
HAL Id: hal-02957115
https://hal.science/hal-02957115

Submitted on 4 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BEC2HPC: a HPC spectral solver for nonlinear
Schrödinger and Gross-Pitaevskii equations. Stationary

states computation
Jérémie Gaidamour, Qinglin Tang, Xavier Antoine

To cite this version:
Jérémie Gaidamour, Qinglin Tang, Xavier Antoine. BEC2HPC: a HPC spectral solver for nonlin-
ear Schrödinger and Gross-Pitaevskii equations. Stationary states computation. Computer Physics
Communications, 2021, 265, �10.1016/j.cpc.2021.108007�. �hal-02957115�

https://hal.science/hal-02957115
https://hal.archives-ouvertes.fr


BEC2HPC: a HPC spectral solver for nonlinear Schrödinger and
Gross-Pitaevskii equations. Stationary states computation.

Jérémie GAIDAMOURa, Qinglin TANGb, Xavier ANTOINEa

aUniversité de Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France.
bSchool of Mathematics, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University,

Chengdu 610064, China.

Abstract

We present BEC2HPC which is a parallel HPC spectral solver for computing the ground states of
the nonlinear Schrödinger equation and the Gross-Pitaevskii equation (GPE) modeling rotating Bose-
Einstein condensates (BEC). Considering a standard pseudo-spectral discretization based on Fast Fourier
Transforms (FFTs), the method consists in finding the numerical solution of the energy functional
minimization problem under normalization constraint by using a preconditioned nonlinear conjugate
gradient method. We present some numerical simulations and scalability results for the 2D and 3D
problems to obtain the stationary states of BEC with fast rotation and large nonlinearities. The code
takes advantage of existing HPC libraries and can itself be leveraged to implement other numerical
methods like e.g. for the dynamics of BECs.

Keywords: Bose-Einstein condensation; nonlinear Schrödinger equation; Gross-Pitaevskii equation;
stationary states; pseudo-spectral method; nonlinear conjugate gradient; high performance computing

1. Introduction

Bose-Einstein Condensates (BECs) have been first predicted theoretically by S.N. Bose and A. Ein-
stein, before their experimental realization in 1995 [5, 23, 30, 34]. This state of matter has the interesting
feature that macroscopic quantum physics properties can emerge and be observed in a laboratory experi-
ment. The literature on BECs grown very fast over the last two decades in atomic, molecular, optics and
condensed matter physics. Important applications related to this new physics are now appearing, like
e.g. in quantum computing [25]. Concerning the most important directions, a special attention has been
directed towards the understanding of the nucleation of vortices [1, 24, 48, 49, 51, 55, 63], properties of
dipolar gases [17, 18] or also multi-components BECs [15, 16, 17]. For temperatures T which are much
smaller than the critical temperature Tc, the macroscopic behavior of a BEC can be correctly described
by a condensate wave function ψ as the solution to a Gross-Pitaevskii Equation (GPE). Therefore, being
able to numerically calculate efficiently the solution of such a class of equations is extremely useful.
Concerning the main questions related to BECs, we can cite the calculation of the stationary states
(ground/excited states) as well as the real-time dynamics [6, 10, 17, 38, 43].

In the present paper, we consider the problem of the computation of stationary states (most partic-
ularly ground states) of the rotating GPE. A few methods are available in the literature to numerically
obtain them. For example, some algorithms are based on appropriate discretizations of the continuous
normalized gradient flow/imaginary-time formulation [3, 8, 10, 17, 19, 22, 28, 29, 64], leading to various
iterative algorithms. The methods are general and can be directly extended to many physical situations
(e.g. dipolar interactions, multi-components GPEs...) [7, 8, 10, 17, 19]. Other approaches rather solve
numerically the nonlinear eigenvalue problem [35, 60] or the minimization of the energy functional by
using optimization techniques under constraints [21, 26, 31, 32, 33]. Regularized Newton-type methods
can also be used [61]. In the present paper, we consider the constrained nonlinear Preconditioned Con-
jugate Gradient (PCG) method with a pseudo-spectral discretization scheme for the rotating GPE. This

Email addresses: jeremie.gaidamour@univ-lorraine.fr (Jérémie GAIDAMOUR), qinglin_tang@163.com (Qinglin
TANG), xavier.antoine@univ-lorraine.fr (Xavier ANTOINE)

URL: http://iecl.univ-lorraine.fr/~xantoine/ (Xavier ANTOINE)

Preprint submitted October 4, 2020



1

approach, developed in [11] and presented shortly in Section 2, provides an efficient and robust way to
solve the minimization problem. Even if only the rotating GPE is considered here, the method can be
extended to other situations (see [14] for dipole-dipole interactions or [12, 13] for nonlinear fractional
GPEs). The main goal of the paper is to introduce the solver BEC2HPC, to explain how to use its
functionalities and to provide a few examples. Some future developments will include general systems
of GPEs, as well as additional numerical methods for the dynamics of the GPE. Finally, let us remark
that the GPE can be simplified to the nonlinear Schrödinger equation. Therefore, the BEC2HPC solver
can also be useful to simulate other physical situations than BEC, where the Schrödinger equation has
to be numerically solved efficiently and accurately.

Concerning the available solvers for the GPE (and nonlinear Schrödinger equation), several contri-
butions exist in the literature. Adhikari, Muruganandam and their co-authors developed in a series of
papers some finite-difference codes for computing the stationary states and dynamics of GPEs without
rotation. Various implementations are available, including codes written in Fortran [45, 52], C [45, 58],
with OpenMP/MPI/CUDA/GNU versions [47, 56, 62]. In addition, the contribution [44] proposes a
code that can solve the GPE with rotation term. In [42], a Matlab toolbox called OCTBEC is designed
for the optimal control of BECs. The GPU-accelerated Matlab/C toolbox NLSEmagic is developed in
[27] for solving the multi-dimensional nonlinear Schrödinger equation through finite-difference in space
and with a fourth-order Runge-Kutta scheme in time. In [50], a finite element C++ toolbox is proposed
for computing the stationary states (based on a Newton method) and dynamics of nonlinear Schrödinger
equations. Another finite element toolbox has been recently developed with Freefem++ for solving var-
ious problems related to the 2D and 3D rotating GPE [57]. Finally, GPELab [7, 9] is a Matlab toolbox
that can solve a large class of problems related to the GPE, including stationary states, dynamics, and
the possibility to handle some additional stochastic terms. The wide variety of problems which can be
solved by GPELab leads to the possibility of simulating many complex physical configurations related
to BECs, which makes the toolbox very attractive. For the stationary states, the solver used in GPELab
may sometimes converge slowly for large nonlinearities and high rotation speeds, since i) it is based on
the normalized gradient flow/imaginary time, and ii) the implementation in Matlab does not permit to
use optimally the HPC ressources. In BEC2HPC, we use the PCG algorithm which is known to outper-
fom the normalized gradient flow formulation as shown in [11]. In addition, BEC2HPC proposes a HPC
implementation of the algorithm, for the 2D and 3D GPE with rotation term. The resulting solver is
then very robust, efficient and highly accurate since it uses a pseudo-spectral approximation in space.

The plan of the paper is the following. In Section 2, we introduce the PCG algorithm that is used
in BEC2HPC for computing the stationary states. Section 3 gives some informations about the way
BEC2HPC is developed, most particularly regarding the FFT implementation and some parallelization
aspects. In Section 4, we propose a relatively simple example to start with the use of BEC2HPC, after
its installation. Section 5 is devoted to the most advanced features of BEC2HPC, including the data
definition and the parameter selection, the use of the visualization tool (ParaView). In Section 6, we
provide more examples and report some performances of the solver in 2D and 3D. Finally, we conclude
in Section 7.

