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Abstract

This work proposes a finite volume scheme for two-phase Darcy flow in heterogeneous porous media

with different rock types. The fully implicit discretization is based on cell centered as well as face

centered degrees of freedom in order to capture accurately the nonlinear transmission conditions at

different rock type interfaces. These conditions play a major role in the flow dynamics. The scheme

is formulated with natural physical unknowns, and the notion of global pressure is only introduced to

analyse its stability and convergence. It combines a Two-Point Flux Approximation of the gradient

normal fluxes with a Hybrid Upwinding approximation of the transport terms. The convergence of

the scheme to a weak solution is established taking into account discontinuous capillary pressure at

different rock type interfaces and the degeneracy of the phase mobilities. Numerical experiments show

the additional robustness of the proposed discretization compared with the classical Phase Potential

Upwinding approach.

1 Introduction

Two-phase flow in porous media plays a major role for understanding and predicting the behav-
ior of subsurface flows. It is of crucial interest for many industrial and engineering applications
including management of geothermal energy, enhanced oil recovery, CO2 sequestration and ge-
ological storage [4, 32]. The governing equations and constitutive laws of the flow lead to a
complex system of partial differential equations [13, 37] accounting for the interaction between
viscous, buoyancy and capillary forces. More importantly, contrasts in capillary forces at inter-
faces between different rock types have a strong impact on the flow paths of the fluids [34, 44].
This raises significant challenges in the development and mathematical analysis of accurate and
efficient numerical methods.

This work focuses on the difficulties raised by the heterogeneity of the porous medium with
different rock types. The main issue comes from the discontinuity in space of the capillary
pressure function at different rock type interfaces modeled by strongly nonlinear transmission
conditions. It is usually combined with large ranges of space and time scales induced by highly
contrasted petrophysical properties. These characteristics challenge both the design of efficient
numerical methods and their mathematical analysis. A typical example is the capillary barrier
effect [7, 33, 43] which plays a chief role in oil migration in sedimentary basins, or flows in
fractured porous media typically based on Discrete Fracture Matrix models [5, 8, 10, 29, 41].

Several numerical methods have been developed and analyzed for the discretization of two-
phase Darcy flow in heterogeneous porous media. Let us refer for example to [14, 15, 27, 39, 17]
in the case of a spatially homogeneous capillary pressure function. The case of discontinuous
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capillary pressures is investigated in [23] using a Discontinuous Galerkin (DG) discretization
and developed in [34] based on a Mixed Finite Element (MFE) discretization. A space-time
domain decomposition method using the optimized Schwarz waveform relaxation algorithm has
been proposed in [2] for a purely capillary diffusive two-phase flow model. The convergence
of a Two Point Flux Approximation (TPFA) scheme for a simplified model was the object of
the work [21]. Assuming the non-degeneracy of the mobilities, a gradient discretization [19],
including various conforming and non-conforming methods, was conceived and analyzed in [26]
for an incompressible two-phase flow problem in heterogeneous porous media. This gradient
discretization was extended to the case of hybrid dimensional two-phase Darcy flows in frac-
tured porous media in [20]. Based on the global pressure formulation for the viscous forces
and on the Kirchhoff transform for the capillary diffusion, a Two-Point Flux Approximation
(TPFA) finite volume discretization was proposed and investigated in [7]. This is to our knowl-
edge the only work to derive a convergence analysis of a fully coupled two-phase Darcy flow
model accounting both for discontinuous capillary pressure and for the degeneracy of the phase
mobilities.

The global pressure is a key mathematical tool to circumvent the fact that the phase pressure
is not controlled in zones where the phase mobility vanishes. On the other hand, it is physically
meaningless and not practical from the numerical point of view. It results that practical dis-
cretizations are based on natural variables like the phase pressures, the capillary pressure and
the saturations. Likewise, the Kirchhoff transform is not easy to implement and rarely used in
realistic applications.

The main objective of this work is to design a TPFA discretization based on natural variables
and for which the convergence of the scheme can be achieved, taking into account discontinuous
capillary pressure and the degeneracy of the mobilities. To capture the transmission conditions
accurately at different rock type interfaces, the proposed scheme should include face unknowns
at least at heterogeneous rock type interfaces. The time discretization should also be fully cou-
pled and fully implicit to account for the strong coupling of the phase pressures and saturations
at different rock type interfaces and to avoid severe restrictions on the time steps in highly
permeable regions.

Our approach is based on the total velocity formulation of two-phase Darcy flow for which
the model is expressed as an elliptic equation for the pressure coupled to a degenerate parabolic
equation for the saturation. Both equations are weakly coupled in homogeneous regions but
remain strongly nonlinearly coupled by the transmission conditions at interfaces between dif-
ferent rock types. Then, the discretization combines a two-point approximation (TPFA) of
the gradient fluxes with a Hybrid Upwinding (HU) of the transport terms in the saturation
equation. The HU transport scheme has been introduced in [25, 28] as an alternative to the
Phase Potential Upwind (PPU) scheme [6, 37, 22, 1] for the approximation of the fractional
flow, buoyancy and capillary terms in the saturation equation. In the framework of TPFA, it
has been recently shown in [30, 31, 3] to provide additional nonlinear convergence robustness
thanks to better smoothness properties of the HU two-point monotone fluxes compared with
the PPU fluxes. A fully implicit Vertex Approximate Gradient (VAG) discretization combined
with the HU scheme has been introduced recently in [10] also showing a better robustness than
the VAG PPU version.

A crucial feature of the discretization proposed in this work relies on a specific approxi-
mation of the phase mobilities in the expression of the discrete total velocity. Contrary to
the discretization of [7], this choice allows to relate the phase pressure expression of the total
velocity with the global pressure and consequently to recover the control of the global pressure
in the energy estimates.

A second objective of this work is to compare the proposed TPFA HU discretization in terms
of accuracy and efficiency with the more classical TPFA PPU discretization. The comparison
includes the use of face unknowns either at all interior faces or alternatively only at interfaces
between different rock types. Moreover we will also investigate different strategies to solve the
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fully coupled nonlinear system at each time step of the simulation either based on a local non-
linear interface solver or on a regularization of the non-wetting phase flux continuity equation
at the interfaces.

The rest of this paper is outlined now. Section 2 introduces the mathematical model govern-
ing the two-phase Darcy flow in heterogeneous porous media in total velocity formulation. A
special attention is placed on the formulation of the nonlinear transmission conditions between
different rock types. In Section 3, our fully implicit TPFA HU discretization is detailed based
on a classical upwind approximation of the fractional flow as well as on a monotone approxi-
mation of the capillary flux. The centered approximation of the phase mobilities in the total
velocity plays a crucial role to recover the control on the global pressure in the energy estimates.
The existence of a solution is obtained by a topological degree argument exploiting the energy
estimates and the L∞ bound on the capillary pressure. In Section 4, the convergence of the
discrete solution to a weak solution is established up to a subsequence. The proof relies on the
relative compactness of the discrete saturations using a discrete Aubin Simon theorem. The
transmission conditions are proved to be satisfied by the limit by establishing the convergence of
the discrete traces at different rock type interfaces. Compared with [7], a new proof is provided
based on the boundedness of the capillary pressure as well as a key decomposition of the non-
linearities accounting for the transmission conditions. In the numerical section (Section 5) our
TPFA HU discretization is compared to the TPFA PPU scheme in terms of both accuracy and
efficiency on two test cases. The first one is the simulation of oil migration in a one dimensional
basin with a drain and a capillary barrier. The second test case considers the oil migration in
a 2D Discrete Fracture Matrix model incorporating a complex network of fractures and highly
heterogeneous matrix fracture petrophysical and hydrodynamical properties.

