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.

Abstract—The objective of this research is to push the frontiers in Automated Machine Learning, specifically targeting Deep Learning.
We analyse ChaLearn’s Automated Deep Learning challenge whose design features include: (i) Code submissions entirely
blind-tested, on five classification problems during development, then ten others during final testing. (ii) Raw data from various
modalities (image, video, text, speech, tabular data), formatted as tensors. (iii) Emphasis on ”any-time learning” strategies by imposing
fixed time/memory resources and using the Area under Learning curve as metric. (iv) Baselines provided, including ”Baseline 3”,
combining top-ranked solutions of past rounds (AutoCV, AutoNLP, AutoSpeech,and AutoSeries). (v) No Deep Learning imposed.
Principal findings: (1) The top two winners passed all final tests without failure, a significant step towards true automation. Their
solutions were open-sourced. (2) Despite our effort to format all datasets uniformly to encourage generic solutions, the participants
adopted specific workflows for each modality. (3) Any-time learning was addressed successfully, without sacrificing final performance.
(4) Although some solutions improved over Baseline 3, it strongly influenced many. (5) Deep Learning solutions dominated, but Neural
Architecture Search was impractical within the time budget imposed. Most solutions relied on fixed-architecture pre-trained networks,
with fine-tuning. Ablation studies revealed the importance of meta-learning, ensembling, and efficient data loading, while
data-augmentation is not critical.

Index Terms—AutoML, Deep Learning, Meta-learning, Neural Architecture Search, Model Selection, Hyperparameter Optimization

F

1 INTRODUCTION

THE year of 2019 has seen the success of several machine
learning competitions we organized in the Automated

Deep Learning (AutoDL) challenge series [1], which pro-
vides a reusable benchmark in the domain of Automated
Machine Learning (AutoML) applied to Deep Learning.
The AutoML problem asks whether one could have one
single algorithm (an AutoML algorithm) that can perform
learning on a large spectrum of data and always has con-
sistently good performance, removing the need for human
expertise (which is exactly the opposite of No Free Lunch
theorems [2], [3], [4]). Our AutoDL challenges encompass
many domains in which Deep Learning has been success-
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(xuzhen@4paradigm.com) is with 4Paradigm, Beijing. S. Escalera is with
the Universitat de Barcelona and Computer Vision Center. I. Guyon is with
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ful: computer vision, natural language processing, speech
recognition, as well as classic tabular data (feature-vector
representation).

AutoML is crucial to accelerate data science and reduce
the need for data scientists and machine learning experts.
For this reason, many efforts have been made to achieve
true AutoML, both in academia and the private sector.
In academia, AutoML challenges [5] have been organized
and collocated with top machine learning conferences such
as ICML and NeurIPS to motivate AutoML research in
the machine learning community. The winning approaches
from such prior challenges (e.g. auto-sklearn [6], [7]) are
now widely used both in research and in industry. More
recently, interest in Neural Architecture Search (NAS) has
exploded [8], [9], [10], [11], [12]. On the industry side, many
companies such as Microsoft [13] and Google are develop-
ing AutoML solutions. Google has also launched various
AutoML [14], NAS [6], [15], [16], [17], and meta-learning
[18], [19] research efforts. Most of the above approaches,
especially those relying on Hyper-Parameter Optimization
(HPO) or NAS, require significant computational resources
and engineering time to find good models. Additionally, re-
producibility is impaired by undocumented heuristics [20].

The motivation behind this AutoDL challenge series is
thus two-fold. First, we wish to continue promoting the
community’s research interests on AutoML to build univer-
sal AutoML solutions that can be applied to any task (as
long as the data is collected and formatted in the same man-
ner). By choosing tasks in which Deep Learning methods
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excel, we put gentle pressure on the community to improve
on Automated Deep Learning. Second, our challenges can
serve as reusable benchmarks for fairly evaluating AutoML
approaches, on a wide range of domains. Since computa-
tional resources and time cost can be a non-negligible factor,
we introduce an any-time learning metric called Area under
Learning Curve (ALC) (see Section 2.3) for the evaluation of
participants’ approaches, taking into consideration both the
final performance (e.g. accuracy) and the speed to achieve
this performance (using wall-time). As far as we know, the
AutoDL challenges are the only competitions that adopt a
similar any-time learning metric.

Acknowledging the difficulty of engineering universal
AutoML solutions, we first organized four preliminary chal-
lenges. Each of them focused on a specific application do-
main. These included: AutoCV for images, AutoCV2 for im-
ages and videos, AutoNLP for natural language processing
(NLP) and AutoSpeech for speech recognition. Then, during
NeurIPS 2019 we launched the final AutoDL challenge that
combined all these application domains, and tabular data.
All these challenges shared the same competition protocol
and evaluation metric (i.e. ALC) and provided data in
a similar format. All tasks were multi-label classification
problems.

For domain-specific challenges such as AutoCV, Au-
toCV2, AutoNLP and AutoSpeech, the challenge results and
analysis are presented in [1]. In this work, we focus on the
final AutoDL challenge with all domains combined together.
Some of the principal questions we aimed at answering in
this challenge ended up being answered, with the help of
fact sheets that participants filled out, and some from the
post-challenge experiment, as detailed further in the paper.
The main highlights are the briefly summarized.

First of all, were the tasks of the challenge of a difficulty
adapted to push the state-of-the-art in Automated Deep
Learning? On one hand YES, since (1) the top two ranking
participants managed to pass all final tests without code fail-
ure and delivered solutions on new tasks (trained and tested
without human intervention), performing significantly bet-
ter than the baseline methods, within the time/memory
constraints, and (2) all teams used Deep Learning as part
of their solutions. This confirms that Deep Learning is
well adapted to the chosen domains (CV, NLP, speech). As
further evidence that we hit the right level of challenge
duration and difficulty, 90% of teams found the challenge
duration sufficient and 50% of teams found the time and
computational resources sufficient. On the other hand NO,
since (1) all of the top-9 teams used a domain-dependent
approach, treating each data modality separately (i.e. using
hard-coded if..else clauses and will probably fail on new
unseen domains such as other sensor data); and (2) the time
budget was too constraining to do any Neural Architecture
Search; and (3) complex heterogeneous ensembles including
non Deep Learning methods were used.

Secondly, was the challenge successful in fostering
progress in “any-time learning”? The learning curve ex-
amples in Figures 2 and 10a show that for most datasets,
convergence was reached within 20 minutes. A fast increase
in performance early on in the learning curve demonstrates
that the participants made a serious effort to deliver solu-
tions quickly, which is an enormous asset in many applica-

tions needing a quick turnover and for users having modest
computational resources.

Finally, from the research point of view, a burning ques-
tion is whether progress was made in “meta-learning”,
the art of learning from past tasks to perform better on
new tasks? There is evidence that the solutions provided
by the participants generalize well to new tasks, since they
performed well in the final test phase. To attain these results,
seven out of the nine top ranking teams reported that
they used the provided “public” datasets for meta-learning
purposes. In Section 5.1 we used ablation studies to evaluate
the importance of using meta-learning and in Section 5.2 we
analyzed how well the solutions provided meta-generalize.

Thus, while we are still far from an ultimate AutoML
solution that learns from scratch for ALL domains (in the
spirit of [17]), we made great strides with this challenge
towards democratizing Deep Learning by significantly re-
ducing human effort. The intervention of practitioners is
reduced to formatting data in a specified way; we provide
code for that at https://autodl.chalearn.org, as well as the
code of the winners.

The rest of this work is organized as follows. In Section 2,
we give a brief overview of the challenge design (see [21]
for detailed introduction). Then, detailed descriptions of
winning methods are given in Section 4. Post-challenge
analyses, including ablation study results, is presented in
Section 5. Lastly, we conclude the work in Section 6.

The rest of this work is organized as follows. In Section 2,
we give a very brief overview of the challenge design (see
[21] for detailed introduction). Then, detailed descriptions
of winning methods are given in Section 4. Post-challenge
analysis including ablation study results are presented in
Section 5. Lastly, we conclude the work in Section 6.