2. The PCG method for computing stationary states of the GPE

2.1. Notations and formulation

Let us consider the problem of computing a ground state of a d-dimensional (d = 2, 3) BEC which
can be written under the form of the constrained minimization problem{

Find φ ∈ L2(Rd) such that
φ ∈ arg min||φ||2=1 Etot(φ),

(2.1)

where the L2(Rd)-norm of φ is defined as

||φ||22 =

∫
Rd

|φ|2dx :=< φ, φ >

and the hermitian inner-product is

∀(u, v) ∈ L2(Rd)× L2(Rd), < u, v >:=

∫
Rd

uv∗dx,

2



definining v∗ as the complex conjugate of v. For the minimization problem (2.1), we introduce the total
energy functional Etot for the dimensionless rotating GPE defined by

Etot(φ) =

∫
Rd

[
1

2
|∇φ|2 + V (x)|φ|2 + F (|φ|2)− Re(φ∗Ω · Lφ)

]
dx

:= Ekin(φ) + Epot(φ) + Eint(φ) + Erot(φ),

for t > 0. In 3D, the Laplace operator is given by: ∆ = ∇2, where ∇ := (∂x, ∂y, ∂z)
t is the gradient

operator; the spatial variable is x = (x, y, z)t ∈ R3 (in 2D, we have ∇ := (∂x, ∂y)t and x = (x, y)t ∈ R2).
The function V represents the external (usually confining) potential. The smooth real-valued function
f(ρ) := F ′(ρ) models the nonlinearity, setting ρ = |φ|2 as the density function. A first example consists
in the standard cubic case which reads as

F (ρ) = βρ2/2, (2.2)

and then f(ρ) = βρ, where β is the nonlinearity strength describing the interaction between atoms of
the condensate. This parameter is related to the s-scattering length (as) and is positive (respectively
negative) for a repulsive (respectively attractive) interaction. Other kinds of nonlinearities involve e.g.
nonlocal nonlinear interactions like the dipole-dipole interaction [10, 12, 13, 14, 20]. For vortices creation,
a rotating term is added. The vector Ω is the angular velocity vector and the angular momentum is
L = (Lx, Ly, Lz) = x ∧ P, with the momentum operator P = −i∇. In many situations, the angular
velocity is such that Ω = (0, 0, ω)t leading to

Ω · L = ωLz = −iω(x∂y − y∂x). (2.3)

A direct computation of the energy gradient yields

∇Etot(φ) = 2Hφφ, with Hφ = −1

2
∆ + V + f(|φ|2)−Ω · L

and the second-order derivative is

1

2
∇2Etot(φ)[u, u] =

〈
u,Hφu

〉
+ Re

〈
f(φ2), u2

〉
.

Let us introduce S = {φ ∈ L2(Rd), ||φ||2 = 1} as the unit spherical manifold associated to the normal-
ization constraint. The tangent space at a point φ ∈ S is given by TφS = {h ∈ L2(Rd),Re 〈φ, h〉 = 0},
and the orthogonal projection Mφ onto this space is such that Mφh = h − Re 〈φ, h〉φ. Writing the
Euler-Lagrange equation (first-order necessary condition for the minimum) associated with our problem
at a minimum φ ∈ S requires that the projection of the gradient on the tangent space S is zero, i.e.
Mφ∇Etot(φ) = 0. This equation is equivalent to the nonlinear eigenvalue problem

Hφφ = λφ,

where λ := λ(φ) =
〈
Hφφ, φ

〉
is the Lagrange multiplier associated to the spherical constraint (also known

as the chemical potential).

2.2. Pseudospectral spatial discretization

To find a numerical solution of the minimization problem, the function φ ∈ L2(Rd) must be discretized
carefully and accurately, most particularly to describe fine details like the vortex lattice structure that
can appear. BEC2HPC considers a standard pseudo-spectral discretization scheme based on Fast Fourier
Transforms (FFTs) [8, 10, 19, 64]. In 3D, we truncate the wave function φ to a square domain [−ax, ax]×
[−ay, ay]× [−az, az] (ax, ay and az being positive), with periodic boundary conditions, and discretize φ
with an even number of nx, ny and nz grid points in the respective x-, y- and z-directions. We describe
our scheme in 3D (the 2D case being then straightforward). For M := (nx, ny, nz), we introduce a
uniformly sampled grid: DM := {xk1,k2,k3 = (xk1 , yk2 , zk3)}(k1,k2,k3)∈OM

, with OM := {0, . . . , nx −
1} × {0, . . . , ny − 1} × {0, . . . , nz − 1}, xk1+1 − xk1 = hx, yk2+1 − yk2 = hy and zk3+1 − zk3 = hz,
with mesh sizes hx = 2ax/nx, hy = 2ay/ny and hz = 2az/nz. By considering the N × N Hermitian

3



matrix(-free) operators from CN (N = nxnynz in 3D) to C given by J∆K := J∂2
xK + J∂2

yK + J∂2
z K and

JΩ · LK := −iΩ · (x ∧ J∇K), we obtain the discretization of the gradient of the energy

(J∇KEtot)(φ) = 2JHφKφ,

with

JHφK := −1

2
J∆K + JV K + Jf(|φ|2)K− JΩ · LK.

We set φ := (φ̃(xk1,k2,k3))(k1,k2,k3)∈OM
(where φ̃ is the approximation of the function φ) as the discrete

unknown vector in CN . For conciseness, we identify an array φ in the vector space of 3D complex-valued
arraysMnx,ny,nz

(C) (storage according to the 3D grid) and the reshaped vector φ in CN . In addition, to
simplify the notations, we forget the brackets JAK and use A to designate the matrix operator associated
with a continuous operator A, based on the FFT approximation. Finally, the cost for evaluating the
application of a 3D FFT is O(N logN).

For φ ∈ CN , the total discrete energy Etot(φ) can be written as the sum of the four elementary
energies

Etot(φ) = Ekin(φ) + Epot(φ) + Eint(φ) + Erot(φ), (2.1)

setting

Ekin(φ) :=
1

2
||∇φ||22 =

1

2
〈∇φ,∇φ〉 =

1

2
(〈∂xφ, ∂xφ〉+ 〈∂yφ, ∂yφ〉+ 〈∂zφ, ∂zφ〉),

Epot(φ) := 〈V φ,φ〉, Eint(φ) := 〈F (ρ),1〉, Erot(φ) = −Re(〈Ω · Lφ,φ〉),
(2.2)

where 1 ∈ CN is the vector with components 1, and ||φ||2 is the discretization of the L2(Rd)-norm on
the uniform grid subject to the discrete hermitian inner product 〈u,v〉 for two complex-valued functions
defined on the grid DM .

2.3. The Preconditioned Conjugate Gradient (PCG) method

Based on the pseudospectral discretization, we now need to compute the solution to the finite-
dimensional minimization problem under normalization constraint

φ ∈ arg min
φ∈CN ,‖φ‖2=1

Etot(φ). (2.3)

In BEC2HPC, we use the Preconditioned Conjugate Gradient (PCG) method which differs from the
preconditioned gradient method by the following update rule for the descent method

dn = −Prn + βnpn−1, (2.4)

where P designates a well-designed preconditioner and the residual vector is rn := (Hφn
−λnI)φn. The

vector φn is the iterate of φ at step n for the minimization method (a preconditioned descent algorithm
would lead to the relation dn = −Prn). In addition, we define pn = dn − Re 〈dn,φn〉φn as the
orthogonal projection of dn onto the space generated by φn. The step βn is given by the Polak-Ribière
formula β = max(βPR, 0), setting

βPR =
〈rn − rn−1, Prn〉
〈rn−1, Prn−1〉

. (2.5)

We consider the standard choice β = max(βPR, 0), corresponding to restarting by the CG method when
βPR < 0. For the justification of the CG method for constrained minimization, we refer to [2, 36]. The
CG algorithm is then summarized in Algorithm 1. Concerning the choice of θn, we take

θopt
n =

−Re
〈
(∇Etot)(φn),pn

〉
‖pn‖

Re
[
(∇2Etot)(φn)[pn,pn]− λn

] , (2.6)

and use the same step size control as in the steepest descent algorithm. In practice, these precautions
for checking the descent direction and using a stepsize control technique are important when located in
the neighborhood of a minimum. When a minimum is approximately obtained, pn is always a descent

4



while not converged do
λn = λ(φn)
rn = (Hφn

− λnI)φn
βn = 〈rn − rn−1, Prn〉/〈rn−1, Prn−1〉
βn = max(βPR

n , 0)
dn = −Prn + βnpn−1

pn = dn − Re 〈dn,φn〉φn
θn = arg minθ E

(
cos(θ)φn + sin(θ)pn/‖pn‖

)
φn+1 = cos(θn)φn + sin(θn)pn/‖pn‖
n = n+ 1

end
Algorithm 1: The Preconditioned Conjugate Gradient (PCG) method as implemented in
BEC2HPC.

direction and the stepsize choice (2.6) decreases the energy functional. Finally, we use the following
robust stopping criterion (see [11])

Enerr := |Etot(φn+1)− Etot(φn)| ≤ ε. (2.7)

This finally leads to the following PCG algorithm.
Let us now focus on the important question of building an efficient and robust preconditioner P as a

modification of the descent direction, leading then to a closer point to the minimum

dn := −P (Hφn − λnI)φn. (2.8)

The preconditioner should be an approximation of the inverse of the Hessian matrix of the problem. A
first preconditioner [11] uses only the kinetic energy term through an adaptive preconditioner

Pn∆ = (αn∆I −∆/2)−1, (2.9)

where αn∆ is a positive shifting constant defined by the characteristic energy

αn∆ = Ekin(φn) + Epot(φn) + Eint(φn) > 0. (2.10)

This preconditioner provides a convergence independent of the grid refinement and is diagonal in the
Fourier space. Another natural approach is to use the diagonal preconditioner based on the potential
and nonlinear interaction terms

PnV = (αnV I + V + f(|φn|2))−1, (2.11)

with αnV = αn∆. This preconditioner is well-adapted to large nonlinearities and large domains. Finally,
to get a stable performance independent of the size of the domain or the spatial resolution, we can define
the combined preconditioners

PnC1
= PnV P

n
∆, PnC2

= Pn∆P
n
V (2.12)

or a symmetrized version

PnC = P
n,1/2
V Pn∆P

n,1/2
V . (2.13)

Let us now analyze the computational cost of the PCG. The application of the operator PV is almost
free (since it only requires a scaling of φ), but the naive application of P∆ requires a FFT/IFFT pair.
However, since we apply the preconditioners after and before an application of the Hamiltonian, we can
reuse the FFT and IFFT computations, so that the application of P∆ does not require any additional
Fourier transform. Similarly, the use of PC1 and PC2 only needs one additional Fourier transform per
iteration, and that of the symmetrized version PC two.