2 Mathematical problem

Let Ω be a bounded polyhedral domain of Rd (d ∈ N, d ≥ 2). The domain Ω is assumed to
be split into two polyhedral subdomains Ωi, i ∈ {1, 2}, each having its own rock type i, such
that Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅. The interface ∂Ω1 ∩ ∂Ω2 between the two-subdomains is
denoted by Γ. Let (0, tf ) denote the time interval with tf > 0 and let us consider an immiscible
and incompressible two-phase Darcy flow with {w, nw} the set of wetting and non-wetting
phases. Denoting by pαi , α ∈ {w,nw}, the phase pressures and by πi the capillary pressure, the
mathematical formulation of the model is defined by the volume conservation of each phase α
in each subdomain i ∈ {1, 2}

φ(x)∂ts
α
i (πi) +∇ ·Vα

i = 0, in Qitf = Ωi × (0, tf ), (2.1)

together with the capillary relation
πi = pnw

i − pw
i . (2.2)

In (2.1), φ is the porous medium porosity depending on x ∈ Ω, sαi is the saturation of the phase
α as a function of the capillary pressure πi such that snw

i + sw
i = 1, and Vα

i is the velocity of
phase α defined by the generalized Darcy law

Vα
i = −

kαr,i(s
α
i (πi))

µα
Λ(x)(∇pαi − ραg). (2.3)

In (2.3), kαr,i is the phase relative permeability as a function of the phase saturation, µα is the
constant dynamic viscosity of phase α, and Λ denotes the intrinsic permeability as a function
of x ∈ Ω. The vector g ∈ Rd is the gravity acceleration vector.

The system (2.1)-(2.2) involves strong nonlinear couplings and degenerates when switching
from unsaturated to saturated zones. Besides, the constitutive laws and physical parameters
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can vary strongly with respect to space across the interface Γ, which implies highly nonlinear
transmission conditions specified below and plays a key role in the flow dynamics. These issues
challenge the design of efficient numerical schemes. Our approach is based on the total velocity
formulation, which, roughly speaking, weakly decouples the system into a degenerate parabolic
equation for the non-wetting phase saturation and an elliptic equation for the non-wetting
phase pressure. To simplify the presentation, the gravity term is neglected in the remaining
description of the model and of the numerical scheme although it will be considered in the
numerical tests. For convenience, let us denote the non-wetting phase saturation function by
si = snw

i and let us define the phase mobilities by

Mα
i (s) =


knw
r,i (s)

µnw
for α = nw,

kw
r,i(1− s)
µw

for α = w,

as functions of the non-wetting phase saturation. The total velocity is defined as the sum of
the phase velocities such that

VT
i =

∑
α∈{nw,w}

Vα
i = −

∑
α∈{nw,w}

Mα
i (si(πi))Λ(x)∇pαi .

The total mobility and the phase fractional flow are defined as functions of the non wetting-
phase saturation by

MT
i (s) = Mnw

i (s) +Mw
i (s), fαi (s) =

Mα
i (s)

MT
i (s)

.

Using these notations, the non-wetting phase velocity can be expressed by

Vnw
i = fnw

i (si(πi))V
T
i − ηi(si(πi))Λ(x)∇πi. (2.4)

with

ηi(s) =
Mnw
i (s)Mw

i (s)

MT
i (s)

.

Substituting (2.4) in the non-wetting phase saturation equation (2.1), the system (2.1)-(2.2)-
(2.3) is equivalent to its total velocity formulation

φ(x)∂tsi(πi) +∇ ·
(
fnw
i (si(πi))V

T
i − ηi(si(πi))Λ(x)∇πi

)
= 0,

∇ ·VT
i = 0,

VT
i = −

∑
α∈{nw,w}

Mα
i (si(πi))Λ(x)∇pαi ,

πi = pnw
i − pw

i ,

(2.5)

using the phase pressures and capillary pressure as primary unknowns. This system is comple-
mented by the following no-flux boundary conditions(

fnw
i (si(πi))V

T
i − ηi(si(πi))Λ∇πi

)
· ni = 0 on (∂Ω ∩ ∂Ωi)× (0, tf ),

VT
i · ni = 0 on (∂Ω ∩ ∂Ωi)× (0, tf ),

(2.6)

where ni denotes the outward unit normal vector to ∂Ω∩∂Ωi. The non-wetting phase pressure
is determined up to a constant which is fixed by the following condition∑

i∈{1,2}

∫
Ωi

pnw
i (x, ·) dx = 0 on (0, tf ). (2.7)
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The initial condition prescribes that

πi|t=0
= π0

i in Ωi. (2.8)

The system (2.5) is the starting point of the discretization introduced in Section 3. However,
the proper definition of a weak continuous solution to (2.5) requires the introduction of the
global pressure and of the Kirchhoff transform as specified below.

Global pressure

Although the discretization will be based on the formulation (2.5) using the phase pressures
and capillary pressure as primary unknowns, it is well known that, at the continuous level,
the gradient of the phase pressure is not well defined on the regions where the phase mobility
vanishes. Following [7], a possible way to define properly the phase pressures relies on the
extension of the concept of global pressure to different rock types.

Let us define the artificial pressures

Gnw
i (v) =

∫ v

0
fnw
i (si(u)) du, Gw

i (v) =

∫ v

0
fw
i (si(u)) du. (2.9)

leading to define the global pressure in each subdomain by

Pi = pw
i +Gnw

i (πi) = pnw
i −Gw

i (πi), i = 1, 2. (2.10)

Note that the global pressure is not continuous at the interface between different rock types
i ∈ {1, 2}. To check formally how the global pressure circumvent the difficulties raised by the
degeneracy of the phase mobilities, let us write for i ∈ {1, 2}

MT
i (si(πi))Λ∇Pi = Mw

i (si(πi))Λ(∇pw
i +∇Gnw

i (πi)) +Mnw
i (si(πi))Λ(∇pnw

i −∇Gw
i (πi))

= Mw
i (si(πi))Λ∇pw

i +Mnw
i (si(πi))Λ∇pnw

i

= VT
i .

Since the total mobility MT
i does not vanish (see Assumption (A3)), we can control the global

pressure Pi and define the total velocity. Note also that the trace of Pi at the interface Γ is
well-defined which is a key point to define the transmission conditions at the interface below.
We emphasize that the global pressure concept holds a strong and useful mathematical sense
but it has no clear physical meaning and it is not convenient from the numerical point of view.
For this reason, as opposed to the discretization proposed in [7], the numerical scheme will
only involve physical meaningful quantities like the phase pressures, the capillary pressure and
the total velocity. The global pressure will be only used as intermediate tool to perform the
convergence analysis of the scheme.

Kirchhoff transforms

Similarly to the phase pressures, the gradient of the capillary pressure cannot be controlled
due to the degeneracy of the function ηi at s = 0 and s = 1. This classically leads to the
introduction of the Kirchhoff transform Fi defined by

Fi(ν) =

∫ ν

0
ηi(si(u)) du,

such that, formally, ηi(si(πi))∇πi = ∇Fi(πi); this expression shows that Fi is naturally con-
trolled by the energy estimates coming from the scheme. As for the global pressure, the Kirch-
hoff transform Fi will not be used in the numerical discretization of the capillary diffusion term,
that will be based only on the capillary pressure, but it is needed at the continuous level. A
stronger control will actually be obtained from the numerical scheme leading to the introduction
of the following second Kirchhoff transform

ξi(ν) =

∫ ν

0

√
ηi(si(u)) du.
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Interface conditions

We now specify the transmission conditions at the interface Γ between both rock types. These
transmission conditions are stated in [7] with primary unknowns defined in each subdomain by
the non-wetting phase saturation and the global pressure. They are adapted here to our choice
of the capillary pressure and global pressure as primary unknowns.