2 CHALLENGE DESIGN

2.1 Data
In AutoDL challenges, raw data (images, videos, audio, text,
etc) are provided to participants formatted in a uniform
tensor manner (namely TFRecords, a standard generic data
format used by TensorFlow). For images with native com-
pression formats (e.g. JPEG, BMP, GIF), we directly use the
bytes. Our data reader decodes them on-the-fly to obtain
a 4D tensor. Video files in mp4/avi format (without the
audio track) are used in a similar manner. For text datasets,
each example (i.e. a document) is a sequence of integer
indices. Each index corresponds to a word (for English)
or character (for Chinese) in a vocabulary given in the
metadata. For speech datasets, each example is represented
by a sequence of floating numbers specifying the amplitude
at each timestamp, similar to uncompressed WAV format.
Lastly, tabular datasets’ feature vector representation can
be naturally considered as a special case of our 4D tensor
representation.

For practical reasons, each dataset was kept under 2.5
GB, which required sometimes reducing image resolution,
cropping, and/or downsampling videos. We made sure to
include application domains in which the scales varied a lot.
We formatted around 100 datasets in total and used 66 of
them for AutoDL challenges: 17 image, 10 video, 16 text, 16
speech and 7 tabular. The distribution of domain and size

https://autodl.chalearn.org
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Fig. 1: Distribution of AutoDL challenge dataset domains
with respect to compressed storage size in giga-bytes and
total number of examples for all 66 AutoDL datasets. We
see that the text domain varies a lot in terms of number
of examples but remains small in storage size. The image
domain varies a lot in both directions. Video datasets are
large in storage size in general, without surprise. Speech
and time series datasets have fewer number of examples in
general. Tabular datasets are concentrated and are small in
storage size.

is visualized in Figure 1. All datasets marked public can
be downloaded on corresponding challenge websites 1 and
information on some meta-features of all AutoDL datasets
can be found on the “Benchmark” page2 of our website.
All tasks are supervised multi-label classification problems,
i. e. data samples are provided in pairs {X,Y }, X being an
input 4D tensor of shape (time, row, col, channel) and Y a
target binary vector (withheld from in test data).

For the datasets of AutoDL challenge, we won’t release
their identities as we will very probably reuse them in future
challenges. But we recall their name, domain and other
meta-features in Table 1. These datasets will appear in our
analysis frequently.

2.2 Blind testing

A hallmark of the AutoDL challenge series is that the
code of the participants is blind tested, without any human
intervention, in uniform conditions imposing restrictions on
training and test time and memory resources, to push the
state-of-the-art in automated machine learning. The chal-
lenge had 2 phases:

1) A feed-back phase during which methods were
trained and tested on the platform on five practice
datasets. During the feed-back phase, the partici-
pants could make several submissions per day and
get immediate feed-back on a leaderboard. The feed-
back phase lasted 4 months. Obviously, since they
made so many submissions, the participants could
to some extent get used to the feed-back datasets.
For that reason, we also had:

2) A final phase using ten fresh datasets. Only ONE FI-
NAL CODE submission was allowed in that phase.

1. https://autodl.lri.fr/competitions/162
2. https://autodl.chalearn.org/benchmark

Fig. 2: Learning curves of top-9 teams (together with one
baseline) on the text dataset Viktor from the AutoDL chal-
lenge final phase. We observe different patterns of learning
curves, revealing various strategies adopted by participat-
ing teams. The curve of DeepWisdom goes up quickly at
the beginning but stabilizes at an inferior final performance
(and also inferior any-time performance) than DeepBlueAI.
The fact that these two curves cross each other suggests
that one might be able to combine these 2 methods to
improve the exploration-exploitation trade-off. In terms of
number of predictions made during the whole train/predict
process (20 minutes), many predictions are made by Deep-
Wisdom and DeepBlueAI but (much) fewer are made by
the other teams. Finally, although different patterns are
found, some teams such as team zhaw, surromind and au-
toml freiburg show very similar patterns. This is because
all teams adopted a domain-dependent approach and some
teams simply used the code of Baseline 3 for certain domains
(text in this case).

Since this was a complete blind evaluation during BOTH
phases, we provided additional “public” datasets for prac-
tice purposes and to encourage meta-learning.

We ran the challenge on the Codalab platform (http://
competitions.codalab.org), which is an open source project
of which we are community lead. Codalab is free for use
for all. We use to run the calculations a generous donation
of Google of 100,000 cloud units. We prepared a docker
including many machine learning toolkits and scientific pro-
gramming utilities, such as Tensorflow, Pytorch and scikit-
learn. We ran the jobs of the participants in virtual machines
equipped with NVIDIA Tesla P100 GPUs. One VM was
entirely dedicated to the job of one participant during its
execution.

2.3 Metric

AutoDL challenges encourage any-time learning by scoring
participants with the Area under the Learning Curve (ALC)
(see definition in Eq. 1, and examples of learning curves
can in Figure 2). The participants can train in increments
of a chosen duration (not necessarily fixed) to progressively

https://autodl.lri.fr/competitions/162
https://autodl.chalearn.org/benchmark
http://competitions.codalab.org
http://competitions.codalab.org


IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

TABLE 1: Datasets of the AutoDL challenge, for both phases. The final phase datasets (meta-test datasets) vary a lot
in terms of number of classes, number of training examples, and tensor dimension, compared to those in the feedback
phase. This was one of the difficulties of the AutoDL challenge. “chnl” codes for channel, “var” for variable size, “CE
pair” for “cause-effect pair”. More information on all 66 datasets used in AutoDL challenges can be found at https:
//autodl.chalearn.org/benchmark.

Class Sample number Tensor dimension
# Dataset Phase Topic Domain num. train test time row col chnl
1 Apollon feedback people image 100 6077 1514 1 var var 3
2 Monica1 feedback action video 20 10380 2565 var 168 168 3
3 Sahak feedback speech time 100 3008 752 var 1 1 1
4 Tanak feedback english text 2 42500 7501 var 1 1 1
5 Barak feedback CE pair tabular 4 21869 2430 1 1 270 1
6 Ray final medical image 7 4492 1114 1 976 976 3
7 Fiona final action video 6 8038 1962 var var var 3
8 Oreal final speech time 3 2000 264 var 1 1 1
9 Tal final chinese text 15 250000 132688 var 1 1 1
10 Bilal final audio tabular 20 10931 2733 1 1 400 1
11 Cucumber final people image 100 18366 4635 1 var var 3
12 Yolo final action video 1600 836 764 var var var 3
13 Marge final music time 88 9301 4859 var 1 1 1
14 Viktor final english text 4 2605324 289803 var 1 1 1
15 Carla final neural tabular 20 10931 2733 1 1 535 1

improve performance, until the time limit is attained. Perfor-
mance is measured by the NAUC or Normalized Area Under
ROC Curve (AUC) NAUC = 2 ⇥ AUC � 1 averaged over
all classes. Multi-class classification metrics are not being
considered, i. e. each class is scored independently. Since
several predictions can be made during the learning process,
this allows us to plot learning curves, i. e. “performance”
(on test set) as a function of time. Then for each dataset, we
compute the Area under Learning Curve (ALC). The time
axis is log scaled (with time transformation in Eq. 2) to put
more emphasis on the beginning of the curve. This way,
we encourage participants to develop techniques that im-
prove performance rapidly at the beginning of the training
process. This should be important to treat large redundant
and/or imbalanced datasets and small datasets alike, e. g. by
treating effectively redundancy in large training datasets or
using learning machines pre-trained on other data if training
samples are scarce. Finally, in each phase, an overall rank for
the participants is obtained by averaging their ALC ranks
obtained on each individual dataset. The average rank in
the final phase is used to determine the winners.

2.4 Baseline 3 of AutoDL challenge

As in previous challenges (e.g. AutoCV, AutoCV2, AutoNLP
and AutoSpeech), we provide 3 baselines (Baseline 0, 1 and
2) for different levels of use: Baseline 0 is just constant
predictions for debug purposes, Baseline 1 a linear model,
and Baseline 2 a CNN (see [21] for details). In the AutoDL
challenge, we provide additionally a Baseline 3 which com-
bines the winning solutions of previous challenges. And for
benchmarking purposes, we ran Baseline 3 on all 66 datasets
in all AutoDL challenges (public or not) and the results are
shown in Figure 3. Many participants used Baseline 3 as a
starting point to develop their own method. For this reason,
we describe in this section the components of Baseline 3 in
some details.