To summarize, the cost in terms of Fourier transforms per iteration for the rotating GPE model is

• no preconditioner: 3 FFTs/iteration (get the Fourier transform of φ, and two IFFTs to compute
∆φ and Lzφ respectively),

5



• P∆ or PV : 3 FFTs/iteration,

• non-symmetric combined PC1
or PC2

: 4 FFTs/iteration,

• symmetric combined PC: 5 FFTs/iteration.

Note that this total cost might be different for another type of GPE model e.g. when a nonlocal dipole-
dipole interaction is included [10, 20].

3. Implementation of the PCG method

In this section, we present an implementation of the previous PCG method for computing the station-
ary states of the GPE. The resulting code, called BEC2HPC, is developed in C++ and uses MPI commu-
nications for distributed computing. The code is available online at https://team.inria.fr/bec2hpc/.
A Python interface is provided for defining the physics of the problem and external visualization tools
such as Paraview can be used to exploit the results of the simulations. The code takes advantage of
existing HPC libraries and even if we focus here on the implementation of the PCG methods, it can
itself be leveraged to implement other spectral methods or solve e.g. problems related to the dynamics
of BECs. In particular, schemes for simulating the dynamics of the GPE will be included in a future
version of BEC2HPC.

3.1. Implementation of FFT-based schemes in distributed memory

The wave function φ is truncated to a square domain with periodic boundary conditions and dis-
cretized on a grid with nx, ny, nz points along each dimension x, y and z, respectively. This grid structure
leads to multidimensional arrays on which we perform one-dimensional discrete Fourier transforms along
each dimension independently. For a 2D domain, we compute the transform of each column and each
row of a matrix to obtain [[∂x]] and [[∂y]]. In distributed-memory, these arrays are divided among a set
of processes which each runs in their own memory address space. Several librairies implement parallel
FFT algorithms working on distributed data. These codes use either 1D slab (FFTW [39]) or 2D pencil
decompositions (PFFT [54], P3DFFT [53], 2DECOMP&FFT [46]). The idea is to simply reuse serial
FFT algorithms in local memory. A 1D domain distribution along the dimension X (Figure 1) of a 3D
domain allows to compute both [[∂y]] and [[∂z]] without any interprocess communications as the grid
elements involved in the computation of each 1D FFT along the Y and Z lines are assigned to the same
process. A permutation of the axis of the array makes the computation along X local at the cost of
all-to-all communication to transpose the distributed array. A 2D pencil domain decomposition only
maintains the data placement useful for one direction and requires transpositions for each of the other
directions but it exhibits more parallelism as a 1D decomposition along the dimension X is limited to
using at most nx processes.

BEC2HPC is based on FFTW 3.3 (see [39]). We use the 1D block distribution of the data (distributed
along the first dimension), the sequential FFT routine and the distributed transpose routine provided
by the library. Using the FFTW’s advanced interface, one can perform multiple sequential 1D complex
FFT simultaneously on non-contiguous data (fftw_plan_many_dft), allowing to compute directly the
FFTs along Y and Z on each process. The MPI transpose routine used internally by FFTW for multidi-
mensional transforms is also exposed in its API (fftw_mpi_plan_many_transpose for complex numbers)
and is called directly for the computation of [[∂x]]. FFTW comes with a set of routines for the creation
of the domain distribution (dividing the data among the MPI processes), the allocation of memory (with
due consideration to alignment for SIMD instructions and the extra memory that might be needed for a
data redistribution). Computation of a Fourier transform is preceded by a preprocessing phase selecting
at runtime an efficient strategy for computing a transform on the current hardware: it creates a plan
(an opaque data type) describing the algorithm and transforms can then be executed repeatedly.

3.2. BEC2HPC parallel code design

Building FFT-based schemes on the foundation of FFTW is a good starting point as this library
is fast, freely available and became defacto standard for scientific softwares or for benchmarking other
FFT librairies. In addition, other FFT librairies such as the Intel Math Kernel Library (MKL) offers
FFTW interfaces without changing the program source code. NVIDIA also provides FFTW interfaces
to the cuFFT library. However, it seems important to integrate in the initial design more general data

6

https://team.inria.fr/bec2hpc/


x
y

z

p
0

p
1

p
2

p
3

(a) A 1D domain decomposition in the X direction.

x
y

z

p
0

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
11

p
9

p
8

p
10

p
15

p
14

p
13

p
12

(b) A 2D (pencil) domain decomposition.

Figure 1: Decomposition strategies for a 3D domain.

distributions as well as the possibilities of using hybrid MPI-plus-thread approach in the future. On
multicore clusters, OpenMP directives can be used to distribute the set of serial 1D FFT to be performed
within a MPI process. Multi-threaded FFT algorithms can also replace serial FFT to leverage parallelism
along a second dimension as FFTW provides multi-threaded transforms with exactly the same API as
the serial version.

Currently, BEC2HPC only uses FFTW but we avoided binding the code directly to this third-party
library. FFTW’s routine calls and data types are encapsulated and BEC2HPC defines its own interface for
data distribution, transforms and transposition. In BEC2HPC, the data distribution is described by a Map

object taking up ideas of well established parallel scientific libraries [37]. Map objects contain the details of
the block distribution along each dimension (including domain dimensions, local and global partitioning
indices) and distributed objects are subsequently created from Map objects. The distributed arrays class
gives methods for creating multidimensional arrays, accessing local array elements. It also provides
foreach loops for performing pointwise operations for each domain element and parallel reduce using
C++11 lambda. It hides much of the complexity of the data distribution and facilitates the application
of operators and the computation of norms and convergence criteria. As a result, the grid distribution,
the local indices and MPI routine do not appear on the implementation of the PCG algorithm, improving
the code readability. These classes also provide a high-level parallel abstraction layer that can evolve to
support different memory layout and programming paradigm for multicore processors.

The spectral numerical method itself is implemented on top of this using a modular design to ease
the change of components such as preconditioners or stopping criterias as described in Section 2. At
each iteration, transforms are never computed twice and operators such as [[∆]] or [[Lz]] are stored along
side φn to be used on each components.

4. Getting started with BEC2HPC

This section proposes a first BEC2HPC example and shows off the basics usage of BEC2HPC.
BEC2HPC provides both a C++ and python interfaces. In this paper, we present the Python in-
terface built using the Boost Python Library, a framework for exposing the C++ classes functions and
objects to Python.

4.1. Installation

The build process of BEC2HPC is managed by CMake and requires a C++11 compiler, a MPI
library and several external libraries compiled with parallel support (namely Boost, FFTW and HDF5).
Python3 is also needed for running most of the examples. These softwares are usually pre-installed
on HPC machines. We also provide a Vagrant setup to automatically configure a virtual computing
environment suitable for compiling and running BEC2HPC on personal computers. Vagrant [41] is
a popular tool for building virtual machines (or containers) from a configuration file describing the
machine setup and the necessary steps to create a ready-to-use machine. The virtual machine behaves
like a separate computer system and can be accessed via a SSH connection as if it was a remote physical
machine. Figure 2 shows how to create a Vagrant managed virtual machine for BEC2HPC. Within the

7



# install vagrant and virtualbox

user@localhost:~/$ sudo apt-get install vagrant virtualbox

# build the vagrant machine

user@localhost:~/bec2hpc$ cd install # location of the Vagrantfile

user@localhost:~/bec2hpc/install$ vagrant up # create and configure the VM

user@localhost:~/bec2hpc/install$ vagrant -Y ssh # log into the VM

# compile bec2hpc within the VM

vagrant@bec2hpc-machine:~$ mkdir build; cd build; cmake ../bec2hpc/; make

# stop and delete the VM

vagrant@bec2hpc-machine:~$ exit # exit the SSH session

user@localhost:~/bec2hpc/install$ vagrant halt # stop the VM

user@localhost:~/bec2hpc/install$ vagrant delete # delete the VM

Figure 2: Creating a Vagrant managed Virtual Machine (VM) for BEC2HPC.

virtual machine, the bec2hpc directory is shared with the host and therefore contains the source code.
build is an out-of-source build directory to keep separate the files generated by the compilation.