From [44, 21, 11, 12, 7], the behavior of the phases at the interface Γ is governed by the
natural statement: if one of the phase fluxes across Γ does not vanish, then the pressure of the
same phase must be continuous on this interface. Otherwise, the upwind mobility vanishes. As
shown in [11, 12, 7], this amounts to claiming that there exists a capillary pressure πΓ at the
interface Γ that should satisfy the following requirements. First, it accounts for the continuity
of the wetting phase pressure at the interface Γ

γ1P1 −Gnw
1 (πΓ) = γ2P2 −Gnw

2 (πΓ), a.e. on Γ× (0, tf ), (2.11)

where γi denotes the trace operator on each side i of Γ. By adding πΓ to both sides of equation
(2.11), it also yields the continuity of the non-wetting phase by virtue of (2.9)-(2.10).

Secondly, as we will see in Definition 2.1, the Kirchhoff function Fi is supposed to be regular
enough so that its trace also exists. The jump of the two-sided Kirchhoff transform Fi (and
hence of the two-sided non-wetting phase saturation) at the interface Γ is governed by the
following continuity condition

Fi(πΓ) = γiFi(πi), a.e. on Γ× (0, tf ). (2.12)

Note that both equations in (2.12) for i = 1, 2 are enforced with the same interface capillary
pressure πΓ, as illustrated in Figure 1.

Figure 1: Example of Kirchhoff transforms (Fi)i=1,2 for two rock types as
functions of the capillary pressure π, and illustration of the continuity con-
dition (2.12) for a given interface capillary pressure πΓ and given subdomain
capillary pressure solutions πi.

Additionally, the continuity of the normal non-wetting phase and total velocities∑
i∈{1,2}

(
fnw
i VT

i − ηi(si(πi))Λ∇πi
)
· nΓ

i = 0 on Γ× (0, tf ),∑
i∈{1,2}

VT
i · nΓ

i = 0 on Γ× (0, tf ),
(2.13)

holds, where nΓ
i denotes the unit normal vector to Γ pointing outward of Ωi.

The following assumptions are made on the constitutive laws and physical data.
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(A0) The initial capillary pressure π0
i is in L2(Ωi).

(A1) The porosity satisfies 0 < φ ≤ φ(x) ≤ φ for all x ∈ Ω and strictly positive constants φ, φ.

(A2) The saturation si is a strictly increasing Lipschitz continuous function from [πi, πi] into
[0, 1]. Let us set π? = mini∈{1,2}(πi) and π?? = maxi∈{1,2}(πi). We assume that si(π) = 0
on [π?, πi] and that si(π) = 1 on [πi, π

??]. The saturation is extended into a strictly
monotone function outside the interval [π?, π??] by setting

si(u) =

{
u− π? if u ∈ (−∞, π?)
u− π?? + 1 if u ∈ (π??,+∞)

. (2.14)

(A3) The mobility Mnw
i (resp. Mw

i ) is a strictly increasing (resp. strictly decreasing) Lipschitz
continuous function that vanishes at 0 (resp. at 1). We extend Mnw

i and Mw
i by 0 on

(−∞, 0) and (1,+∞) respectively. Hence, the fractional flow function fαi has the same
properties. Moreover, the nonlinear diffusion function ηi ≥ 0 verifies ηi(0) = ηi(1) = 0.

(A4) The scalar permeability function Λ ∈ L∞(Ω) is such that there exist 0 < Λ ≤ Λ with

Λ ≤ Λ(x) ≤ Λ, for a.e x ∈ Ω.

Thanks to Assumptions (A2) and (A3), the second Kirchhoff transform ξi is strictly increas-
ing and continuous on [πi, πi]. The inverse of ξi is well-defined and continuous on this interval.
For technical reasons, we require a reasonable regularity on this inverse.

(A5) The inverse of ξi is a Θ-Hölder function on [πi, πi], for some Θ ∈ (0, 1). This property and
the Lipschitz continuity of si yield

|si(a)− si(b)| ≤ Lc |ξi(a)− ξi(b)|Θ , for all a, b ∈ [π?, π??]. (2.15)

Weak solution

We can finally state the definition of a weak solution to the two-phase Darcy flow model. It
will be used to prove the convergence of the numerical scheme described in the next subsection.

Definition 2.1. (Weak solution) A weak solution to the continuous model (2.5)-(2.8), (2.11)-
(2.13) is a family of measurable functions (πi, Pi)i∈{1,2} satisfying the following properties, for
all i ∈ {1, 2}:

(i) ξi(πi), Pi ∈ L2(0, tf ;H1(Ωi)),
(ii) there exists a measurable function πΓ on Γ× (0, tf ) such that, for a.e. (x, t) ∈ Γ× (0, tf ):

Fi(πΓ) = γiFi(πi), (2.16)

γ1P1 −Gnw
1 (πΓ) = γ2P2 −Gnw

2 (πΓ), (2.17)

(iii) for all ϕ,ψ ∈ C∞c (Ω× [0, tf )), one has

∑
i∈{1,2}

∫
Qitf

φsi(πi)∂tϕdxdt+

∫
Ωi

si(π
0
i )ϕ(·, 0) dx

+

∫
Qitf

(
fnw
i (si(πi))V

T
i − Λ∇Fi(πi)

)
· ∇ϕdx dt

 = 0, (2.18)

and ∑
i∈{1,2}

∫
Qitf

VT
i · ∇ψ dxdt = 0, (2.19)

where the total velocity VT
i is given by

VT
i = −MT

i (si(πi))Λ∇Pi.
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3 TPFA discretization

This section introduces our fully implicit finite volume discretization based on the total velocity
formulation (2.5), on phase pressures and on capillary pressure primary unknowns. The scheme
incorporates interface phase pressures and capillary pressure unknowns at all interior faces
of the mesh. The discretization of the fluxes is based on a Two-Point Flux Approximation
(TPFA) assuming that the mesh satisfies the orthogonality property. It results from the TPFA
discretization that the face unknowns can be locally eliminated either at the linear level by a
Schur complement or at the nonlinear level using a local solver for each face interface.

3.1 Space and time discretization

A spatial discretization T is a partition of Ω into cells consisting of convex non-overlapping
open cells. Any cell K ∈ T is characterized by a point xK ∈ K \∂K referred to as its “center”.
The d-Lebesgue measure of K ∈ T is denoted by |K|. We denote by FK the set of interior
faces of K, included in hyperplanes of Rd, with ∂K = (∂K ∩ ∂Ω)

⋃(⋃
σ∈FK σ

)
. For σ ∈ FK ,

we denote by |σ| the (d− 1)-Lebesgue measure of σ and by xσ ∈ σ \∂σ the face “center” of the
face σ. The orthogonality property assumes that xσ matches with the orthogonal projection of
xK on σ for all K ∈ T and σ ∈ FK , which is assumed in the following. Let F =

⋃
K∈T FK be

the set of interior faces of the mesh. It is assumed that the mesh is conforming to the interface
Γ in the sense that there exists FΓ ⊂ F with

Γ =
⋃
σ∈FΓ

σ.

Let us also denote by Fi ⊂ F the subset of faces interior to the domain Ωi, i ∈ {1, 2}, such that

F = F1 ∪ F2 ∪ FΓ.

Similarly, Ti denotes the subset of cells of T included in Ωi with T = T1 ∪ T2. In the following
the notation σ = K|L indicates that the interior face σ ∈ F is shared by the two cells K and
L and we set Tσ = {K,L}. We denote by dK,σ the distance between the centers of K ∈ T and
σ ∈ FK . The size of the mesh is defined by

hT = max
K∈T

diam(K).