2.4.1 Vision domain: winning method of AutoCV/AutoCV2
The wining solution of AutoCV1 and AutoCV2 Chal-
lenges [21], i.e., kakaobrain, is based on Fast AutoAug-
ment [22], which is a modified version of the AutoAug-
ment [23] approach. Instead of relying on human exper-
tise, AutoAugment [23] formulates the search for the best
augmentation policy as a discrete search problem and uses
Reinforcement Learning to find the best policy. The search
algorithm is implemented as a Recurrent Neural Network
(RNN) controller, which samples an augmentation policy S,
combining image processing operations, with their proba-
bilities and magnitudes. S is then used to trained a child
network to get a validation accuracy R, which is used to
update the RNN controller by policy gradient methods.

Despite a significant improvement in performance, Au-
toAugment requires thousands of GPU hours even with a
reduced target dataset and small network. On the other
hand, Fast AutoAugment [22] finds effective augmenta-
tion policies via a more efficient search strategy based on
density matching between a pair of train datasets, and
a policy exploration based on Bayesian optimization over
stratified k-folds splits of the training dataset. The winning
team (kakaobrain) of AutoCV implemented a light version
of Fast AutoAugment, replacing the 5-folds by a single
fold search and using a random search instead of Bayesian
optimization. The backbone architecture used is ResNet-18
(i.e., ResNet [24] with 18 layers).

2.4.2 Text domain: winning method of AutoNLP
For the text domain, Baseline 3 uses the 2nd place’s solution
from AutoNLP since we found that upwind flys’s code was
easier to adapt in the challenge setting and gave similar
performance to that of 1st place (DeepBlueAI).

The core of upwind flys’s solution is a meta-controller
dealing with multiple modules in the pipeline including
model selection, data preparation and evaluation feedback.
For the data preparation step, to compensate for class im-
balance in the AutoNLP datasets, upwind flys first calculates
the data distribution of each class in the original data. Then,

https://autodl.chalearn.org/benchmark
https://autodl.chalearn.org/benchmark
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they randomly sample training and validation examples
from each class in the training set, thus balancing the
training and validation data by up- and down-sampling.
Besides, upwind flys prepares a model pool including fast
lightweight models like LinearSVC [25], and heavy but
more accurate models like LSTM [26] and BERT [27]. They
first use light models (such as linear SVC), but the meta-
controller switches eventually to other models such as neu-
ral networks, with iterative training. If the AUC drops below
a threshold or drops twice in a row, the model is switched,
or the process is terminated and the best model ever trained
is chosen, when the pool is exhausted.

2.4.3 Speech domain: winning method of AutoSpeech
Baseline 3 uses the approach of the 1st place winner
of the AutoSpeech challenge: PASA NJU. Interestingly,
PASA NJU, has developed one single approach for the
two sequence types of data, i.e. speech and text. As time
management is key for optimizing any time performance,
as measured by the metric derived from the ALC, the best
teams have experimented with various data selection and
progressive data loading approaches. Such decision allowed
them to create a tread-off between accelerating the first
predictions while ensuring a good and stable final AUC.
For instance PASA NJU truncated speech samples from
22.5s to 2.5s, and started with loading 50% of the samples
for the 3 first training loops, however preserving a similar
balance of classes, loading the rest of the data from the
4th training loop. As for features extraction, MFCC (Mel-
Frequency Cepstral Coefficients) [28] and STFT (Short-Time
Fourrier Transform) [29] are used.. In terms of model selec-
tion and architectures, PASA NJU progressively increases
the complexity of their model, starting with simple models
like LR (Logistic Regression), LightGBM at the beginning
of the training, combined later with some light weight
pretrained CNN models like Thin-ResNet-34 (ResNet [24]
but with smaller numbers of filters/channels/kernels) and
VggVox [30], finally (bidirectional) LSTM [26], with atten-
tion mechanism. This strategy allows to make fast early pre-
dictions and progressively improves models performance
over time to optimize the anytime performance metric.

2.4.4 Tabular domain
As there were no previous challenge for the tabular domain
in AutoDL challenge series, the organizers implemented
a simple multi-layer perceptron (MLP) baseline. Tabular
datasets consist of both continuous values and categories.
Categorical quantities are converted to normalized indices.
Tabular domains may have missing values (missing values
are replaced by zero) as well. Therefore, to cope with miss-
ing data, we designed a denoising autoencoder (DAE) [31]
able to interpolate missing values from available data. The
architecture consists of a batch normalization layer right
after input data, a dropout, 4 fully connected (FC) layers, a
skip connection from the first FC layer to the 3rd layer and
an additional dropout after 2nd FC layer. Then we apply
a MLP classifier with 5 FC layers. All FC layers have 256
nodes (expect the last layers of DAE and classifier) with
ReLU activation and batch normalization. We keep the same
architecture for all datasets in this domain. DAE loss is a

L1 loss on non-missing data and classifier loss is a sigmoid
cross entropy.

3 AUTODL CHALLENGE RESULTS

The AutoDL challenge (the last challenge in the AutoDL
challenges series 2019) lasted from 14 Dec 2019 (launched
during NeurIPS 2019) to 3 Apr 2020. It has had a partici-
pation of 54 teams with 247 submissions in total and 2614
dataset-wise submissions. Among these teams, 19 of them
managed to get a better performance (i.e. average rank over
the 5 feedback phase datasets) than that of Baseline 3 in
feedback phase and entered the final phase of blind test.
According to our challenge rules, only teams that provided
a description of their approach (by filling out some fact
sheets we sent out) were eligible for getting a ranking in
the final phase. We received 8 copies of these fact sheets
and thus only these 8 teams were ranked. These teams
are (alphabetical order): DeepBlueAI, DeepWisdom, frozenmad,
Inspur AutoDL, Kon, PASA NJU, surromind, team zhaw. One
team (automl freiburg) made a late submission and isn’t
eligible for prizes but will be included in the post-analysis
for scientific purpose.

The final ranking is computed from the performances
on the 10 unseen datasets in the final phase. To reduce the
variance from diverse factors such as randomness in the
submission code and randomness of the execution envi-
ronment (which makes the exact ALC scores very hard to
reproduce since the wall-time is hard to control exactly),
we re-run every submission several times and average the
ALC scores. The average ALC scores obtained by each team
is shown in Figure 4 (the teams are ordered by their final
ranking). From this figure, we see that some entries failed
constantly on some datasets such as frozenmad on Yolo, Kon
on Marge and PASA NJU on Viktor, due to issues in their
code (e.g. bad prediction shape or out of memory error).
On the other hand, some entries crashed only sometimes on
certain datasets, such as Inspur AutoDL on Tal, whose cause
is related to some pre-processing procedure on text datasets
concerning stop words. Otherwise, the error bars show that
the performances of most runs are statistically consistent.

4 WINNING APPROACHES

In this section, we present in detail the winning solutions
from top-3 winning teams (DeepWisdom, DeepBlueAI and
PASA NJU) and the team automl freiburg which made a late
submission in feedback phase but ranked 5th in final phase.
We considered interesting to introduce automl freiburg’s ap-
proach due to their contributions and for scientific purpose.

A summary of the winning approaches on each domain
can be found in Table 2. Another summary using a cate-
gorization by machine learning techniques can be found in
Table 3. We see in Table 2 that almost all approaches used
5 different methods from 5 domains. For each domain, the
winning teams’ approaches are much inspired by Baseline 3.
In Table 3, we see that almost all different machine learning
techniques are actively present and frequently used in all
domains (exception some rare cases for example transfer
learning on tabular data). We’ll introduce below in detail
the top-3 winning solutions.
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(a) All results included (b) Rectangular area in Figure 3a zoomed

Fig. 3: ALC and final NAUC performances of Baseline 3 on ALL 66 AutoDL datasets. Different domains are shown with
different markers. In 3a, the dataset name is shown beside each point except the top-right area, which is shown in Figure
3b. These figures will serve as a reference to compare future methods with Baseline 3. Numerical values are provided in
appendix in Table 4.