4.2. A first example

Let us consider the physical problem governed by the following GPE

i∂tψ(x, t) = (−1

2
∆ + V (x) + β|ψ(x, t)|2 −Ω · L)ψ(x, t), (x, t) ∈ Rd × R∗+, (4.14)

where V (x) is the external confining potential, β is the nonlinearity strength describing the interaction
between atoms of the condensate, Ω is the angular velocity vector and L is the angular momentum
operator. By default in BEC2HPC, the rotation term is such that Ω · L = ωLz = −iω(x∂y − y∂x) (i.e.
Ω = (0, 0, ω)t), and the nonlinearity is cubic, i.e. f(|ψ|) = β|ψ|2. The harmonic potential V is given by

V (x, y, z) =
1

2
(γ2
xx

2 + γ2
yy

2 + γ2
zz

2), (4.15)

with γx = γy = γz = 1 per default in 3D, and γx = γy = 1, γz = 0 in 2D. The predefined initial guess is
the Thomas-Fermi approximation

φ0 =
φTG
β

||φTG
β ||2

, with φTG
β =


√
µTG
β − V (x)

β
, if µTG

β > V (x),

0, otherwise,

(4.16)

where the eigenvalue approximation µTG
β is given by

µTG
β =

1

2

 (4βγxγy/π)1/2, d = 2,

(
15

4π
βγxγyγz)

2/5, d = 3.

The stopping criterion is fixed by default to Enerr := |Etot(φn+1)− Etot(φn)| ≤ ε, with ε = 10−12.
We consider now that we want to compute the ground state of a 2D rotating condensate with a

cubic nonlinearity and a harmonic potential (setting γx = γy = 1, γz = 0). Figure 3 shows a first
example of the BEC2HPC API. The computational domain and spatial mesh sizes are chosen respec-
tively as [−16, 16]2 and h = 1

4 (M = 128). This example can be run within the virtual machine
with mpiexec -n 1 python simple-example.py. The physics and solver parameters are listed in two
distinct python hashmaps. The physics submodule can be used to generate the initial guess. The

8



#!/usr/bin/env python

import mpi4py.MPI as mpi

import bec2hpc as solver

comm = mpi.COMM_WORLD

physics_params = {'Lx': 16, 'Ly': 16, # Computational domain [-L, L]

'nx': 128, 'ny': 128, # Number of grid points

'omega': 0.5, # Rotation speed

'beta': 500} # Nonlinearity strength

solver_params = {'verbose': True, 'stopping_criteria': 1e-12}

solver_phi_0 = solver.physics.initial_guess(comm, physics_params)

solver_phi_n, stats = solver.pcg(solver_phi_0, physics_params, solver_params);

if comm.rank == 0: print stats

Figure 3: A first example.

pcg method returns the solution solver_phi_n along with information about the solver execution in a
hashmap stats. This includes in particular the energy at the final state, the convergence history and the
computational time to reach the stationary state (Figure 4). The solution solver_phi_n can be saved
in a HDF5 file as shown in Figure 5. HDF5 [40] is a widely-used standard binary format for storing
numerical data and BEC2HPC uses the Parallel HDF5 library to efficiently write on disk in a parallel
environment (using MPI-I/O). The solution can later be postprocessed or visualized with a variety of
tools such as Python or Paraview (see also Section 5.3). The solution can also be transferred to a sin-
gle processor by using local_phi = solver.array.gather(phi). For instance, it can be used to plot
phi_n without saving it to a file. Figure 6 shows how to load a HDF5 file and plot the density function
ρ = |φ|2 in Python. The provided function bec2hpc.utils.plot2d uses matplotlib internally. Figure 7
shows the square of the amplitude of the wave function on the computational domain for ω = 0.5 and
β = 500. The stats output of solver.pcg can be saved as a JSON file (or in any human-readable
format) along side the input parameters to retain the information of a simulation run.

5. BEC2HPC advanced usage

After this step-by-step example on a model problem, we now describe in more details some of the
code functionalities for defining the physical problem and the numerical scheme. We also present along
the way how to manage the distributed data structures efficiently in Python.

5.1. Defining the initial data

The iterative method for computing the solution of the minimization problem needs to be initialized
with a guess. As the minimization algorithm is a local optimization procedure, the choice of the initial
guess can lead to a local minimum and therefore a different final converged state [11]. The initial guess
is usually an approximation of the solution of a simpler problem and BEC2HPC provides initial data
typically found in the literature such as a centered Gaussian for fast rotations or the Thomas-Fermi
approximations (4.16) for strong nonlinear interactions [10, 11, 61]. In 2D, the centered Gaussian is
defined by

φ(x) =
(1− ω)φa(x) + ωφb(x)

||(1− ω)φa(x) + ωφb(x)||
, (5.17)

9



{

"iteration_count": 1087,

"mass": 0.9999999999999961,

"energy": 8.024610125450689,

"energy_truncate_err": 8.775202786637237e-13,

"solve_time": 162.915664,

"energies": {

"total_energy": 8.024610125450689,

"kinetic_energy" 1.2959104572267384,

"potential_energy": 4.97235188442656,

"interaction_energy": 3.6767245784205898,

"rotation_energy": -1.9203767946231975

"chemical_potential": 11.701334703871279,

}

"iterations":[

{

"mass": 1.0000000000000004,

"energy": 8.6049880789089634,

...

},

{ ... },

]

}

Figure 4: Output of the solver.pcg function in a JSON format

import json

solver.utils.save_hdf5(solver_phi_n, 'phi_n.h5')

if comm.rank == 0:

with open('run.json', 'w') as fd:

json.dump(

{'physics_params': physics_params,

'solver_params': solver_params,

'solver_stats': stats},

fd,

sort_keys=True, indent=2)

Figure 5: Saving the ouput of the solver.pcg function.

10



#!/usr/bin/env python

import numpy

import h5py

import bec2hpc

# Load HDF5 file

file = h5py.File('phi_n.h5', 'r+')

dataset = file['/phi']

a = numpy.array(dataset)

phi = a.view(dtype=numpy.complex128)

# Compute |phi|^2

phi = numpy.absolute(phi)**2

# Plot |phi|^2 (using matplotlib)

bec2hpc.utils.plot2d(phi)

Figure 6: Compute and plot the density function |φ|2.

Figure 7: Density function |φ|2 of the ground state.

11



#!/usr/bin/env python

import numpy

import mpi4py.MPI as mpi

import bec2hpc as solver

def initial_guess(comm, nx, ny, Lx, Ly):

map = solver.Map(comm, nx, ny, Lx, Ly)

solver_phi_0 = solver.DistributedArray(map)

phi_0 = solver_phi_0.getData()

x = -Lx + numpy.arange(map.local_nx_start(),

map.local_nx_start() + map.local_nx()) * map.hx()

y = -Ly + numpy.arange(map.local_ny_start(),

map.local_ny_start() + map.local_ny()) * map.hy()

X, Y = numpy.meshgrid(x, y)

# [...] assign the array in-place

phi_0[...] = numpy.exp(-(X**2 + Y**2) / 2) / numpy.sqrt(numpy.pi)

# normalization

l_mass = numpy.sum(numpy.absolute(phi_0)**2)

mass = comm.allreduce(l_mass,op=mpi.SUM)

phi_0[...] = phi_0 / numpy.sqrt(mass * map.hx() * map.hy())

return solver_phi_0

Figure 8: Defining a initial guess.

where

φa(x) =
1√
π
e−(γxx

2+γyy
2)/2, φb(x) = (γxx+ iγyy)φa(x). (5.18)

It is also possible to provide your own initial guess to the pcg method once you become familiar with
the BEC2HPC distributed array class. Figure 8 shows how to implement the gaussian defined by (5.17)
for γx = γy = 1 and ω = 0, a simple choice for weak nonlinear interaction and subcritical frequencies.

In Python, the elements of a DistributedArray are accessible as a numpy array by using the
getData() method. This method returns a numpy array containing the local part of the distributed
array without making a copy of the underlying data. The numpy array is actually a view of the original
data and modifying the numpy array changes the distributed array (and vice versa). The data distribu-
tion of an array is described by a Map object and can be retrieved using the getMap() method on the
array. The python ellipsis syntax (’...’) is used to assign the result of the calculation to the original
numpy array memory buffer (otherwise, with a simple array assignment, phi_0 would not be referencing
the BEC2HPC array anymore).