Defining ΛK =
1

|K|

∫
K

Λ(x) dx the average permeability in the cell K, the half transmissibilities

and their harmonic average across a face σ = K|L ∈ F are given by

TK,σ =
|σ|
dK,σ

ΛK , K ∈ Tσ, TK,L =
1

1
TK,σ + 1

TL,σ
. (3.1)

The regularity of the mesh is characterized by the parameter ζT such that

ζT = min
K∈T ,σ∈FK

dK,σ
diam(K)

. (3.2)

For a family of finite volume meshes (Tm)m∈N, it will be assumed that there exists ζ0 > 0 such
that

ζTm ≥ ζ0, for all m ∈ N.

For simplicity, the time discretization is assumed to be a uniform decomposition of the time
interval [0, tf ] into N ∈ N∗ sub-intervals of size 4t = tf/N . Let us set tn = n4t, for all
n ∈ J0, NK := [0, N ]∩N. The extension of the discretization and of the convergence analysis to
variable time stepping is straightforward.

8



3.2 Fully-implicit finite volume scheme

The finite volume discretization is based on the cell centered
(
πnK , p

nw,n
K

)
K∈T and face centered(

πnσ , p
nw,n
σ

)
σ∈F primary unknowns at each time step n. The wetting phase pressures are defined

by
pw,n
ν = pnw,n

ν − πnν for all ν ∈ T ∪ F .

Figure 2: Example of two Cartesian cells K and L sharing the interface face
σ = K|L ∈ FΓ in bold blue. The non-wetting phase and capillary pressure
primary unknowns are exhibited in both cells K and L and at the faces σ′

and σ.

For all K ∈ T , let us define the cell rock type rtK = i for K ⊂ Ti as well as the cell porosity
and initial capillary pressure as follows

φK =
1

|K|

∫
K
φ(x)dx, π0

K =
1

|K|

∫
K
π0(x) dx.

Given the approximation detailed below of the non-wetting phase flux V nw,n
K,σ and of the

total flux V T,n
K,σ for all σ ∈ F , K ∈ Tσ, the finite volume discretization accounts for the volume

conservation in each cell and the flux continuity equations at each interior face combined with
the non-wetting phase pressure zero mean value constraint. This reads

φK
|K|
4t

(
srtK (πnK)− srtK (πn−1

K )
)

+
∑
σ∈FK

V nw,n
K,σ = 0, for all K ∈ T , (3.3)

∑
σ∈FK

V T,n
K,σ = 0, for all K ∈ T , (3.4)

V nw,n
K,σ + V nw,n

L,σ = 0, for all σ = K|L ∈ F , (3.5)

V T,n
K,σ + V T,n

L,σ = 0, for all σ = K|L ∈ F , (3.6)∑
K∈T

|K| pnw,n
K = 0. (3.7)

Note that all faces are treated in the same way in this approach including faces σ = K|L with
homogeneous rock types rtK = rtL and faces σ = K|L ∈ FΓ with heterogeneous rock types
rtK 6= rtL. An alternative approach is discussed in Subsection 3.3.

The total flux approximation is defined by

V T,n
K,σ = TK,σ

(
Mnw,n
K,σ (pnw,n

K − pnw,n
σ ) +Mw,n

K,σ(pw,n
K − pw,n

σ )
)
. (3.8)

It is based on the centered approximation of the phase mobility

Mα,n
K,σ = Mα

rtK (cnK,σ), α ∈ {w, nw}, (3.9)

9



designed to ensure the control of the discrete global pressure and playing a major role in the
stability of the scheme, as analyzed in Subsection 3.4. The mean saturation cnK,σ is the solution
of the local nonlinear equation(

Gw
rtK (πnK)−Gw

rtK (πnσ)
)
Mnw

rtK (cnK,σ) =
(
Gnw

rtK (πnK)−Gnw
rtK (πnσ)

)
Mw

rtK (cnK,σ). (3.10)

Note that, from Remark 3.1, cnK,σ is between srtK (πnK) and srtK (πnσ).

The non-wetting phase flux approximation is defined by

V nw,n
K,σ = fnw

rtK (sup,n
K,σ )V T,n

K,σ + TK,σηnK,σ
(
πnK − πnσ

)
, (3.11)

combining the upwind approximation of the saturation in the fractional flow

sup,n
K,σ =

{
srtK (πnK) if V T

K,σ ≥ 0

srtK (πnσ) if V T
K,σ < 0

, (3.12)

with the approximation

ηnK,σ =
M̂nw
K,σM̂

w
K,σ

MT
rtK

(
srtK (πnK)

) , (3.13)

designed to enforce the monotonicity of the capillary diffusion term, using

M̂α
K,σ = max

{
Mα

rtK

(
srtK (πnK)

)
,Mα

rtK

(
srtK (πnσ)

)}
. (3.14)

Remark 3.1. Note that (3.10) equivalently states that

Gnw
rtK (πnK)−Gnw

rtK (πnσ) = (πnK − πnσ)fnw
rtK (cnK,σ),

from which we deduce that there exists π strictly between πnK and πnσ such that cnK,σ = srtK (π).
Since fnw

rtK
(s) is strictly increasing in (0, 1) and equal to 0 for s ≤ 0 and to 1 for s ≥ 1, it

implies that cnK,σ is uniquely determined in (0, 1). It follows that cnK,σ depends continuously on
πnK and πnσ .

Remark 3.2. The discrete equivalent of the transmission conditions (2.11)-(2.12)-(2.13) at an
interface σ = K|L ∈ FΓ is obtained by the flux continuity equations (3.5)-(3.6), the single value
of the phase pressures pασ = pαK,σ = pαL,σ and the two sided saturations srtK (πσ), srtL(πσ).

3.3 Two variants of the finite volume scheme

For a given face σ = K|L ∈ F , and given pnw,n
K , πnK , p

nw,n
L , πnL, the equation (3.6) enables

the computation of the interface non-wetting phase pressure pnw,n
σ in terms of the interface

capillary pressure πnσ . Substituting the expression of pnw,n
σ in (3.5) provides the equation for

πnσ . In practice, this equation degenerates for πnK = πnL = π? (resp. for πnK = πnL = π??) which
can be accounted for by replacing the non-wetting phase flux continuity equation by πnσ = π?

(resp. πnσ = π??). This may however yield numerical difficulties in the computation of πnσ . An
alternative way to cope with this degeneracy is to regularize the equation (3.5) by adding an
additional accumulation term as follows∑

K∈Tσ

( ε

∆t
φK |K|

(
srtK (πnσ)− srtK (πn−1

σ )
)
− V nw,n

K,σ

)
= 0, (3.15)

where the parameter ε > 0 has to be chosen sufficiently small to induce a negligible pertur-
bation of the solution. Both strategies are adopted and compared in terms of nonlinear solver

10



efficiency in the numerical section.