4.1 Approach of DeepWisdom (1st prize)

This team proposed a unified learning framework follow-
ing a meta-learning paradigm. The framework consists of
two parts: meta-train and meta-inference. The meta-train
module takes as input the ”public” datasets, which are
augmented by the internal data augmentation engine, and
the objective function (the ALC metric in the case of the
challenge). The meta-trainer generates solution agents, whose
objective is to search for best models, using search operators.
In the meta-inference step, a new task is processed taking in
one dataset of the challenge. Initial metadata and seed data
(few-shot samples) are acquired from the raw dataset.This
constitutes the input of the solution agents obtained by meta-
training. Solution workflow starts after taking in the seed
input data, then it receives more raw data in a streaming
way, and interacts with a whole set of tables for storage to
cache intermediate results and models. Next, we explain the
domain-specific contributions of this team.

In the image domain, ResNet-18 is used in the early
stages of the training and then switched to ResNet-9 in more
advanced stages (The reason is the instability of ResNet-18).
When switching from ResNet-18 to ResNet-9, to reduce I/O
cost, they cache the mini batches, which have been used for
ResNet-18 training in GPU and reuse them for the initial
training phase of ResNet-9, until all these mini batches
are exhausted. The networks are fine-tuned by initialing
from Imagenet pre-trained networks. However, for a fast
transfer learning batch normalization and bias variables
are initialized from scratch. To avoid overfitting, fast auto
augmentation is used in the later training phase, which can
automatically search for the best augmentation strategy on
the given dataset, according to the validation AUC. The
searching process is quite time-consuming but effectively
increase the top-AUC.

In the video domain, a mixed convolution (MC3) net-

work [39] is adopted which consists of 3D convolutions
in the early layers and 2D convolutions in the top layers
of the network. The network is pretrained on the Kinetics
dataset and accelerated transferring to other datasets by re-
initializing linear weights and bias and freezing the first two
layers. Due to the slower speed of 3D than 2D convolution,
3 frames are extracted at the early phase. Then for longer
videos, an ensemble strategy is applied to combine best
predictions from MC3 with 3-,10- and 12-frames data.

In the speech domain, a model search is applied in
the meta-training part and LogisticRegression and ThinRes-
net34 achieve best performance in non-neural and neural
models, respectively. The meta-trainer firstly learned that
validating in the beginning was wasting the time budget
without any effect on ALC, thus the evaluation agent did
not validate when model was fitting new streaming data.
Secondly, if amount of training samples was not very large,
evaluation metric on training data could avoid overfitting
partly while last best predictions ensemble strategy was
applied.

In the text domain, they decode maximum 5500 samples
for each round. Various data preprocessing methods are ap-
plied, including email data structure pre-processing, word
frequency filtering and word segmentation. After tokeniza-
tion and sequence padding, both pre-trained and randomly
initialized word embedding (with various dimensions) are
used as word features. The meta-trainer includes several
solutions such as TextCNN, RCNN, GRU, and GRU with
attention [40], [41]. Hyperparameters are set after a neural
network architecture is selected. Also a weighted ensem-
bling is adopted among top 20 models based AUC scores.

Finally, in the tabular domain, they batch the dataset
and convert tfdatasets to numpy format progressively, a
weighted ensembling is applied based on several optimized
models including LightGBM, Catboost, Xgboost and DNN
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Fig. 4: ALC scores of top 9 teams in AutoDL final phase averaged over repeated evaluations (and Baseline 3, for
comparison). The entry of top 6 teams are re-run 9 times and 3 times for other teams. Error bars are shown with (half)
length corresponding to the standard deviation from these runs. Some (very rare) entries are excluded for computing these
statistics due to failures caused by the challenge platform backend. The team ordering follows that of their average rank in
the final phase. The domains of the 10 tasks are image, video, speech/times series, text, tabular (and then another cycle in
this order). More information on the task can be found in Table 1.

on the offline datasets. To do so, data is split to several folds.
Each fold has a training set and two validation sets. One
validation set is used to optimize model hyperparameters
and other set to compute ensembling weights.

4.2 Approach of DeepBlueAI (2nd prize)

The DeepBlueAI solution is a combination of methods that
are specific to each modality. Nevertheless, three concepts
are applied across all modalities: 1) optimizing time budget
by reducing the time for data processing, start with light
models and parameters setting to accelerate first predic-
tions; 2) dataset adaptive strategies and 3) ensemble learn-
ing.

For images, the DeepBlueAI team applies a strategy
adapted to each specific dataset. They apply a pretrained
ResNet-18 model. The dataset adaptive strategy is not ap-
plied to model selection but to parameters settings includ-
ing: image size, steps per epoch, epoch after which starting
validating and fusing results. With the aim to optimize for
final AUC, and make results more stable, they apply a pro-
gressive ensemble learning method, i.e. for epochs between
5 to 10, the latest 2 predictions are averaged, while after
10 epochs the 5 latest predictions are averaged. When the
score on validation set improves a little, data augmentation
strategy is adopted by searching for the most suitable data
augmentation strategy for each image dataset with a small
scale version of Fast AutoAugment [42] limiting the search
among 20 iterations in order to preserve more time for
training.

For video, ResNet-18 is used for classification. In the
search for a good trade-off between calculation speed and
classification accuracy, 1/6 of the frames with respect to the
total number are selected. For datasets with a large number
of categories, image size is increased to 128 to get more

details out of it. During training, when the score of the
validation set increases, predictions are made on the test
set, and submitted as the average of the current highest 5
test results.

For speech, features are extracted with Mel spectrogram
[43] for Logistic Regression (LR) model and MFCC [28] for
deep learning models. In order to accelerate the extraction
long sequences are truncated but covering at least 90% of
the sequence. Then, to accelerate first score computation,
training data are loaded progressively, 7% for the first iter-
ation, then 28%, 66% and then all data at 4th iteration, with
care to balance multiple categories, to ensure the models
can learn accurately. As for the models, LR is used for the
first 3 iterations, then from the 4th iteration using all the
data deep learning models, CNN and CNN+GRU [44] are
employed. At the end, the overall 5 best models and the
best version of each of the 3 models are averaged to build
a final ensemble. The iterative data loading is especially
effective on large dataset and play a significant role in the
performance measured by the metric derived from the ALC.

For text, the data set size, text length and other character-
istics are automatically obtained, and then a preprocessing
method suitable for the data set is adopted. Long texts,
over 6000 words are truncated, and NLTK stemmer is used
to extract root features and filter meaningless words with
frequency below 3. As for model selection, FastText [45],
TextCNN [40], BiGRU [44] are used by their system that
generate different model structures and set of parameters
adapted to each dataset. The size of the data set, the num-
ber of categories, the length of the text, and whether the
categories are balanced are considered to generate the most
suitable models and parameter settings.

For tabular, three directions are optimized: accelerating
scoring time, adaptive parameter setting, ensemble learning.

Data is first split into many batches to significantly
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TABLE 2: Summary of the five top ranking solutions and their average rank in the final phase. The participant’s
average rank (over all tasks) in the final phase is shown in parenthesis (automl freibug and Baseline 3 were not ranked
in the challenge). Each entry concerns the algorithm used for each domain and is of the form “[pre-processing / data
augmentation]-[transfer learning/meta-learning]-[model/architecture]-[optimizer]” (when applicable).

