-learning for fast adaptation of deep networks[END_REF] (team zhaw)[START_REF] Falkner | BOHB: Robust and Efficient Hyperparameter Optimization at Scale[END_REF] (Bayesian Optimization and Multi-armed Bandit) (automl freiburg) Sequential Model-Based Optimization for General Algorithm Configuration (SMAC)[START_REF] Hutter | Sequential model-based optimization for general algorithm configuration[END_REF] (automl freiburg)

Fig. 13 :Fig. 14 :

 1314 Fig. 13: The evaluation process AutoDL challenge. The participant needs to prepare a ZIP file that contains at least a model.py file that implements a Model class with a train() method and a test() method.Two processes (ingestion and scoring) are started at the beginning in parallel. Ingestion process digests data and participant's submission. It calls participant's train/predict functions and write predictions to a shared directory. Scoring process listens to this directory and evaluates the predictions on the fly by comparing them to the hidden ground truth. When there is no more time or all the training process has been finished, an ending signal is written and both processes terminate. A learning curve is drawn according to the performances of the predictions made and an ALC score is computed for ranking. Finally, the ranks of the participant among all participants over all tasks are averaged and this average rank is used for final ranking.

Finally, in the

 tabular domain, they batch the dataset and convert tfdatasets to NumPy format progressively, a weighted ensembling is applied based on several optimized models including LightGBM, Catboost, Xgboost and DNN on the offline datasets. To do so, data is split to several folds. Each fold has a training set and two validation sets. One validation set is used to optimize model hyperparameters and other set to compute ensembling weights.

For

 tabular, three directions are optimized: accelerating scoring time, adaptive parameter setting, ensemble learning. Data is first split into many batches to significantly accelerate the data loading and converted from TFrecords to NumPy format. In terms of models, decision trees LightGBM are adopted to get faster scoring than with deep learning models. Because LightGBM supports continuous training, and the model learns faster in the early stage. During the training phase, earnings from the previous epochs are much higher than those from the latter. Therefore, a complete training is intelligently divided into multiple parts. The result is submitted after each part to obtain a score faster. In terms of adaptive parameter setting, some parameters are automatically set according to the size of data and the number of features of the tables. If the number of samples is relatively large, the ensemble fraction is reduced. If the original features of the sample are relatively large, the feature fraction is reduced. A learning rate decay is applied, starting with a large value to ensure a speed up in the early training. An automatic test frequency is adopted. Specifically, the frequency of testing is controlled based on training speed and testing speed. If the training is slow and the prediction is fast, the frequency of the test is increased.

 different tasks: CV (image and video), Sequence (speech and text) and Tabular (tabular domain). For the CV task, they preprocessed the data by analysing few sample instances of each dataset at training stage (such as image size, number of classes, video length, etc) in order to standardize the input shape of their model. Then, simple transformations (image flip) were used to augment the data. Random frames were obtained from video files and treated as image database. For both Image and Video tasks, ResNet-18 [27] is used. However, SeResnext50 [51] was used at later stages. Basically, they monitor the accuracy obtained by the ResNet-18 model and change the model to the SeResnext50 if no significant improvement is observed.

1)LFig. 15 :

 115 Fig. 15: Workflow of automl freiburg. The approach first optimizes the hyperparameter configuration (including choices for training, input pipeline, and architecture) for every task (dataset) in our meta-training set using

TABLE 2 : Datasets of the AutoDL challenge, for

 2 both phases. The final phase datasets (meta-test datasets) vary a lot in terms of number of classes, number of training examples, and tensor dimension, compared to those in the feedback phase. This was one of the difficulties of the AutoDL challenge. "chnl" codes for channel, "var" for variable size, "CE pair" for "cause-effect pair". More information on all 66 datasets used in AutoDL challenges can be found at https://autodl.chalearn.org/benchmark.

	Class	Sample number	Tensor dimension

Table 3

 3

	the tabular domain, more classical machine learning
	algorithms are used combined with intelligent data
	loading strategies. In Table 4, we see that almost all
	different machine learning techniques (such as meta-
	learning, preprocessing, HPO, transfer learning and
	ensembling) are actively present and frequently used

that almost all approaches used 5 different methods from 5 domains. For each domain, the winning teams' approaches are much inspired by Baseline 3 (see Section 2.4). For the two domains from computer vision (image and video), we spot popular backbone architectures such as ResNet [27] and its variants. Data augmentation techniques such as flipping, resizing are frequently used. Fast AutoAugment [25] from the AutoCV challenges winner solution is also popular. Pre-training (e.g. on ImageNet or Kinetics) is used a lot to accelerate training. For the speech domain and text domain, different feature extraction techniques using domain knowledge (such as MFCC, STFT, truncation) are used, as in the case of Baseline 3. For in all domains (exception some rare cases for example transfer learning on tabular data). By analyzing the workflow from all participating teams in final phase, we came up with an AutoML January 8, 2022 DRAFT

TABLE 5 :

 5 Combination study design matrix.

	We

January 8, 2022 DRAFT

For images with native compression formats (e.g. JPEG, BMP, GIF), we directly use the bytes. Our data reader decodes them on-the-fly to obtain a

4D 3. To avoid privileging a particular type of Deep Learning framework, we also provided a data reader to convert the data to PyTorch format. January 8, 2022 DRAFT

(U. East Anglia, UK), Baiyu (UC Berkeley, USA), Albert Clapes i Sintes (U. Barcelona, Spain), Bram van Ginneken (Radboud U. Nijmegen, The Netherlands), Alexandre Gramfort (U. Paris-Saclay; INRIA, France), Yi-Qi Hu (4paradigm, China), Tatiana Merkulova (Google, Switzerland), Shangeth Rajaa (BITS Pilani, India), Herilalaina Rakotoarison (U. Paris-Saclay, IN-RIA, France), Lukasz Romaszko (The University of Edinburgh, UK), Mehreen Saeed (FAST Nat. U. Lahore, Pakistan), Marc Schoenauer (U. Paris-Saclay, INRIA, France), Michele Sebag (U. Paris-Saclay; CNRS, France), Danny Silver (Acadia University, Canada), Lisheng Sun (U. Paris-Saclay; UPSud, France), Wei-Wei Tu (4paradigm, China), Fengfu Li (4paradigm, China), Lichuan Xiang (4paradigm, China), Jun Wan (Chinese Academy of Sciences, China), Mengshuo Wang (4paradigm, China), Jingsong Wang (4paradigm, China), Ju Xu (4paradigm, China)

All problems are multi-label classification problems.

The tasks are constrained by the time budget (20 minutes/dataset).

The submission evaluation process is shown in

APPENDIX C DESCRIPTION OF WINNING METHODS

We present in detail the winning solutions from top-3 winning teams (DeepWisdom, DeepBlueAI and PASA NJU) and the team automl freiburg which made a late submission in the feedback phase but ranked 5th in the final phase. We considered interesting to introduce automl freiburg's approach due to their contributions and for scientific purpose.

C.1 Approach of DeepWisdom (1st prize)

The team DeepWisdom proposed a unified learning framework following a meta-learning paradigm. The framework consists of two parts: meta-train and metainference. The meta-train module takes as input the January 8, 2022 DRAFT