Another variant of the discretization is to use face unknowns only at interfaces σ ∈ FΓ

between different rock types. Then, the flux continuity equations (3.5)-(3.6) are written only
for σ ∈ FΓ. For faces σ = K|L ∈ F \ FΓ with rtK = rtL, the total flux is replaced by and
expression purely based on cell unknowns:

V T,n
K,σ = TK,L

(
Mnw,n
K,L (pnw,n

K − pnw,n
L ) +Mw,n

K,L(pw,n
K − pw,n

L )
)
, (3.16)

with
Mα,n
K,L = Mα

rtK (cnK,L), α ∈ {w, nw}, (3.17)

where cnK,L is the solution of the local nonlinear equation(
Gw

rtK (πnK)−Gw
rtK (πnL)

)
Mnw

rtK (cnK,L) =
(
Gnw

rtK (πnK)−Gnw
rtK (πnL)

)
Mw

rtK (cnK,L). (3.18)

Similarly, the non-wetting phase flux is modified as

V nw,n
K,σ = fnw

rtK (sup,n
K,L )V T,n

K,σ + TK,LηnK,L
(
πnK − πnL

)
, (3.19)

with

sup,n
K,L =

{
srtK (πnK) if V T

K,σ ≥ 0

srtK (πnL) if V T
K,σ < 0

, (3.20)

and

ηnK,L =
M̂nw
K,LM̂

w
K,L

TK,L
(MT

rtK
(srtK

(πnK))

TK,σ +
MT

rtK
(srtK

(πnL))

TL,σ

) , (3.21)

using

M̂α
K,L = max

{
Mα

rtK

(
srtK (πnK)

)
,Mα

rtK

(
srtK (πnL)

)}
. (3.22)

In the numerical section, this variant will be compared in terms of accuracy to the scheme of
Subsection 3.2 with unknowns at all faces σ ∈ F .

Note that the following stability and convergence analysis is only carried out for the original
scheme of Subsection 3.2 but it can be extended to both variants of the scheme.

3.4 Stability estimates and existence result

Let us first prove the existence of a solution to the local interface system.

Lemma 3.3. For each σ = K|L ∈ F and for any (pnw,n
K , pnw,n

L , πnK , π
n
L) ∈ R4, there exists

(pnw,n
σ , πnσ), with πnσ ∈ [π?, π??], solving the local nonlinear system{

V nw,n
K,σ + V nw,n

L,σ = 0,

V T,n
K,σ + V T,n

L,σ = 0.
(3.23)

Proof. The superscript n is omitted in the following. From remarks 3.1, solving the equation
V T
K,σ + V T

L,σ = 0 w.r.t. pnw
σ , we can express V T

K,σ = −V T
L,σ as a continuous function of πσ. Next,

let us define
Ψ(πσ) = V nw

K,σ(πσ) + V nw
L,σ(πσ),

as a function of πσ considering the total velocities V T
K,σ and V T

L,σ as functions of πσ. One can
show from the definition of the fluxes V nw

K,σ, V nw
L,σ that Ψ(π?) ≥ 0 and Ψ(π??) ≤ 0. Then, we

deduce from the continuity of the function Ψ(πσ) the existence of a solution πσ ∈ [π?, π??] to
the equation Ψ(πσ) = 0. By construction, one also infers the existence of pnw

σ , which concludes
the proof.
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Remark 3.4. Note that for faces σ = K|L ∈ F \ FΓ with rtK = rtL, it is easy to adapt
the previous proof to show that there exists a solution (pnw,n

σ , πnσ) to (3.23) such that πnσ ∈
[πrtK , πrtK ].

Next, we need to ensure that the computed capillary pressure remains in its initial range.

Lemma 3.5. Let us assume that π? ≤ π0
K ≤ π??, for all K ∈ T and that the solution of the

local interface system (3.23) is chosen according to Lemma 3.3 such that πnσ ∈ [π?, π??] for all
σ ∈ F and n ∈ J0, NK. Then, any solution of (3.3)-(3.4)is such that the discrete capillary
pressure satisfies the following L∞ bound

π? ≤ πnK ≤ π??, ∀K ∈ T , ∀n ∈ J1, NK. (3.24)

Proof. The result is shown by induction on n. The property is trivial for n = 0. We only detail
the inductive step for the lower bound

πnK ≥ π?, ∀K ∈ T , ∀n ∈ J1, NK,

the case of the upper bound being similar. We first set K a cell such that πnK = minL∈T π
n
L.

Assume that πnK < π?. Multiplying the saturation equation corresponding to the cell K by
πnK − π? gives

φK
|K|
4t

(
srtK (πnK)(πnK − π?)− srtK (πn−1

K )(πnK − π?)
)

︸ ︷︷ ︸
AK

+
∑
σ∈FK

V nw
K,σ(πnK , π

n
σ)(πnK − π?)︸ ︷︷ ︸

BK,σ

= 0.

Developping the expression of BK,σ leads to

BK,σ = fnw
rtK

(
srtK (πnK)

)(
V T
K,σ

)+
(πnK − π?)− fnw

rtK

(
srtK (πnσ)

)(
V T
K,σ

)−
(πnK − π?)

+ TK,σηnK,σ
(
πnK − πnσ

)
(πnK − π?).

Bear in mind that, since πnK < π?, we have srtK (πnK) = πnK −π? < 0 and that the function fnw
rtK

vanishes on (−∞, 0]. Hence

fnw
rtK

(
srtK (πnK)

)(
V T
K,σ

)+
(πnK − π?) = 0.

Now, since πnσ − π? ≥ 0, we deduce that BK,σ is nonnegative for all σ ∈ FK . Consequently,
AK ≥ 0. By induction hypothesis, srtK (πn−1

K ) ≥ 0 and, thus, the extension of the saturation
function given by Assumption (A2) gives

srtK (πnK)(πnK − π?) = (πnK − π?)2 ≤ 0.

This proves that πnK = π?, contradicting the assumption πnK < π? and concluding the proof.

Remark 3.6. It is possible to improve the bounds of the inequality (3.24) by adapting the
previous proof. The computed capillary pressure πnK for each cell K ∈ T stays within the
range (πrtK , πrtK ) of the initial capillary pressure. To prove this, different extensions of the
saturation function must be introduced in Assumption (A2). For cells K ∈ T and homogeneous
interfaces σ = K|L ∈ F \ FΓ the extension is done outside the range (πrtK , πrtK ) while for
heterogeneous interfaces σ ∈ FΓ, the extension is kept outside the range (π?, π??). This would
make the notations heavier and is the reason why we restricted ourselves to the bounds π? and
π?? in all cases.
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We are next interested in establishing energy estimates. The proof of the estimations below
requires the use of the global pressure. A discrete counterpart of (2.10) is defined by

PnK = pw,n
K +Gnw

rtK (πnK) = pnw,n
K −Gw

rtK (πnK),

where the second equality derives from pnw,n
K − pw,n

K = πnK and Gnw
rtK

(πnK) + Gw
rtK

(πnK) = πnK .

Similarly, the global pressure at face σ = K|L ∈ F reads

PnK,σ = pw,n
σ +Gnw

rtK (πnσ) = pnw,n
σ −Gw

rtK (πnσ),

from which we deduce the discrete equivalent of the transmission condition (2.11)

PnK,σ −Gnw
rtK (πnσ) = PnL,σ −Gnw

rtL(πnσ).

A key consequence of our choice of the mobilities (3.9)-(3.10) in the definition (3.8) of V T,n
K,σ

is that the total flux rewrites

V T,n
K,σ = MT

rtK (cnK,σ)TK,σ
(
PnK − PnK,σ

)
. (3.25)

Unless mentioned, we denote by C a generic positive constant depending only on the data
and possibly on the mesh regularity ζT defined in (3.2), but not on the discretization parameters.

Proposition 3.7. Let (pnw,n
ν , πnν )ν∈T ∪F , n ∈ J1, NK be a solution of the finite volume scheme

(3.3)-(3.7), then there exists a positive constant C such that

N∑
n=1

4t
∑
K∈T

∑
σ∈FK

TK,σηnK,σ
(
πnK − πnσ

)2
≤ C, (3.26)

N∑
n=1

4t
∑
K∈T

∑
σ∈FK

TK,σ
(
ξrtK (πnK)− ξrtK (πnσ)

)2
≤ C, (3.27)

N∑
n=1

4t
∑
K∈T

∑
σ∈FK

TK,σ(PnK − PnK,σ)2 ≤ C. (3.28)

Proof. Let us first estimate the capillary terms. Multiplying equation (3.3) by 4t πnK and
equation (3.5) by 4t πnσ and summing over K ∈ T , σ ∈ F and n ∈ J1, NK gives

X + Y + Z = 0, (3.29)

where

X =
N∑
n=1

∑
K∈T

φK |K|
(
srtK (πnK)− srtK (πn−1

K )
)
πnK ,

Y =
N∑
n=1

4t
∑
K∈T

∑
σ∈FK

fnw
rtK (sup,n

K,σ )V T
K,σ

(
πnK − πnσ

)
,

Z =

N∑
n=1

4t
∑
K∈T

∑
σ∈FK

TK,σηnK,σ
(
πnK − πnσ

)2
.