Team image video speech text tabular

1.DeepWisdom
(1.8)

[ResNet-18 and ResNet-9
models] [pretrained on

ImageNet]

[MC3 model] [pretrained
on Kinetics]

[fewshot learning ] [LR,
Thin ResNet34 models]

[pretrained on VoxCeleb2]

[fewshot learning] [task
difficulty and similarity

evaluation for model
selection] [SVM,

TextCNN,[fewshot
learning] RCNN, GRU,
GRU with Attention]

[LightGBM, Xgboost,
Catboost, DNN models]

[no pretrained]

2.DeepBlueAI
(3.5)

[data augmentation with
Fast AutoAugment]
[ResNet-18 model]

[subsampling keeping 1/6
frames] [Fusion of 2 best

models ]

[iterative data loader (7,
28, 66, 90%)] [MFCC and

Mel Spectrogram
preprocessing] [LR, CNN,

CNN+GRU models]

[Samples truncation and
meaningless words
filtering] [Fasttext,

TextCNN, BiGRU models]
[Ensemble with restrictive

linear model]

[3 lightGBM models]
[Ensemble with Bagging]

3.Inspur AutoDL
(4) Tuned version of Baseline 3

[Incremental data loading
and train-

ing][HyperOpt][LightGBM]

4.PASA NJU (4.1)

[shape standardization and
image flip (data

augmentation)][ResNet-18
and SeResnext50]

[shape standardization and
image flip (data

augmentation)][ResNet-18
and SeResnext50]

[data truncation(2.5s to
22.5s)][LSTM, VggVox

ResNet with pretrained
weights of DeepWis-

dom(AutoSpeech2019)
Thin-ResNet34]

[data truncation(300 to
1600 words)][TF-IDF and

word embedding]

[iterative data loading]
[Non Neural Nets models]

[models complexity
increasing over time]

[Bayesian Optimization of
hyperparameters]

5.frozenmad (5)

[images resized under
128x128] [progressive data

loading increasing over
time and epochs]

[ResNet-18 model]
[pretrained on ImageNet]

[Successive frames
difference as input of the

model] [pretrained
ResNet-18 with RNN

models]

[progressive data loading
in 3 steps 0.01, 0.4, 0.7]

[time length adjustment
with repeating and

clipping] [STFT and Mel
Spectrogram

preprocessing] [LR,
LightGBM, VggVox

models]

[TF-IDF and BERT
tokenizers] [ SVM,

RandomForest , CNN,
tinyBERT ]

[progressive data loading]
[no preprocessing] [Vanilla

Decision Tree,
RandomForest, Gradient
Boosting models applied
sequentially over time]

automl freiburg

Architecture and hyperparameters learned offline on
meta-training tasks with BOHB. Transfer-learning on

unseen meta-test tasks with AutoFolio. Models:
EfficientNet [pretrained on ImageNet with AdvProp],

ResNet-18 [KakaoBrain weights], SVM, Random
Forest, Logistic Regression

Baseline 3

Baseline 3

[Data augmentation with
Fast AutoAugment,

adaptive input
size][Pretrained on
ImageNet][ResNet-

18(selected
offline)]

[Data augmentation with
Fast AutoAugment,
adaptive input size,

sample first few frames,
apply stem CNN to reduce
to 3 channels][Pretrained

on ImageNet][ResNet-
18(selected

offline)]

[MFCC/STFT feature][LR,
LightGBM,

Thin-ResNet-34, VggVox,
LSTM]

[resampling training
examples][LinearSVC,

LSTM, BERT]

[interpolate missing
value][MLP of four hidden

layers]

accelerate the data loading and converted from TFrecords to
numpy format. In terms of models, decision trees LightGBM
are adopted to get faster scoring than with deep learning
models. Because LightGBM supports continuous training,
and the model learns faster in the early stage. During the
training phase, earnings from the previous epochs are much
higher than those from the latter. Therefore, a complete
training is intelligently divided into multiple parts. The
result is submitted after each part to get score faster.

In terms of adaptive parameter setting, some parameters
are automatically set according to the size of data and
the number of features of the tables. If the number of
samples is relatively large, the ensemble fraction is reduced.
If the original features of the sample are relatively large,
the feature fraction is reduced. A learning rate decay is
applied, starting with a large value to ensure a speed up in
the early training. An automatic test frequency is adopted.
Specifically, the frequency of testing is controlled based on
training speed and testing speed. If the training is slow and
the prediction is fast, the frequency of the test is increased.
On the contrary, if training is fast and prediction is slow, the

frequency is reduced. This strategy can improve to higher
early scores.

In order to improve generalization, multiple lightGBM
models are used to make an ensemble with a bagging
method.

4.3 Approach of PASA NJU (3rd prize)
The PASA NJU team modeled the problem as three different
tasks: CV (image and video), Sequence (speech and text) and
Tabular (tabular domain).

For the CV task, they preprocessed the data by analysing
few sample instances of each dataset at training stage (such
as image size, number of classes, video length, etc) in order
to standardize the input shape of their model. Then, simple
transformations (image flip) were used to augment the data.
Random frames were obtained from video files and treated
as image database. For both Image and Video tasks, ResNet-
18 [24] is used. However, SeResnext50 [46] was used at later
stages. Basically, they monitor the accuracy obtained by the
ResNet-18 model and change the model to the SeResnext50
if no significant improvement is observed.
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TABLE 3: Machine learning techniques applied to each of the 5 domains considered in AutoDL challenge.

ML technique image video speech text tabular

Meta-learning

Offline meta-training transferred with AutoFolio [32] based on meta-features (automl freiburg, for image and video)
Offline meta-training generating solution agents, searching for optimal sub-operators in predefined sub-spaces, based on dataset meta-data.

(DeepWisdom)
MAML-like method [18] (team zhaw)

Preprocessing

image cropping and data
augmentation (PASANJU),

fast autoaugment
(DeepBlueAI)

Sub-sampling keeping 1/6
frames and adaptive image
size (DeepBlueAI) Adaptive

image size

MFCC, Mel Spectrogram,
STFT

root features extractions
with stemmer, meaningless

words filtering
(DeepBlueAI)

Numerical and Categorical
data detection and

encoding

Hyperparameter
Optimization

Offline with BOHB [33] (Bayesian Optimization and
Multi-armed Bandit) (automl freiburg) Sequential

Model-Based Optimization for General Algorithm
Configuration (SMAC) [34] (automl freiburg)

Online model complexity
adaptation (PASA NJU)

Online model selection
and early stopping using
validation set (Baseline 3(

flys))

Bayesian Optimization
(PASANJU)

HyperOpt [35]
(Inspur AutoDL)

Transfer learning
Pre-trained on

ImageNet [36] (all teams
except Kon)

Pre-trained on
ImageNet [36] (all top-8

teams except Kon)
MC3 model pretrained on

Kinetics (DeepWisdom)

ThinResnet34 pre-trained
on VoxCeleb2
(DeepWisdom)

BERT-like [27] models
pretrained on FastText (not applicable)

Ensemble
learning

Adaptive Ensemble
Learning (ensemble latest

2 to 5 predictions)
(DeepBlueAI)

Ensemble Selection [37]
(top 5 validation

predictions are fused)
(DeepBlueAI); Ensemble

models sampling 3, 10, 12
frames (DeepBlueA)

last best predictions
ensemble strategy

(DeepWisdom)
averaging 5 best overall
and best of each model:
LR, CNN, CNN+GRU

(DeepBlueA)

Weighted Ensemble over
20 best models [37]

(DeepWisdom)

LightGBM ensemble with
bagging method [38]

(DeepBlueAI),
Stacking and blending

(DeepWisdom)

Speech and Text data are treated similarly, i.e., as a
Sequence task. In a preprocessing stage, data samples are
cut to have the same shape. Their strategy was to increase
the data length as time pass. For example, they use raw data
from 2.5s to 22.5s in speech task, and from 300 to 1600 words
when Text data is considered. In both cases, hand-crafted
feature extraction methods are employed. For speech data,
mel spectrogram, MFCC and STFT [29] is used. When Text is
considered, TF-IDF and word embedding is used. To model
the problem, they employed Logistic Regression at the first
stages and use more advanced Neural Networks at later
stages, such as LSTM and Vggvox Resnet [30] (for speech
data), without any hyperparameter optimization method. In
the case of Vggvox Resnet, pretrained model from Deepwis-
dom’s team from AutoSpeech Challenge 2019 [1] was used.