5.2. Defining the trapping potential

BEC2HPC comes with predefined potential functions for an harmonic trap (4.15) and other potentials
with added potential terms such as the harmonic-plus-quartic potential

V (x) = (1− α)
∑
ν=x,y

γνν
2 +

κ (x2 + y2)2

4

{
+ 0, d = 2,
+ γ2

z z
2, d = 3.

(5.19)

Figure 9 shows how to provide a user-defined potential in Python. Either Python function or a lambda
form could be specified on the parameter list describing the physics of the problem. One can also

12



# Using a predefined potential (written in C++)

physics_params = {'Lx': Lx, 'Ly': Ly, 'nx': nx, 'ny': ny,

'potential': solver.physics.quadratic_potential(gamma_x = 1,

gamma_y = 1)}

# Using a user-defined potential (python function)

def my_potential(x, y):

return (x**2 + y**2)/2;

physics_params = {'Lx': Lx, 'Ly': Ly,

'nx': nx, 'ny': ny,

'potential': my_potential}

# Using a user-defined potential (lambda function)

physics_params = {'Lx': Lx, 'Ly': Ly,

'nx': nx, 'ny': ny,

'potential': lambda x, y: (x**2 + y**2)/2}

Figure 9: User-specified potentials.

implement its own C++ potential class by deriving the C++ Potential abstract class and instantiating
it in Python. On the same model, it is possible to redefine the nonlinearity part of the equation as well
as the stopping criteria and the preconditioner to be used during the nonlinear conjugate gradient.

5.3. 3D simulation and visualization

The previous examples were in 2D for conciseness but BEC2HPC has been designed with large 3D
problems in mind. For code maintenance purpose, 2D and 3D cases share the same code base internally
(there is no code duplication). The functions described in 2D in this paper are all available in 3D as
well. Running a 3D simulation only requires to define the computational boundary and the number of
grid points in the third dimension (by adding Lz and nz in the physics parameter list).

3D visualizations of large problems might be more tricky but thankfully, specialized applications such
as ParaView can be leveraged [4]. ParaView cannot read directly a HDF5 file as it needs information con-
cerning the semantic of the data. Such information can be provided by a simple XDMF file describing the
data scheme. XDMF (eXtensible Data Model and Format) uses XML to store metadata and refers to ex-
ternal HDF5 files for the values themselves. It is a standard way format to describe the raw data produced
by HPC codes and BEC2HPC provides a function bec2hpc.utils.save_xdmf(phi_n, 'phi_n.xdmf')

to create a XDMF describing the semantic of a BEC2HPC HDF5 output created with the call
bec2hpc.utils.save_hdf5(phi_n, 'phi_n.hdf5).

The ParaView Python API gives full access to its data analysis and visualization capabilities. It can
be used to programmatically visualize the result of a BEC2HPC simulation. When running multiple
tests, it might be handy to define a visualization with the ParaView application, save the visualization
state and then reload it from Python. An example to load a ParaView state file (a file with a .pvsm

extension) is available in the examples/paraview directory of BEC2HPC.

5.4. Grid manipulation

In order to both limit the number of iterations and reach the lowest energy state, the initial guess
of a simulation must be chosen close to the expected solution. Several choices for an initial guess are
described in subsection 5.1. Another approach to define an initial guess is to use the results of a previous
simulation. It can give good results when the simulation parameters varies only slightly or when we make
them gradually changing. For large grid sizes, one can use the results of the same simulation performed
on coarser grid involving less points. It is also possible to tune the size of the domains once we learned
on a fastest, less accurate simulation the space occupied by the condensate for a given rotational speed
and potential.

The mapping of a coarse grid data on a finer grid is done using an interpolation. Figure 10 gives an
example for linearly interpolating a 2D grid in Python. In this example, the coarse grid solution is simply

13



gathered on a single processor and the interpolation is done in sequential using the interpolate.interpn
function of the SciPy library. This process can be repeated on several grid levels to form the hierarchical
multigrid strategy presented in [11, 61] and implemented with BEC2HPC in Figure 11. The ground
state computation begins on a coarse grid of 2Ncoarse × 2Ncoarse points and the grid is successively refined
until a finest grid with 2Nfine × 2Nfine . The stopping criteria can be relaxed for the coarse grids as shown
in the example.

Nevertheless, strategies based on simple continuation or multigrid strategies should be used carefully
since they can also sometimes provide intermediate or final solutions which are not correct. More
advanced algorithms [60, 43, 59] should probably be considered to obtain fast and robust methods.

6. Numerical examples

6.1. Experimental setup

In this section, we present some results obtained from simulations with BEC2HPC in 2D/3D for fast
rotating BECs on a parallel cluster. Experiments were conducted on NIC4, a massively parallel cluster
of the University of Liège, installed in the framework of the Belgium consortium of HPC centers (CÉCI)
and funded by F.R.S.-FNRS under Grant No. 2.5020.11. It features nodes with two 8-cores Intel E5-2650
processors at 2.0 GHz and 64 GB of RAM (4 GB/core), interconnected with a QDR Infiniband network.

In the following examples, we consider the cubic nonlinearity and the harmonic-plus-quartic potential
(5.19), with γx = γy = 1, α = 1.2 and κ = 0.3. In 3D, we fix γz = 3. This potential leads to the
existence of stationary states for highly rotating BECs for values ω larger than one, unlike the standard
harmonic potential case. We initialize the PCG method with the Thomas-Fermi ansatz (4.16) presented
in Section 4.2. We only report the results obtained with the symmetrical version of the combined
preconditioner (2.13) as it outperforms the other tested preconditioners. For the stopping criterion, we
use Enerr := |E(φn+1)−E(φn)| ≤ ε which is well suited for rotating BECs (to include the non-uniqueness
of the minimum up to a rotation).

The experiments presented here were carried out for a wide range of rotation speeds and nonlinear-
ity strengths. The strong scaling of the code is also tested by running the same experiments with an
increasing number of MPI processes. To facilitate the testing when several parameters need to vary and
to run the solver several times, we provide an easy way to generate and launch a set of experiments.
These scripts are included in the example directory of the BEC2HPC distribution. Figure 12 shows
how to generate input parameters lists describing the physics for each combination of ω and β where
ω ∈ {1, ..., 4.5} and β ∈ {1000, 5000, 10000}. The Python dictionary physics_params_set includes a
description of the parameters range for ω and β. utils.extend_params generates all possible combina-
tions of the given input parameters for the pcg function. In this example, each parameters list is saved
in its own JSON file and the utility function gen_id generates a string to name the experiments (for
example, 2D__L_20__n_640__Omega_1__Beta_1000.json). These JSON files can then be used to run
BEC2HPC as shown in Figure 13. This last script takes a list of JSON files as input parameter and can
be used within a submission script for a job scheduler on a HPC machine.

6.2. Numerical results in 2D

In 2D, the computational domain and mesh sizes are chosen respectively as [−20, 20]2 and h = 1
16

(M = 640). Concerning the stopping criterion, the tolerance is set to ε = 10−14. Figure 14 shows the
converged stationary states computed by BEC2HPC for β = 1000 and different rotation speeds. By
increasing the rotation velocity, the Bose-Einstein condensate expands into a ring shaped BEC with an
increasing central radius. In particular, for ω = 5, we get a thin ring with one layer of uniformly spaced
vortices. Figure 15 shows additional results for a larger nonlinearity strength, i.e. β = 10000, showing
that more vortices characterize the BEC for larger values of β.

In Figure 16, the number of MPI processes is fixed to n = 32. We compare the CPU times (in
seconds) needed to have the PCG method converging, for various values of ω and β. The CPU time is
directly related to the number of iterations #it. In particular, higher rotation speeds ω and stronger
nonlinearities β usually require more iterations (and so more simulation times) but it is not always the
case. Using a stopping criteria based on the energy difference is advantageous to avoid situations where
the residual evolves without changing the energy.