By virtue of Assumption (A2), let us recall that s′i ∈ L∞(π?, π??). Let us consider Πi(v) =∫ v

0
us′i(u) du. Integrating by parts and recalling that si is increasing, we observe that

Πi(v)−Πi(w) = v
(
si(v)− si(w)

)
−
∫ v

w

(
si(u)− si(w)

)
du ≤ v

(
si(v)− si(w)

)
.
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Then, a telescopic sum yields

X ≥
∑
K∈T

φK |K|
(

ΠrtK (πNK )−ΠrtK (π0
K)
)
. (3.30)

Using the convexity of the function Gnw
rtK

defined in (2.9) and the upstream choice (3.12) we
deduce that

Y ≥
N∑
n=1

4t
∑
K∈T

∑
σ∈FK

V T
K,σ

(
Gnw

rtK (πnK)−Gnw
rtK (πnσ)

)
=: E1. (3.31)

At this stage, we need to consider the energy estimation on the global pressure. Multiplying
equation (3.4) by 4t (PnK −Gnw

rtK
(πnK)), equation (3.6) by 4t (PnK,σ −Gnw

rtK
(πnσ)), using (3.25)

and summing over K ∈ T , σ ∈ F and n ∈ J1, NK, we obtain

E1 =
N∑
n=1

4t
∑
K∈T

∑
σ∈FK

MT
rtK (cnK,σ)TK,σ(PnK − PnK,σ)2. (3.32)

Now, by the boundedness from below of the total mobility MT
rtK

(s) ≥ m0 for all s ∈ (0, 1),

Y ≥ m0

N∑
n=1

4t
∑
K∈T

∑
σ∈FK

TK,σ(PnK − PnK,σ)2. (3.33)

As a consequence of (3.29), (3.30) and (3.33) we infer

N∑
n=1

4t
∑
K∈T

∑
σ∈FK

TK,σηnK,σ
(
πnK − πnσ

)2

+m0

N∑
n=1

4t
∑
K∈T

∑
σ∈FK

TK,σ(PnK − PnK,σ)2 ≤ C, (3.34)

for some constant C > 0 depending only on π0 and φ. This implies (3.26) and (3.28). Finally,
observe that √

ηnK,σ ≥ max
a∈InK,σ

ξ′rtK (a),

where InK,σ = [min(πnK , π
n
σ),max(πnK , π

n
σ)]. Thanks to this inequality and to (3.34), the inequal-

ity (3.27) holds true. The proof is concluded.

Proposition 3.8. The fully implicit finite volume scheme (3.3)-(3.7) has a solution (pnw,n
ν , πnν )ν∈T ∪F

at each time iteration n ∈ J1, NK, such that πnν ∈ [π?, π??] for all ν ∈ T ∪ F .

Proof. The proof of the existence result uses a topological degree technique [16]. To this end,
we perturb some physical laws by introducing the parameter λ ∈ [0, 1] as follows

Mnw,λ
i (snw) = λMnw

i (snw) + (1− λ)snw,

Mw,λ
i (snw) = λMw

i (snw) + (1− λ)(1− snw),

πλi = λπi + (1− λ)π1.

Let us denote by V nw,λ
K,σ the corresponding expression of the non-wetting phase velocity when

considering the above physical functions depending on λ. We modify equation (3.5) by

V nw,λ
K,σ + V nw,λ

L,σ + max(π? − πσ, 0) + min(π?? − πσ, 0) = 0, (3.35)
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such that one ensures that any solution of the modified interface problem is such that πσ stays
in [π?, π??]. We also replace the constraint (3.7) by∑

K∈T
|K|

(
λpnw,n

K + (1− λ)PnK

)
= 0.

Applying the same procedure as above one can prove that any solution (pnw,λ,n
ν , πλ,nν )ν∈T ∪F of

the modified scheme is such that πλ,nν ∈ [π?, π??] for all ν ∈ T ∪F and such that Proposition 3.7
still holds with a constant independent of λ. Then, for λ = 0 we get a homogeneous decoupled
finite volume scheme. The remaining part of the proof is a straightforward adaption of the one
given in [7, Proposition 3.6].

4 Convergence analysis

This section addresses the convergence of the numerical scheme. Let (Tm)m∈N be a sequence
of discretizations of the domain Ω in the sense of Subsection 3.1, such that hTm goes to zero as
m tends to +∞ and such that infm∈N ζTm > 0.

Let Ti,m be the subset of cells of Tm included in Ωi for i ∈ {1, 2}. The set of interior faces
is denoted by Fm, its subset of interior faces of Ωi by Fi,m, and its subset of interface faces by
FΓ,m. Let us also consider a sequence of uniform time discretization 4tm of the time interval
(0, tf ) with Nm time steps such that 4tm tends to zero as m goes to +∞.

Let us introduce the vector space Xi,m defined by

Xi,m =
{
uDi,m =

(
(uK)K∈Ti,m , (uσ)σ∈Fi,m , (ui,σ)σ∈FΓ,m

)
; uK ∈ R, uσ ∈ R, ui,σ ∈ R

}
, (4.1)

and its subspace X0
i,m of vectors uDi,m ∈ Xi,m such that ui,σ = 0 for σ ∈ FΓ,m.

Let (uD1,m , uD2,m) ∈ X1,m × X2,m, note that the components of uD1,m and uD2,m on both
sides of the interface for σ ∈ FΓ,m, either have the same values u1,σ = u2,σ = uσ, as it is the
case for

πnDi,m =
(

(πnK)K∈Ti,m , (π
n
σ)σ∈Fi,m∪FΓ,m

)
and pα,nDi,m =

(
(pα,nK )K∈Ti,m , (p

α,n
σ )σ∈Fi,m∪FΓ,m

)
,

or different values like for

PnDi,m =
(

(PnK)K∈Ti,m , (P
n
K,σ = PnL,σ)σ=K|L∈Fi,m , (P

n
K,σ)σ∈FΓ,m,{K}=Tσ∩Ti,m

)
,

snDi,m =
(

(si(π
n
K))K∈Ti,m , (si(π

n
σ))σ∈Fi,m , (si(π

n
σ))σ∈FΓ,m

)
.

Similarly, FnDi,m (resp. ξnDi,m) is defined with the function Fi (resp. ξi) as for si. Note that for

uDi,m ∈ Xi,m and any σ ∈ FΓ,m, we will also denote ui,σ by uK,σ for {K} = Tσ ∩ Ti,m if we
have two different values at both sides of the interface or simply by uσ if only a single value is
available. Likewise, for σ = K|L ∈ Fi,m we will make use of the notations uσ = uK,σ = uL,σ.

The space Xi,m is equipped with the semi-norm

∥∥uDi,m∥∥1,Di,m
=

 ∑
K∈Ti,m

∑
σ∈FK

TK,σ(uK − uK,σ)2

1/2

. (4.2)

For any uDi,m ∈ Xi,m let us define the cellwise constant function reconstruction operator by

ΠTi,muDi,m :=
∑

K∈Ti,m

uK1K ,
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where 1K is the characteristic function of K. Note that ΠTi,muDi,m is defined on Rd and vanishes
outside Ωi. For convenience, we will use in the following the shorter notation

uTi,m = ΠTi,muDi,m .