For Tabular data, they divided the entire process into
three stages based on the given time budget, named Re-
trieve, Feature, and Model, and employed different models
and data preprocessing methods at each stage, aiming to
have quick responses at early stages. The main task of the
Retrieve stage is to get the data and predict as soon as possi-
ble. Each time a certain amount of data is acquired, a model
is trained using all the acquired data. Thus, the complexity
of the model is designed to increase with time. The main
task of the Feature stage is to search for good features. As
the Neural Feature Seacher(NFS) [47] method uses RNN as
the controller to generate the feature sequence, they used
the same method and speed up the process by parallelizing
it. Finally, at the Model stage, the goal is to search for a good
model and hyperparameters. For this, they use hyperopt
[48], which is an open-source package that uses Bayesian
optimization to guide the search of hyperparameters.

4.4 Approach of automl freiburg
In contrast to other teams, automl freiburg adopts a domain-
independent approach but focused only the computer vision
tasks (i.e. image and video datasets) of this challenge. While
for all other tasks automl freiburg simply submitted the base-
line to obtain the baseline results, they achieved significant

improvement on the computer vision tasks w.r.t. the base-
line method. To improve both efficiency and flexibility of
the approach, they first exposed relevant hyperparameters
of the previous AutoCV/AutoCV2 winner code [49] and
identified well-performing hyperparameter configurations
on various datasets through hyperparameter optimization
with BOHB [33]. They then trained a cost-sensitive meta-
model [50] with AutoFolio [32] – performing hyperparam-
eter optimization for the meta-learner – that allows to au-
tomatically and efficiently select a hyperparameter configu-
ration for a given task based on dataset meta-features. The
proposed approach on the CV task is detailed next.

First, they exposed important hyperparameters of the
AutoCV/AutoCV2 winner’s code [49] such as the learning
rate, weight decay or batch sizes. Additionally, they exposed
hyperparameters for the online execution (which were hard-
coded in previous winner solution) that control, for ex-
ample, when to evaluate during the submission and the
number of samples used. To further increase the potential of
the existing solution, they extended the configuration space
to also include:

• An EfficientNet [51] (in addition to kakaobrain’s [49]
ResNet-18) pre-trained on ImageNet [36];

• The proportion of weights frozen when fine-tuning;
• Additional stochastic optimizers (Adam [52],

AdamW [53], Nesterov accelerated gradient [54])
and learning rate schedules (plateau, cosine [55]);

• A simple classifier (either a SVM, random forest
or logistic regression) that can be trained and used
within the first 90 seconds of the submission.

After the extension of the configuration space, they
optimized the hyperparameters with BOHB [33] across 300
evaluation runs with a time budget of 300 seconds on eight
different datasets (Chucky [56], Hammer [57], Munster [58],
caltech birds2010 [59], cifar100 [56], cifar10 [56], colorec-
tal histology [60] and eurosat [61]). These eight datasets
were chosen from meta-training data to lead to a portfolio
of complementary configurations [62], [63]. Additionally,
they added a robust configuration to the portfolio of con-
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figurations that performed best on average across the eight
datasets. Then, they evaluated each configuration of the
portfolio for 600 seconds on all 21 image datasets they had
collected. In addition, they searched for a tenth configu-
ration (again with BOHB), called the generalist, that they
optimized for the average improvement across all datasets
relative to the already observed ALC scores. In the end, the
meta-train-data consisted of the ALC performance matrix
(portfolio configurations ⇥ datasets) and the meta-features
from the 21 datasets. These meta-features consisted of the
image resolution, number of classes, number of training
and test samples and the sequence length (number of video
frames, i.e. 1 for image datasets). In addition, they studied
the importance of the meta features for the meta-learner, and
selected an appropriate subset. To optimize the portfolio fur-
ther, they applied a greedy submodular optimization [63],
[64] to minimize the chance of wrong predictions in the on-
line phase. Based on this data, they trained a cost-sensitive
meta-model [50] with AutoFolio [32], which applies algo-
rithm configuration based on SMAC [34], [65] to efficiently
optimize the hyperparameters of the meta-learner. Since the
meta-learning dataset was rather small, HPO for the meta-
learner could be done within a few seconds. Lastly, they
deployed the learned AutoFolio model and the identified
configurations into the initialization function of the winner’s
solution code. The workflow of this approach is shown in
Figure 5.

5 POST-CHALLENGE ANALYSES

5.1 Ablation study
To analyze the contribution of different components in each
winning team’s solution, we asked 3 teams (DeepWisdom,
DeepBlueAI and automl freiburg) to carry out an ablation
study, by removing or disabling certain component (e.g.
meta-learning, data augmentation) of their approach. We
will introduce in the following more details on these ab-
lation studies by team and synthesize thereafter.

5.1.1 DeepWisdom
According to the team DeepWisdom, three of the most impor-
tant components leading to the success of their approach
are: meta-learning, data loading and data augmentation.
For the ablation study, these components are removed or
disabled in the following manner:

• Meta-learning (ML): Here meta-learning includes
transfer learning, pretrain models, and hyperparam-
eter setting and selection. Meta learning is crucial to
both the final accuracy performance and the speed
of train-predict lifecycle. For comparison we train
models from scratch instead of loading pretrained
models for image, video and speech data, and use the
default hyperparameter settings for text and tabular
subtasks.

• Data Loading (DL): Data loading is a key fac-
tor in speeding up training procedures to achieve
higher ALC score. We improve data loading in sev-
eral aspects. Firstly, we can accelerate decoding the
raw data formatted in a uniform tensor manner to
numpy formats in a progressive way, and batching

the dataset for text and tabular data could make
the conversion faster. Secondly, the cache mechanism
is utilized in different levels of data and feature
management, and thirdly, video frames are extracted
in a progressive manner.

• Data Augmentation (DA): Fast auto augmentation,
time augmentation and a stagewise spec len con-
figuration for thinresnet34 model are considered as
data augmentation techniques for image, video and
speech data respectively.

We carried out experiments on the 10 final phase datasets
with above components removed. The obtain ed ALC scores
are presented in Figure 6. As it can be seen in Figure 6,
Meta-Learning can be considered one of the most important
single component in DeepWisdom’s solution. Pre-trained
models contribute significantly to both accelerating model
training and obtaining higher AUC scores for image, video
and speech data, and text and tabular subtasks benefit from
hyperparameter setting such as model settings and learning
rate strategies. For image, we remove pretrained models
for both ResNet-18 and ResNet-9, which are trained on the
ImageNet dataset with 70% and 65% top1 test accuracy; for
video, we remove the parts of freezing and refreezing the
first two layers. Then the number of the frames for ensemble
models and replace MC3 model with ResNet-18 model. For
speech, we do not load the pre-trained model which is
pre-trained on VoxCeleb2 dataset, that is we train the thin-
resnet34 model from scratch. For text, we use default setting,
i.e. do not perform meta strategy for model selections and
do not perform learning rate decay strategy selections. For
tabular, with the experience of datasets inside and outside
this competition, we found two sets of params of lightgbm.
The first hyperparameters focus on the speed of lightgbm
trainning, it use smaller boost round and max depth, bigger
learning rates and so on. While the second hyperparameters
focus on the effect of lightgbm trainning, it can give us a
generally better score. We use the default hyperparameters
in lightgbm in the minus version.

Data Loading is a salient component for the ALC metric
in any-time learning. For text, speech and tabular data,
data loading speeds up numpy data conversion to make
the first several predictions as quickly as possible, achieving
higher alc scores. In the minus version, we convert all train
tfdatasets to numpy array in the first round, and alc scores
of nearly all datasets on all modalities decrease steadily
compared with full version solution.

The data augmentation component also helps the alc
scores of several datasets. In the minus version for speech
data we use the fixed spec len config, the default value is
200. Comparison on Marge and Oreal datasets is obvious,
indicating that longer speech signal sequences could offer
more useful information. Fast auto augmentation and test
time augmentation enhance performance on image and
video data marginally.

5.1.2 DeepBlueAI
According to the team DeepBlueAI, three of the most impor-
tant components leading to the success of their approach
are: adaptive strategies, ensemble learning and scoring time
reduction. For the ablation study, these components are
removed or disabled in the following manner:
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Fig. 5: Workflow of automl freiburg. The approach first optimizes the hyperparameter configuration (including choices for
training, input pipeline, and architecture) for every task (dataset) in our meta-training set using BOHB [33]. Afterwards,
for each dataset i, the best found configuration �⇤

i is evaluated on the other datasets j 2 {1, 2, ..., N}, j 6= i to build
the performance matrix (configurations ⇥ datasets). For training and configuring the meta-selection model based on
performance matrix and the meta-features of the corresponding tasks, the approach uses AutoFolio [32]. At meta-test time,
the model fitted by AutoFolio uses the meta-features of the test tasks in order to select a well-performing configuration.