Figure 17 presents the number of iterations #it and the CPU time required to compute the ground
state for β = 1000 and different numbers of MPI processes. This shows how the computational time

14



#!/usr/bin/env python

import numpy as np

from scipy import interpolate

import mpi4py.MPI as mpi

import bec2hpc as solver

# 2D grid coordinates based on a map

def grid(map):

x = -map.Lx() + np.arange(map.local_nx_start(),

map.local_nx_start() + map.local_nx()) * map.hx()

y = -map.Ly() + np.arange(map.local_ny_start(),

map.local_ny_start() + map.local_ny()) * map.hy()

return x, y

# 2D coarse grid interpolation

def grid_interpolate(coarse_solver_phi_par, fine_solver_phi_par):

# Create the sequential arrays used for the interpolation on proc 0

if comm.rank == 0:

coarse_map = solver.Map(mpi.COMM_SELF, coarse_solver_phi_par->map())

coarse_solver_phi = solver.DistributedArray(coarse_map)

fine_map = solver.Map(mpi.COMM_SELF, fine_solver_phi_par->map())

fine_solver_phi = solver.DistributedArray(fine_map)

else:

coarse_solver_phi = fine_solver_phi = None

# Gather coarse grid data to proc 0

solver.utils.gather(coarse_solver_phi_par, coarse_solver_phi)

if comm.rank == 0:

# Add the boundary points to the coarse grid in preparation for the interpolation

x, y = grid(coarse_map)

x = np.concatenate((x, [coarse_map.Lx()]), axis=0)

y = np.concatenate((y, [coarse_map.Ly()]), axis=0)

coarse_grid = (x, y)

# Expand to the boundary value at Lx, Ly

coarse_phi = np.copy(coarse_solver_phi.getData())

coarse_phi = np.concatenate((coarse_phi, [coarse_phi[0,:]]), axis=0)

coarse_phi = np.concatenate((coarse_phi, np.array([coarse_phi[:,0]]).T), axis=1)

# Build the fine grid

x1, y1 = grid(fine_map)

X1, Y1 = np.meshgrid(x1, y1)

fine_grid = np.array([X1, Y1]).T

# Linear interpolation

fine_phi = fine_solver_phi.getData()

fine_phi[...] = interpolate.interpn(coarse_grid, coarse_phi.real, dest,

bounds_error=True, fill_value=None) + \

1j * interpolate.interpn(coarse_grid, coarse_phi.imag, dest,

bounds_error=True, fill_value=None)

# Normalization

l_mass = np.sum(np.absolute(fine_phi)**2);

mass = l_mass

mass = comm.allreduce(l_mass,op=mpi.SUM)

fine_phi[...] = fine_phi / np.sqrt(mass * fine_map.hx() * fine_map.hy())

# Scatter the fine grid data

solver.scatterDistributedArray(fine_solver_phi, fine_solver_phi_par)

Figure 10: Coarse grid interpolation.

15



if __name__ == '__main__':

comm = mpi.COMM_WORLD

NCoarse = 5 # 2^5 = 32, coarest mesh size

NFine = 9 # 2^9 = 512, finest mesh size

physics_params_template = {'Lx': 16, 'Ly': 16,

'omega': 0.5,

'beta': 500}

solver_params = {'verbose': True, 'stopping_criteria': 1e-10}

finest_solver_params = {'verbose': True, 'stopping_criteria': 1e-14}

for N in range(NCoarse, NFine+1):

physics_params = physics_params_template.copy()

physics_params['nx'] = pow(2, N)

physics_params['ny'] = pow(2, N)

if N == NFine:

solver_params = finest_solver_params

# Define phi_0

if N == NCoarse:

# phi_0 on the coarsest grid

solver_phi_0 = solver.physics.initial_guess(comm, physics_params)

else:

# phi_0 is an interpolation of the previous phi_n

solver_phi_0_map = solver.Map(comm,

physics_params['nx'], physics_params['ny'],

physics_params['Lx'], physics_params['Ly'])

solver_phi_0 = solver.DistributedArray(solver_phi_0)

grid_interpolate(solver_phi_n, new_solver_phi_0)

# Compute the ground state on the current grid

solver_phi_n, solver_stats = solver.pcg(solver_phi_0,

physics_params, solver_params)

Figure 11: A multigrid approach for defining the initial guess.

16



#!/usr/bin/env python

import bec2hpc as solver

from bec2hpc import utils

physics_params_set = {

'Lx' : 20, 'Ly' : 20,

'nx' : 640, 'ny' : 640,

'omega': utils.seq(1, 0.5, 4.5), 'beta': [1000, 5000, 10000]

}

physics_params_set = utils.extend_params(physics_params_set)

for physics_params in physics_params_set:

run_id = utils.gen_id(physics_params)

utils.save(physics_params, run_id + '__params.json')

Figure 12: Generating a JSON file for each combination of the parameters ω and β.

import mpi4py.MPI as mpi

import bec2hpc as solver

from bec2hpc import utils

comm = mpi.COMM_WORLD

for i in range(1, len(sys.argv)):

physics_params = utils.load(sys.argv[i])

solver_params = {'verbose': True, 'stopping_criteria': 1e-12}

run_id = utils.gen_id(physics_params) + '__proc_' + str(comm.size)

solver_phi_0 = solver.physics.initial_guess(comm, physics_params)

solver_phi_n, solver_stats = solver.pcg(solver_phi_0,

physics_params, solver_params)

if comm.rank == 0:

utils.save(solver_stats, run_id + '__stats.json')

solver.save_hdf5(solver_phi_n, run_id + '__phi_n.h5')

Figure 13: Running BEC2HPC using JSON files as the description of the physical setups.

17



(a) β = 1000, ω = 1 (b) β = 1000, ω = 2

(c) β = 1000, ω = 2.5 (d) β = 1000, ω = 5

Figure 14: Contour plots of the density function |φg |2, for β = 1000 (procs = 32).

scales with the number of MPI processes. Running the computation on 32 cores is 15-20 times faster
than on a single core. The scalability results are consistent with the scalability of the 2D FFT algorithm
in distributed memory. The number of iterations varies slightly with the number of processors but the
same final state is nonetheless reached independently of the number of MPI processes.

Finally, Figure 18 shows the resolution of a very difficult 2D problem (β = 10000, ω = 5) on a finer
grid (M = 2048) using 32 and 128 processors. A fast and precise resolution of such challenging problems
is only possible thanks to the robustness of the numerical method and its parallelization implementation.

6.3. Numerical results in 3D

We solve now various 3D problems. The computational domain is [−8, 8]3 and the tolerance of the
stopping criterion is set to ε = 10−12. Figure 19 presents the results of four experiments for the mesh
size h = 1

8 (M = 128). 3D simulations allow to visualize the torus shape of the BEC as well as the
vortices lines. The scalability results presented in Table 20 are again consistent with the scalability of
the 3D FFT algorithm and the cost of parallel transpose algorithms. Running on 32 cores can be more
than 5 times faster than on 4 cores but the speedup is reduced when the number of iterations increases
unfavorably. According to our experiments, this instability in the number of iterations occurs when the
grid resolution is not fine enough. Figure 21 presents the results of the same experiments on a finer grid
with h = 1

16 (M = 256) for 32 and up to 256 cores. By refining the grids, each iteration is more costly
in computational time and the resolution also takes more iterations. The computations become rapidly
expensive. For example, on this finer grid, more than 3 hours are needed to solve the β = 10000, ω = 3
test case on 256 processors.

18



(a) β = 10000, ω = 1.5 (b) β = 10000, ω = 2.5

(c) β = 10000, ω = 3 (d) β = 10000, ω = 4

Figure 15: Contour plots of the density function |φg |2, for β = 10000 (procs = 32).

β ω = 1 1.5 2 2.5 3 3.5 4 4.5
1000 57.79 53.48 91.28 123.36 132.23 173.64 158.41 357.56
5000 97.66 387.07 352.27 685.75 329.34 254.04 253.72 4823.42
10000 489.68 1104.76 1279.08 562.53 960.99 1170.01 3164.85 5603.2

Figure 16: CPUs time (seconds) to compute the ground states of the GPE for various values of ω and β (procs = 32).

19



# it time (s) speedup
1 951 1219.50 1.00
2 888 605.14 2.02
4 891 310.98 3.92
8 886 163.42 7.46
16 914 96.76 12.6
32 876 57.79 21.1

(a) β = 1000, ω = 1

# it time (s) speedup
1 1390 1768.86 1.00
2 1411 992.01 1.78
4 1362 488.91 3.62
8 1378 255.94 6.91
16 1347 146.16 12.10
32 1377 91.28 19.38

(b) β = 1000, ω = 2

# it time (s) speedup
1 1518 1965.75 1.00
2 1888 1312.84 1.50
4 1805 650.94 3.02
8 1850 344.82 5.70
16 1791 192.15 10.23
32 1839 123.36 15.94

(c) β = 1000, ω = 2.5

# it time (s) speedup
1 7746 9976.62 1.00
2 6434 4455.09 2.24
4 7298 2631.25 3.79
8 7246 1355.25 7.36
16 7292 796.05 12.53
32 7387 498.40 20.02

(d) β = 1000, ω = 5

Figure 17: 2D scalability tests.

# it time speedup
32 18105 10971.45 s 3 hrs 1.0
128 18560 3973.70 s 66 min 2.76

Figure 18: Ground states of the GPE for β = 10000, ω = 5,M = 2048.