Let Yi,m = ΠTi,mXi,m. We denote by Yi,m the vector space Yi,m equipped with the norm

∥∥vTi,m∥∥Yi,m =
∥∥vTi,m∥∥L1(Ωi)

+ sup
y∈Rd,y 6=0

∥∥vTi,m(·+ y)− vTi,m
∥∥
L1(Ωi)

|y|Θ
,

and by Yi,m the vector space Yi,m equipped with the dual norm∥∥vTi,m∥∥Yi,m = sup
{∫

Ωi

φi(x)vTi,m(x)ψTi,m(x) dx : ψDi,m ∈ X0
i,m,

∥∥ψDi,m∥∥1,Di,m
≤ 1
}
.

For any uDi,m ∈ Xi,m, let us define the two-point gradient reconstruction operator by

∇Di,muDi,m =
∑

K∈Ti,m

∑
σ∈FK

d
unK,σ − unK
dK,σ

nK,σ1DK,σ ,

where DK,σ is the pyramid with base σ and apex xK .
For any uDi,m ∈ Xi,m, we also use the function reconstruction operator defined by

ΠDi,muDi,m :=
∑

K∈Ti,m

∑
σ∈FK

uσ1DK,σ .

Let uDi,m = (u1
Di,m , · · · , u

Nm
Di,m) ∈ (Xi,m)Nm . The previous function and gradient spatial

reconstruction operators (say Oi,m = ΠTi,m ,ΠDi,m ,∇Di,m) are extended to space time recon-
struction operators such that, keeping the same notation for legibility,

Oi,muDi,m(·, t) = Oi,munDi,m for all t ∈ (tn−1, tn], n ∈ J1, NK.

If g : R → R is a continuous function and uDi,m ∈ XDi,m , we denote by g(uDi,m) ∈ XDi,m
the vector

g(uDi,m) =
(

(g(uK))K∈Ti,m , (g(uσ))σ∈Fi,m , (g(ui,σ))σ∈FΓ,m

)
.

Note that the piecewise constant function reconstruction operators ΠTi,m and ΠDi,m commute
with the above definition of g(uDi,m), that is, for example, ΠTi,mg(uDi,m) = g(ΠTi,muDi,m).

Let us now state the convergence theorem summing up the convergence results, that will be
established in the following subsections.

Theorem 4.1. Let (Ti,m,4tm)m∈N be a sequence of discretizations of Qitf such that hTi,m
and 4tm go to zero as m tends to +∞, and infm∈N ζTm > 0. Let (πTi,m , p

nw
Ti,m)m∈N be the

corresponding sequence of discrete solutions to the finite volume scheme (3.3)-(3.7). Then, there
exist πi ∈ L2(Qitf ) with ξi(πi) ∈ L2(0, tf ;H1(Ω)), pαi ∈ L2(Qitf ), and Pi ∈ L2(0, tf ;H1(Ωi)) such
that πi = pnw

i − pw
i and, up to a subsequence as m tends to +∞,

sTi,m −−−−→ si(πi) a.e. in Qitf and strongly in L1(Qitf ),

pαTi,m −−−−→ pαi weakly L2(Qitf ),

∇Di,mFi(πDi,m) −−−−→ ∇Fi(πi) weakly L2(Qitf )d,

∇Di,mPDi,m −−−−→ ∇Pi weakly L2(Qitf )d.

The limit functions (πi, Pi)i∈{1,2} satisfy the variational formulation (2.18)-(2.19) as well as the
transmission condition (2.16) and (2.17) given in Definition 2.1.
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The proof of the above theorem is deduced from a combination of several results outlined
as follows. First, the strong convergence of the saturation and the weak convergence of the dis-
crete gradients are stated in Proposition 4.5. Next, in Proposition 4.6 we prove that the limits
(πi, Pi)i∈{1,2} satisfy the weak formulation. Finally, to show that the limits satisfy the trans-
mission conditions, an alternative proof to the one presented in [7] is proposed in Subsection
4.3 for the convergence of the discrete traces.

4.1 Convergence of the finite volume scheme

The following proposition provides a key compactness property of the sequence (Yi,m,Yi,m)m∈N.

Proposition 4.2. The sequence (Yi,m,Yi,m)m is compactly-continuously embedded in L1(Ωi)
in the sense of [19, Definition C.6].

Proof. Step 1. Let (uTi,m)m∈N be a sequence such that

uTi,m ∈ Yi,m for all m ∈ N, and
(∥∥uTi,m∥∥Yi,m)m∈N is bounded .

As a consequence of the definition of the norm Yi,m, there exists C > 0 such that∥∥uTi,m(·+ y)− uTi,m
∥∥
L1(Ωi)

≤ C |y|Θ , for all y ∈ Rd.

In light of Kolmogorov’s compactness theorem, this ensures the existence of a subsequence of
(uTi,m)m∈N that converges towards ui in L1(Ωi).

Step 2. Let (vTi,m)m∈N be a sequence such that
(i) vTi,m ∈ Yi,m for all m ∈ N and (

∥∥vTi,m∥∥Yi,m)m∈N is bounded,

(ii)
∥∥vTi,m∥∥Yi,m −→ 0 as m goes to +∞,

(iii) (vTi,m)m∈N converges in L1(Ωi) to vi.
Then, let us show that (vTi,m)m∈N converges in fact to 0 in L1(Ωi). To this end, we consider a
regular function ϕ on Ωi. Let us set

ϕDi,m =
(

(ϕ(xK))K∈Ti,m , (ϕ(xσ))σ∈Fi,m∪FΓ,m

)
.

We first observe that

∣∣∣∣∫
Ωi

φivTi,mϕTi,m dx

∣∣∣∣ ≤ C ∥∥vTi,m∥∥Yi,m
 ∑
K∈Ti,m

∑
σ∈FK

|σ|
dK,σ

(ϕK − ϕσ)2

1/2

≤ C
∥∥vTi,m∥∥Yi,m ‖∇ϕ‖L∞ −→ 0.

By virtue of (iii), the limit vi of (vTi,m)m∈N satisfies
∫

Ωi
φiviϕdx = 0. This relation holds for

any test function ϕ. Hence φivi = 0. Assumption (A1) yields vi = 0, which concludes the
proof.

The next proposition states the boundedness of the sequence (sTi,m)n∈N in L1(0, tf ;Yi,m).

Proposition 4.3. There exists C depending only on the data such that

N∑
n=1

4t
∥∥∥snTi,m(·+ y)− snTi,m

∥∥∥
L1(Ωi)

≤ C |y|Θ , ∀y ∈ Rd.

Consequently
N∑
n=1

4t
∥∥∥snTi,m∥∥∥Yi,m ≤ C.
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Proof. By the inequality (2.15), one has

Ani,y :=
∥∥∥snTi,m(·+ y)− snTi,m

∥∥∥
L1(Ωi)

≤ Lc
∫

Ωi

∣∣∣ξnTi,m(x + y)− ξnTi,m(x)
∣∣∣Θ dx.

Applying Hölder’s inequality leads to

Ani,y ≤ CΘ

(∫
Ωi

∣∣∣ξnTi,m(x + y)− ξnTi,m(x)
∣∣∣dx

)Θ

.

Following [19, Lemma B.17], we infer

Ani,y ≤ C ′Θ |y|
Θ
∥∥∥ξnDi,m∥∥∥Θ

1,Di,m
.