Fig. 6: Ablation study for DeepWisdom: We compare dif-
ferent versions of DeepWisdom’s approach, with one com-
ponent of their workflow disabled. “DeepWisdom \ ML”
represents DeepWisdom’s original approach but with Meta-
Learning disabled. “DA” code for Data Augmentation and
“DL” for Data Loading. The method variants are ordered
by their average rank from left to right. Thus we observe
that removing Data Augmentation does not make a lot of
difference, while removing both Meta-Learning and Data
Loading impacts the solution a lot. See Section 5.1.1 for
details.

• Adaptive Strategies (AS): In this part, all adaptive
parameter settings have been cancelled, such as the
parameters settings according to the characteristics
of data sets and the dynamic adjustments made
during the training process. All relevant parameters
are changed to default fixed values.

• Ensemble Learning (EL): In this part, all the parts of
ensemble learning are removed. Instead of fusing the
results of multiple models, the model that performs
best in the validation set is directly selected for
testing.

• Scoring Time Reduction (STR): In this part, all
scoring time reduction settings were modified to de-
fault settings. Related parameters and data loading
methods are same as those of baseline.

As it can be observed in Figure 7, the results of Deep-
BlueAI have been greatly improved compared with those
of DeepBlueAI \AS \EL \STR (i.e., blue bar), indicating
the effectiveness of the whole method. After removing the
AS, the score of most data sets has decreased, indicating
that adaptive strategies are better than fixed parameters
or models, and has good generalization performance on
different data sets. When STR is removed, the score of most
data sets is reduced. Because the efficient data processing
used can effectively reduce the scoring time, thereby im-
proving the ALC score, which shows the effectiveness of
the scoring time reduction. After EL is removed, the score
of the vast majority of data sets has decreased, indicating the
effectiveness of ensemble learning to improve the results.

5.1.3 automl freiburg
According to the team automl freiburg, two of the most im-
portant components leading to the success of their approach
are: meta-learning and hyperparameter optimization. For
the ablation study, these components are removed or dis-
abled in the following manner:
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Fig. 7: Ablation study for DeepBlueAI: Comparison of
different versions of DeepBlueAI’s approach after removing
some of the method’s components. “DeepBlueAI \ AS”
represents their approach with Adaptive Strategy disabled.
“EL” codes for Ensemble Learning and “STR” for Scoring
Time Reduction. For each dataset, the methods are ordered
by their average rank from left to right. While disabling
each component separately yields moderate deterioration,
disabling all of them yields a significant degradation in
performance. See Section 5.1.2.

• Meta-Learning with Random selector (MLR): This
method randomly selects one configuration out of
the set of most complementary configurations (Ham-
mer, caltech birds2010, cifar10, eurosat).

• Meta-Learning Generalist (MLG): This method does
not use AutoFolio and always selects the generalist
configuration that was optimized for the average
improvement across all datasets.

• Hyperparameter Optimization (HPO): Instead of
optimizing the hyperparameters of the meta-
selection model with AutoFolio, this method simply
uses the default AutoFolio hyperparameters.

As previously mentioned, automl freiburg focused on the
computer vision domain (i.e., datasets Ray, Fiona, Cucumber,
and Yolo). The results of their ablation study, shown in
Figure 8, indicate that the hyperparameter search for the
meta-model overfitted on the eight meta-train-datasets used
(original vs HPO); eight datasets is generally regarded as
insufficient in the realm of algorithm selection, but the
team was limited by compute resources. However, the per-
formance of the non-overfitted meta-model (HPO) clearly
confirms the superiority of the approach over the random
(MLR) and the generalist (MLG) baselines on all relevant
datasets. More importantly, not only does this observation
uncover further potential of automl freiburg’s approach, it
is also on par with the top two teams of the competition
on these vision datasets: average rank 1.75 (automl freiburg)
versus 1.75 and 2.5 (DeepWisdom, DeepBlueAI). The authors
emphasize that training the meta-learner on more than eight
meta-train datasets could potentially lead to large improve-

Fig. 8: Ablation study for automl freiburg: Comparison of
different versions of automl freiburg’s approach. Since the
approach addresses only computer vision tasks, only results
on image datasets (Ray, Cucumber) and video datasets (Fiona,
Yolo) are shown. Average and error bars of ALC scores are
computed over 9 runs. “automl freiburg \ HPO” represents
automl freiburg’s approach with default AutoFolio hyperpa-
rameters. Likewise, “MLG” stands for the generalist config-
uration and “MLR” for randomly selecting a configuration
from the pool of the most complementary configurations.
See Section 5.1.3.

ments in generalization performance. Despite the promising
performance and outlook, results and conclusions should be
interpreted conservatively due to the small number of meta-
test datasets relevant to automl freiburg’s approach.

5.2 AutoML generalization ability of winning methods
One crucial question for all AutoML methods is whether the
method can have good performances on unseen datasets.
If yes, we will say the method has AutoML generalization
ability. To quantitatively measure this ability, we propose
to compare the average rank of all top-8 methods in both
feedback phase and final phase, then compute the Pearson
correlation (Pearson’s ⇢) of the 2 rank vectors (thus similar
to Spearman’s rank correlation [66]). Concretely, let rX be
the average rank vector of top teams in feedback phase and
rY be that in final phase, then the Pearson correlation is
computed by ⇢X,Y = cov(rX , rY )/�rX�rY .

The average ranks of top methods are shown in Figure
9, with a Pearson correlation ⇢X,Y = 0.91 and p-value
p = 5.8 ⇥ 10�4. This means that the correlation is statisti-
cally significant and no leaderboard overfitting is observed.
Thus the winning solutions can indeed generalize to unseen
datasets. Considering the diversity of final phase datasets
and the arguably out-of-distribution final-test meta-features
shown in Table 1, this is a feat from the AutoML community.
Thus it’s highly plausible that we are moving one step closer
to a universal AutoML solution.

5.3 Impact of t0 in the ALC metric
We recall that the Area under Learning Curve (ALC) is
defined by
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Fig. 9: Task over-modeling: We compare performance in
the feed-back and final phase, in an effort to detect possible
habituation to the feed-back datasets due to multiple sub-
missions. The average rank of the top-8 teams is shown. The
figure suggests no strong over-modeling (over-fitting at the
meta-learning level): A team having a significantly better
rank in the feed-back phase than in the final phase would
be over-modeling (far above the diagonal). The Pearson
correlation is ⇢X,Y = 0.91 and p-value p = 5.8⇥ 10�4.

ALC =
Z 1

0
s(t)dt̃(t)

=
Z T

0
s(t)t̃0(t)dt

=
1

log(1 + T/t0)

Z T

0

s(t)

t+ t0
dt

(1)

where

t̃(t) =
log(1 + t/t0)

log(1 + T/t0)
(2)

Thus t0 parameterizes a weight distribution on the learning
curve for computing the ALC. When t0 is small, the impor-
tance weight at the beginning of the curve is large. Actually
when t0 varies from 0 to infinity, we have

lim
t0!0+

ALC(t0) = s(0)

and

lim
t0!+1

ALC(t0) =
1

T

Z T

0
s(t)dt.

So different t0 might lead to different ALC ranking even if
the learning curve s(t) is fixed. It is then to be answered
whether the choice of t0 = 60 in AutoDL challenge is
reasonable. For this, we reflect the impact of t0 on the
ALC scores and the final average ranking in Figure 10.
Observation and discussion can be found in the caption.
We conclude that t0 does affect the ranking of ALC scores
but the final ranking is robust to changes of t0, justifying the
choice of t0 and the challenge setting.

6 CONCLUSION AND FURTHER WORK

In conclusion, we are encouraged to continue our challenge
series in machine learning with code submission and blind
testing in a well-defined identical computer environment,
with a fixed time and memory budget. The latest one, the
AutoDL challenge, helped pushing the state of the art in
Automated Deep Learning. Our novel challenge design,
with emphasis on “any-time learning”, permitted to harvest
answers to new questions.