7. Conclusion

In this paper, we presented BEC2HPC which is a parallel solver for computing the stationary states
of the rotating Gross-Pitaevskii equation for the modelling of 2D/3D Bose-Einstein condensates. The
scheme implemented in BEC2HPC is based on a preconditioned conjugate gradient for the minimization
of the energy functional under normalization constraint, combined with a pseudo-spectral approximation
scheme in space (using FFT). This leads to an efficient and robust code for complex problems, that can
also be used for problems related to the nonlinear Schrödinger equation. After a presentation of the
implementation aspects, we explain how to use the code on a first 2D example. More complicate 2D and
3D test cases are presented next to illustrate some specific coding aspects of the code and to show the
scalability of the code for larger problems.

Future developments of BEC2HPC concern the possibility of simulating the dynamics of the rotating
GPE by various schemes, the extension to systems of GPE (stationary states and dynamics) and the
possibility to simulate nonlocal nonlinear effects like for example for the case of dipole-dipole interactions.

Acknowledgements

The authors acknowledge the support from the Inria associate team BEC2HPC (Bose-Einstein Con-
densates: Computation and HPC simulation (https://team.inria.fr/bec2hpc/)). Q. Tang also ac-
knowledge the support from the National Natural Science Foundation of China (No. 11971335).

20

https://team.inria.fr/bec2hpc/


(a) β = 100, ω = 1.4 (b) β = 100, ω = 1.8

(c) β = 5000, ω = 3 (d) β = 10000, ω = 3

Figure 19: Isosurface |φg |2 = 10−3.

# it time (s) speedup
4 753 1479.90 1.00
8 756 780.97 1.89
16 755 437.01 3.39
32 755 264.64 5.59

(a) β = 100, ω = 1.4

# it time (s) speedup
4 514 1057.14 1.00
8 515 537.19 1.97
16 515 292.62 3.61
32 517 177.69 5.95

(b) β = 100, ω = 1.8

# it time (s) speedup
4 3632 7019.09 1.00
8 3713 3801.36 1.85
16 3907 2263.74 3.1
32 4257 2409.29 2.91

(c) β = 5000, ω = 3

# it time (s) speedup
4 6512 13091.23 1.00
8 6602 6843.93 1.91
16 7450 4352.26 3.01
32 7656 3411.37 3.84

(d) β = 10000, ω = 3

Figure 20: 3D scalability tests (M = 128). The computational domain is [−8, 8]3, h = 1
8

(M = 128), ε = 10−12.

21



(a) β = 100, ω = 1.4 (b) β = 100, ω = 1.8

(c) β = 5000, ω = 3 (d) β = 10000, ω = 3

Figure 21: 3D color map of |φg |2.

# it time (s) speedup
32 1609 4541.32 1.00
64 1617 2731.90 1.66
128 1611 2173.89 2.09
256 1611 839.60 5.41

(a) β = 100, ω = 1.4

# it time (s) speedup
32 1986 5404.94 1.00
64 2025 3300.06 1.64
128 2028 2366.42 2.28
256 2035 1215.22 4.45

(b) β = 100, ω = 1.8

# it time (s) speedup
32 4071 11158.37 1.00
64 4266 7170.47 1.56
128 4330 5832.11 1.91
256 4340 2335.89 4.78

(c) β = 5000, ω = 3

# it time (s) speedup
256 22075 12153.14 1.0

(d) β = 10000, ω = 3

Figure 22: 3D scalability tests (M = 256). Domain is [−8, 8]3, h = 1
16

(M = 256), ε = 10−12.

22



References

[1] J.R. Abo-Shaeer, C. Raman, J.M. Vogels, and W. Ketterle, Observation of vortex lattices in Bose-Einstein conden-
sates, Science 292 (2001), no. 5516, 476–479.

[2] P-A Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press,
2009.

[3] S.K. Adhikari, Numerical solution of the two-dimensional Gross-Pitaevskii equation for trapped interacting atoms,
Physics Letters A 265 (2000), no. 1-2, 91–96.

[4] J. Ahrens, B. Geveci, and C. Law, Paraview: An end-user tool for large data visualization, The visualization handbook
717 (2005).

[5] M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornell, Observation of Bose-Einstein con-
densation in a dilute atomic vapor, Science 269 (1995), no. 5221, 198–201.

[6] X. Antoine, W. Bao, and C. Besse, Computational methods for the dynamics of the nonlinear Schrödinger/Gross-
Pitaevskii equations, Computer Physics Communications 184 (2013), no. 12, 2621–2633.

[7] X. Antoine and R. Duboscq, GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations I: Computation of sta-
tionary solutions, Computer Physics Communications 185 (2014), no. 11, 2969–2991.

[8] , Robust and efficient preconditioned Krylov spectral solvers for computing the ground states of fast rotating
and strongly interacting Bose-Einstein condensates, Journal of Computational Physics 258 (2014), 509–523.

[9] , GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations II: Dynamics and stochastic simulations,
Computer Physics Communications 193 (2015), 95–117.

[10] , Modeling and Computation of Bose-Einstein Condensates: Stationary States, Nucleation, Dynamics,
Stochasticity, Nonlinear Optical and Atomic Systems: at the Interface of Physics and Mathematics (Besse, C and
Garreau, JC, ed.), Lecture Notes in Mathematics, vol. 2146, 2015, pp. 49–145.

[11] X. Antoine, A. Levitt, and Q. Tang, Efficient spectral computation of the stationary states of rotating Bose-Einstein
condensates by preconditioned nonlinear conjugate gradient methods, Journal of Computational Physics 343 (2017),
92 – 109.

[12] X. Antoine, Q. Tang, and J. Zhang, On the numerical solution and dynamical laws of nonlinear fractional
Schrödinger/Gross-Pitaevskii equations, International Journal of Computer Mathematics 95 (2018), no. 6-7, 1423–
1443.

[13] X. Antoine, Q. Tang, and Y. Zhang, On the ground states and dynamics of space fractional nonlinear
Schrödinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions, Journal of Com-
putational Physics 325 (2016), 74–97.

[14] , A preconditioned conjugated gradient method for computing ground states of rotating dipolar Bose-Einstein
condensates via kernel truncation method for dipole-dipole interaction evaluation, Communications in Computational
Physics 24 (2018), no. 4, 966–988.

[15] W. Bao, Ground states and dynamics of multi-component Bose-Einstein condensates, Multiscale Modeling and Sim-
ulation: A SIAM Interdisciplinary Journal 2 (2004), no. 2, 210–236.

[16] W. Bao and Y. Cai, Ground states of two-component Bose-Einstein condensates with an internal atomic Josephson
junction, East Asian Journal on Applied Mathematics 1 (2011), 49–81.

[17] , Mathematical theory and numerical methods for Bose-Einstein condensation, Kinetic and Related Models 6
(2013), no. 1, 1–135.

[18] W. Bao, Y. Cai, and H. Wang, Efficient numerical methods for computing ground states and dynamics of dipolar
Bose-Einstein condensates, Journal of Computational Physics 229 (2010), no. 20, 7874–7892.

[19] W. Bao and Q. Du, Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow,
SIAM Journal on Scientific Computing 25 (2004), no. 5, 1674–1697.

[20] W. Bao, S. Jiang, Q. Tang, and Y. Zhang, Computing the ground state and dynamics of the nonlinear Schrödinger
equation with nonlocal interactions via the nonuniform FFT, Journal of Computational Physics 296 (2015), 72–89.

[21] W. Bao and W. Tang, Ground-state solution of Bose-Einstein condensate by directly minimizing the energy functional,
Journal of Computational Physics 187 (2003), no. 1, 230–254.

[22] D. Baye and J.M. Sparenberg, Resolution of the Gross-Pitaevskii equation with the imaginary-time method on a
Lagrange mesh, Physical Review E 82 (2010), no. 5.

[23] C.C. Bradley, C.A. Sackett, J.J. Tollett, and R.G. Hulet, Evidence of Bose-Einstein condensation in an atomic gas
with attractive interactions, Physical Review Letters 75 (1995), no. 9, 1687–1690.

[24] V. Bretin, S. Stock, Y. Seurin, and J. Dalibard, Fast rotation of a Bose-Einstein condensate, Physical Review Letters
92 (2004), no. 5.

[25] T. Byrnes, K. Wen, and Y. Yamamoto, Macroscopic quantum computation using Bose-Einstein condensates, Physical
Review A 85 (2012), no. 4.

[26] M. Caliari, A. Ostermann, S. Rainer, and M. Thalhammer, A minimisation approach for computing the ground state
of Gross-Pitaevskii systems, Journal of Computational Physics 228 (2009), no. 2, 349–360.

[27] R.M. Caplan, NLSEmagic: Nonlinear Schrödinger equation multi-dimensional Matlab-based GPU-accelerated inte-
grators using compact high-order schemes, Computer Physics Communications 184 (2013), no. 4, 1250–1271.