Among other things, the challenge revealed that Auto-
mated Deep Learning methods are ripe for modalities such
as image, video, speech, and text, but no unified solution
emerged across modalities, and Deep Learning remained
weaker than other methods for tabular data. This raises
the question of developing new universal coding, generic
workflows, or universal neural architectures. A step in
this direction could be to organize a cross-modal Neural
Architecture Search (NAS) challenge, to search for universal
architectures. Intensive search in architecture space was
impractical with the constrained time budget we provided
for the AutoDL challenge, but with one order of magnitude
more computational resources, it may be feasible.

Deep Learning methods have earned the reputation of
being notoriously slow to train and require prohibitive com-
putational resources in domains such as video processing.
Not so anymore with “any-time learning methods” allowing
users to stop training early and get reasonable performance.
The wining teams succeeded in climbing the learning curve
fast, without sacrificing the final performance. Transfer
learning (fine tuning of pre-trained models), progressive
increase in model complexity, fast data loading, and efficient
exploration of data space, were key components to achieve
these results.

The post-challenge analyses revealed the importance
of meta-learning, through ablation studies conducted by
winning teams. The teams demonstrated that generalizing
to new unseen datasets is possible, and improves by meta-
learning, thus they effectively achieved a form of transfer
learning. This calls for further research and we envision that
a meta-learning challenge should be organized, to conduct
a more controled study. Several settings have been pro-
posed, including: (1) a challenge on model recommendation,
similar to the movie recommendation Netflix challenge, in
which a sparse matrix with just a few scores of models
on a few datasets is initially provided and the goal is to
find as quickly as possible the best performing model on
a new dataset; (2) a challenge proposing training tasks
and test tasks, aiming at training search agents capable of
selecting the best performing models to solve the test tasks;
(3) an on-line meta-learning challenge (or life-long-learning
challenge) in which tasks are made available sequentially
to models, who can retain some “memory” of past tasks to
perform better in future tasks.

This challenge was limited to tensor data and multi-
label problems. Other steps towards enlarging the scope of
automated machine learning include generalizing to more
complex data structures. This is partially addressed by
the on-going AutoGraph challenge. Generalization to other
types of tasks was addressed by the AutoSeries challenge.
We intend to keep proposing more diverse types of data and
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(a) Learning curves for the task Carla (b) Impact of t0 on the ALC scores for
task Carla.

(c) Average rank among AutoDL final
phase participants, using different t0.
The legend is hidden and is the same
as that of Figure 10b.

Fig. 10: Any-time learning vs. fixed-time learning: We evaluate the impact of parameter t0 on the ALC scores and the final
rank. This parameter allows us to smoothly adjust the importance of the beginning of the learning curve (and therefore the
pressure imposed towards achieving any-time learning). When t0 is small, the ALC puts more emphasis on performances
at the beginning of the learning curve and thus favors fast algorithms. When t0 is large, similar weight is applied on the
whole learning curve, performances are uniformly averaged, so being a little bit slow at the beginning is not that bad, and
it is more important to have good final performance when the time budget is exhausted (fixed-time learning). The tabular
dataset Carla is taken as example. The fact that two learning curves cross each other is a necessary condition for the impact
of t0 on their ranking on this task. Learning curves of top teams on this dataset are shown in 10a. The impact of t0 on
the ALC scores of these curves is shown in 10b. We see that when t0 changes, the ranking among participants can indeed
change, typically the ALC of frozenmad is larger than that of Kon but this is not true for large t0. In 10c, the fact that the
average rank (over all 10 final phase datasets) varies with t0 also implies that t0 can indeed affect the ranking of ALC on
individual tasks. However, we see that the final ranking (i.e. that of average rank) is quite robust against changes of t0.
Very few exceptions exist such as PASA NJU and Inspur AutoDL. Overall, t0 proved to have little impact, particularly on
the ranking of the winners, which is another evidence that top ranking participants addressed well the any-time learning
problem.

tasks to stimulate the community to make progress.
Lastly, challenges are meant to provide fair and repro-

ducible evaluations removing the inventor-evaluator bias.
However, other types of biases can crop up. One such
bias stems from the choice of datasets. As organizers, we
had to chose datasets with sufficient modeling difficulty to
separate well the participants, yet not a too high intrinsic
difficulty. By modeling difficulty, we mean the variance in
performance between participants. By intrinsic difficulty we
mean (1- the best attainable performance). Neither quantity
being available to the organizers at the time of selection
of the datasets, they must rely on the performances of the
baseline methods to evaluate the difficulty of the tasks and
thus the choice may be biased. Yet another type of bias
is introduced by the baselime methods provided to the
participants (such as Baseline 3 in this challenge).

Beyond research results, our challenges have a long
lasting impact since we make available a large number of
“public” datasets, and the code of winning solutions.
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at the Universitat Autònoma de Barcelona (UAB) in 2013 and 2017,
respectively. He is currently a postdoc researcher at Computer Vision
Center (CVC), UAB. He has been a member of Human Pose Recovery
and Behavior Analysis (HUPBA) group since 2012. His main interest is
deep learning, computer vision, human pose estimation and garment
modeling.

automl freiburg The automl freiburg team at the University of Freiburg
(and nowadays also at the Leibniz University Hannover; Germany) was
founded in 2015 and won several tracks of the first and second AutoML
challenge. Members of the current challenge team are Fabio Ferreira,
Danny Stoll, Arber Zela, Thomas Nierhoff, Prof. Marius Lindauer and
Prof. Frank Hutter. Alumni of the challenge team include Matthias
Feurer, Katharina Eggensperger, Aaron Klein and Stefan Falkner. Be-
sides publications on AutoML at top journals and conferences, the group
is well known for their open-source AutoML tools, such as Auto-Sklearn
and Auto-PyTorch, see www.automl.org.

DeepBlueAI Team leader Zhipeng Luo received the M.S. degree from
Peking University. He has nearly 6 years of machine learning experi-
ence. He has rich practical experience in computer vision, data mining
and natural language processing. He has won championships in many
top conference competitions, including CVPR, ICCV, KDD, NerulIPS,
SIGIR, ACM MM , WSDM, CIKM, PAKDD, IEEE ISI. Members of the
DeepBlueAI team are Chunguang Pan, Ge Li, Jin Wang and Kangning
Niu.

DeepWisdom is a joint team of DeepWisdom and Xiamen University
under the guidance of Prof. Rongrong Ji and Chenglin Wu. Prof. Ji is
currently a Professor and the Director of the Intelligent Multimedia Tech-
nology Laboratory, and the Dean Assistant with the School of Informa-
tion Science and Engineering, Xiamen University, Xiamen, China, with
over 100 papers published in international journals and conferences.
Chenglin Wu is CEO of DeepWisdom. Other members of the team are
Yang Zhang, Huixia Li, Sirui Hong and Youcheng Xiong. DeepWisdom
is to build AI with AI, see http://fuzhi.ai/.

www.automl.org
http://fuzhi.ai/

	Introduction
	Challenge design
	Data
	Blind testing
	Metric
	Baseline 3 of AutoDL challenge
	Vision domain: winning method of AutoCV/AutoCV2
	Text domain: winning method of AutoNLP
	Speech domain: winning method of AutoSpeech
	Tabular domain


	AutoDL challenge results
	Winning approaches
	Approach of DeepWisdom (1st prize)
	Approach of DeepBlueAI (2nd prize)
	Approach of PASA_NJU (3rd prize)
	Approach of automl_freiburg

	Post-challenge analyses
	Ablation study
	DeepWisdom
	DeepBlueAI
	automl_freiburg

	AutoML generalization ability of winning methods
	Impact of t0 in the ALC metric

	Conclusion and further work
	References
	Biographies
	Zhengying Liu
	Adrien Pavao
	Zhen XU
	Sergio Escalera
	Isabelle Guyon
	Julio C. S. Jacques Junior
	Meysam Madadi
	automl_freiburg
	DeepBlueAI
	DeepWisdom

	Appendix A: Benchmark results