[28] M.M. Cerimele, M.L. Chiofalo, F. Pistella, S. Succi, and M.P. Tosi, Numerical solution of the Gross-Pitaevskii equation
using an explicit finite-difference scheme: An application to trapped Bose-Einstein condensates, Physical Review E
62 (2000), no. 1, 1382–1389.

[29] M.L. Chiofalo, S. Succi, and M.P. Tosi, Ground state of trapped interacting Bose-Einstein condensates by an explicit
imaginary-time algorithm, Physical Review E 62 (2000), no. 5, 7438–7444.

[30] F. Dalfovo, S. Giorgini, L.P. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensation in trapped gases,
Review of Modern Physics 71 (1999), no. 3, 463–512.

[31] I. Danaila and F. Hecht, A finite element method with mesh adaptivity for computing vortex states in fast-rotating
Bose-Einstein condensates, Journal of Computational Physics 229 (2010), no. 19, 6946–6960.

[32] I. Danaila and P. Kazemi, A new Sobolev gradient method for direct minimization of the Gross-Pitaevskii energy with
rotation, SIAM Journal on Scientific Computing 32 (2010), no. 5, 2447–2467.

23



[33] I. Danaila and B. Protas, Computation of ground states of the Gross-Pitaevskii functional via Riemannian optimiza-
tion, SIAM Journal on Scientific Computing 39 (2017), no. 6, B1102–B1129.

[34] K.B. David, M.O. Mewes, M.R. Andrews, N.J. Vandruten, D.S. Durfee, D.M. Kurn, and W. Ketterle, Bose-Einstein
Condensation in gas of sodium atoms, Physical Review Letters 75 (1995), no. 22, 3969–3973.

[35] C.M. Dion and E. Cances, Ground state of the time-independent Gross-Pitaevskii equation, Computer Physics Com-
munications 177 (2007), no. 10, 787–798.

[36] A. Edelman, T. A Arias, and S.T. Smith, The geometry of algorithms with orthogonality constraints, SIAM Journal
on Matrix Analysis and Applications 20 (1998), no. 2, 303–353.

[37] The Epetra Project Team, The Epetra Project Website, https://trilinos.github.io/epetra.html, 2020.
[38] A. L. Fetter, B. Jackson, and S. Stringari, Rapid rotation of a Bose-Einstein condensate in a harmonic plus quartic

trap, Physical Review A 71 (2005), 013605.
[39] M. Frigo and S. G. Johnson, The design and implementation of FFTW3, Proceedings of the IEEE 93 (2005), no. 2,

216–231, Special issue on “Program Generation, Optimization, and Platform Adaptation”.
[40] HDF Group et al., HDF5 User’s Guide, http://www.hdfgroup.org/HDF5, 2012.
[41] HashiCorp, Vagrant, https://www.vagrantup.com/, 2010-2010.
[42] U. Hohenester, OCTBEC, a Matlab toolbox for optimal quantum control of Bose-Einstein condensates, Computer

Physics Communications 185 (2014), no. 1, 194 – 216.
[43] B.-W. Jeng, Y.-S. Wang, and C.-S. Chien, A two-parameter continuation algorithm for vortex pinning in rotating

Bose-Einstein condensates, Computer Physics Communications 184 (2013), no. 3, 493 –508.
[44] R. Kishor Kumar, V. Lonc̆ar, P. Muruganandam, S.K. Adhikari, and A. Balaz̆, C and Fortran OpenMP programs for

rotating Bose-Einstein condensates, Computer Physics Communications 240 (2019), 74–82.
[45] R.K. Kumar, L.E. Young-S, D. Vudragović, A. Balaz̆, and P. Muruganandam, Fortran and C programs for the time-

dependent dipolar Gross–Pitaevskii equation in an anisotropic trap, Computer Physics Communications 195 (2015),
no. 9, 117–128.

[46] N. Li and S. Laizet, 2DECOMP & FFT - A Highly Scalable 2D Decomposition Library and FFT Interface, 2010.
[47] V. Lonc̆ar, L.E. Young-S, P. Muruganandam, S.K. Adhikari, and A. Balaz̆, OpenMP, OpenMP/MPI, and CUDA/MPI

C programs for solving the time-dependent dipolar Gross-Pitaevskii equation, Computer Physics Communications 209
(2016), 190–196.

[48] K.W. Madison, F. Chevy, V. Bretin, and J. Dalibard, Stationary states of a rotating Bose-Einstein condensate: Routes
to vortex nucleation, Physical Review Letters 86 (2001), no. 20, 4443–4446.

[49] K.W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Vortex formation in a stirred Bose-Einstein condensate,
Physical Review Letters 84 (2000), no. 5, 806–809.

[50] Z. Marojević, E. Göklö, and C. Lämmerzahl, ATUS-PRO: A FEM-based solver for the time-dependent and stationary
Gross-Pitaevskii equation, Computer Physics Communications 202 (2016), 216–232.

[51] M.R. Matthews, B.P. Anderson, P.C. Haljan, D.S. Hall, C.E. Wieman, and E.A. Cornell, Vortices in a Bose-Einstein
condensate, Physical Review Letters 83 (1999), no. 13, 2498–2501.

[52] P. Muruganandam and S.K. Adhikari, Fortran programs for the time-dependent Gross-Pitaevskii equation in a fully
anisotropic trap, Computer Physics Communications 180 (2009), no. 10, 1888–1912.

[53] D. Pekurovsky, P3DFFT: a framework for parallel computations of Fourier transforms in three dimensions, CoRR
abs/1905.02803 (2019).

[54] M. Pippig, PFFT: An Extension of FFTW to Massively Parallel Architectures, SIAM Journal on Scientific Computing
35 (2013), no. 3, C213–C236.

[55] C. Raman, J.R. Abo-Shaeer, J.M. Vogels, K. Xu, and W. Ketterle, Vortex nucleation in a stirred Bose-Einstein
condensate, Physical Review Letters 87 (2001), no. 21.

[56] B. Sataric̆, V. Slavnic̆, A. Balac̆ A. Belic̆, P. Muruganandam, and S.K. Adhikari, Hybrid OpenMP/MPI programs for
solving the time-dependent Gross–Pitaevskii equation in a fully anisotropic trap, Computer Physics Communications
200 (2016), 411–417.

[57] G. Vergez, I. Danaila, S. Auliac, and F. Hecht, A finite-element toolbox for the stationary Gross-Pitaevskii equation
with rotation, Computer Physics Communications 209 (2016), 144–162.

[58] D. Vudragović, I. Vidanović, A. Balaz̆, P. Muruganandam, and S.K. Adhikari, C programs for solving the time-
dependent Gross-Pitaevskii equation in a fully anisotropic trap, Computer Physics Communications 183 (2012),
no. 9, 2021–2025.

[59] Y.-S. Wang and C.-S. Chien, A spectral-Galerkin continuation method using Chebyshev polynomials for the numerical
solutions of the Gross-Pitaevskii equation, Journal of Computational and Applied Mathematics 235 (2011), no. 8,
2740–2757.

[60] Y.-S. Wang, B.-W. Jeng, and C.-S. Chien, A two-parameter continuation method for rotating two-component Bose-
Einstein condensates in optical lattices, Communications in Computational Physics 13 (2013), 442–460.

[61] X. Wu, Z. Wen, and W. Bao, A regularized Newton method for computing ground states of Bose-Einstein condensates,
Journal of Scientific Computing 73 (2017), 303–329.

[62] L.E. Young-S, P. Muruganandam, S.K. Adhikari, V. Lonc̆ar, D. Vudragović, and A. Balaz̆, OpenMP GNU and Intel
Fortran programs for solving the time-dependent Gross-Pitaevskii equation, Computer Physics Communications 220
(2017), 503–506.

[63] C. Yuce and Z. Oztas, Off-axis vortex in a rotating dipolar Bose-Einstein condensate, Journal of Physics B-Atomic
Molecular and Optical Physics 43 (2010), no. 13.

[64] R. Zeng and Y. Zhang, Efficiently computing vortex lattices in rapid rotating Bose-Einstein condensates, Computer
Physics Communications 180 (2009), no. 6, 854–860.

24

https://trilinos.github.io/epetra.html
http://www.hdfgroup.org/HDF5
https://www.vagrantup.com/

	Introduction
	The PCG method for computing stationary states of the GPE
	Notations and formulation
	Pseudospectral spatial discretization
	The Preconditioned Conjugate Gradient (PCG) method

	Implementation of the PCG method
	Implementation of FFT-based schemes in distributed memory
	BEC2HPC parallel code design

	Getting started with BEC2HPC
	Installation
	A first example

	BEC2HPC advanced usage
	Defining the initial data
	Defining the trapping potential
	3D simulation and visualization
	Grid manipulation

	Numerical examples
	Experimental setup
	Numerical results in 2D
	Numerical results in 3D

	Conclusion