Applying once more the Hölder inequality and using the estimate (3.27), one obtains

N∑
n=1

4tAni,y ≤ C ′′Θ |y|
Θ

(
N∑
n=1

4t
∥∥∥ξnDi,m∥∥∥2

1,Di,m

)Θ/2

≤ C ′′′Θ |y|
Θ ,

which implies the first inequality in the proposition. The proof of the second inequality is trivial
since snTi,m is always bounded thanks to Lemma 3.5. This concludes the proof.

Let us next define the discrete time derivative δmsTi,m : Ωi × (0, tf ) → R such that its
restriction on K × (tn−1, tn] is given by

(δmsTi,m)nK =
srtK (πnK)− srtK (πn−1

K )

4t
.

We also define
(δmsTi,m)n =

∑
K∈Ti,m

(δmsTi,m)nK1K ∈ Yi,m.

The sequence of discrete time derivatives (δmsTi,m)n∈N verifies a uniform estimate in L1(0, tf ;Yi,m).
as claimed in the following result.

Proposition 4.4. There exists C depending only on the data such that

N∑
n=1

4t
∥∥(δmsTi,m)n

∥∥
Yi,m
≤ C.

Proof. Let ψDi,m ∈ X0
i,m, adding the sum over K ∈ Ti,m of the non-wetting phase saturation

conservation equation (3.3) multiplied by ψK and the sum over σ ∈ Fi,m of the non-wetting
phase flux continuity equation (3.5) multiplied by ψσ, one obtains the equality

Rn1,i = Rn2,i +Rn3,i,

where

Rn1,i =
∑

K∈Ti,m

φK |K| (δmsTi,m)nKψK =

∫
Ωi

φi(δmsTi,m)nψTi,m dx,

Rn2,i = −
∑

K∈Ti,m

∑
σ∈FK

TK,σfnw
rtK (sup,n

K,σ )MT
rtK (cnK,σ)(PnK − PnK,σ)

(
ψK − ψσ

)
,

Rn3,i = −
∑
K∈T im

∑
σ∈FK

TK,σηnK,σ
(
πnK − πnσ

)(
ψK − ψσ

)
,
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where we have used (3.25) in Rn2,i. Bearing in mind that the function fnw
K is bounded, using

the Cauchy-Schwarz inequality and Assumption (A4), it results that

∣∣Rn2,i∣∣2 ≤ C
 ∑
K∈Ti,m

∑
σ∈FK

TK,σ(PnK − PnK,σ)2

∥∥ψDi,m∥∥2

1,Di,m
.

In a similar way, one obtains the estimate

∣∣Rn3,i∣∣2 ≤ C
 ∑
K∈Ti,m

∑
σ∈FK

TK,σηnK,σ
(
πnK − πnσ

)2∥∥ψDi,m∥∥2

1,Di,m
.

Moreover, taking the supremum of Rn1,i = Rn2,i+Rn3,i over all ψDi,m such that
∥∥ψDi,m∥∥1,Di,m

≤ 1

as in the definition of ‖·‖Yi,m , we infer

∥∥(δmsTi,m)n
∥∥
Yi,m
≤ C

 ∑
K∈Ti,m

∑
σ∈FK

TK,σ(PnK − PnK,σ)2

1/2

+ C

 ∑
K∈Ti,m

∑
σ∈FK

TK,σηnK,σ
(
πnK − πnσ

)21/2

.

Finally, summing over n ∈ J1, NK, using again the Cauchy-Schwarz inequality and the energy
estimates (3.26), (3.28), it results that

N∑
n=1

4t
∥∥(δmsTi,m)n

∥∥
Yi,m
≤ C

 N∑
n=1

4t
∑
K∈Tm

∑
σ∈FK

TK,σ
(

(PnK − PnK,σ)2 + ηnK,σ
(
πnK − πnσ

)2)1/2

≤ C.

The proof is thereby concluded.

The following proposition states the convergence up to a subsequence of the finite volume
scheme.

Proposition 4.5. Let (Ti,m,4tm)m∈N be a sequence of discretizations of Qitf such that hTi,m
and 4tm go to zero as m tends to +∞, and infm∈N ζTm > 0. Let (πTi,m , p

nw
Ti,m)m∈N be the

corresponding sequence of discrete solutions to the finite volume scheme (3.3)-(3.7). Then, there
exist πi ∈ L2(Qitf ) with ξi(πi) ∈ L2(0, tf ;H1(Ω)), pαi ∈ L2(Qitf ), and Pi ∈ L2(0, tf ;H1(Ωi)) such
that πi = pnw

i − pw
i and, up to a subsequence as m tends to +∞,

sTi,m −−−−→ si(πi) a.e. in Qitf and strongly in L1(Qitf ), (4.3)

Fi(πTi,m) −−−−→ Fi(πi) strongly in L1(Qitf ), (4.4)

pαTi,m −−−−→ pαi weakly L2(Qitf ), (4.5)

∇Di,mFi(πDi,m) −−−−→ ∇Fi(πi) weakly L2(Qitf )d, (4.6)

∇Di,mPDi,m −−−−→ ∇Pi weakly L2(Qitf )d. (4.7)

Proof. First, to prove that the saturation sTi,m converges strongly, we apply the discrete Aubin-
Simon time compactness criterion elaborated in [19, Theorem C.8]. Let us hereafter summarize
its main ingredients.
(a) (Yi,m,Yi,m)m∈N is compactly-continuously embedded in L1(Ωi), as shown in Proposition

4.2.
(b) The family (sTi,m)m∈N is bounded in L1(0, tf ;L1(Ωi)), as stated in Proposition 4.3.
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(c) The sequence
(∥∥sTi,m∥∥L1(0,tf ;Yi,m)

)
m∈N

is bounded, which is provided by Proposition 4.3.

(d) The sequence
(∥∥δmsTi,m∥∥L1(0,tf ;Yi,m)

)
m∈N

is bounded, as established in Proposition 4.4.

Thanks to [19, Theorem C.8], the sequence (sTi,m)m∈N is relatively compact in L1(Qitf ). There-

fore there exists si ∈ L1(Qitf ) such that, up to a subsequence,

sTi,m −−−−→ si strongly in L1(Qitf ) and a.e. on Qitf .

Using Remark 3.6 stating that πTi,m ∈ [πi, πi] and Assumption (A2), we can define s−1
i :

[0, 1] → [πi, πi], the continuous inverse of si. Then, there exists a subsequence of (πTi,m)m∈N,
still denoted by (πTi,m)m∈N for convenience, such that

πTi,m −−−−→ πi := s−1
i (si) a.e. in Qitf ,

According to the uniform bounds on the discrete capillary pressure πTi,m established in Lemma
3.5, we obtain, for all r ≥ 1, that

ω(πTi,m) −−−−→ ω(πi) strongly in Lr(Qitf ), with ω = Fi, ξi. (4.8)

Next, let us show the weak convergence (4.6) of the discrete gradient. First, by virtue of
Proposition 3.7, it can be checked that

∥∥∇Di,mFi(πDi,m)
∥∥
L2(Qitf

)d
=

N∑
n=1

4t
∑

K∈Ti,m

∑
σ∈FK

|σ|
dK,σ

(
FrtK (πnK)− FrtK (πnσ)

)2
≤ C. (4.9)

Thus, there exists Ψ ∈ L2(Qitf )d such that ∇Di,mFi(πDi,m) converges weakly towards Ψ. The
proof of Ψ = ∇Fi(πi) is classical. It uses the proof guidelines of [24, Lemma 4.3]. Similarly, one
can check that ∇Di,mξi(πDi,m) converges weakly towards ∇ξi(πi) with ξi(πi) ∈ L2(0, tf ;H1(Ω)).
An analogous argument can be employed to prove (4.7). This concludes the proof.

4.2 Passage to the limit in the scheme

Let (tjσ)j∈{1,··· ,d−1} with tjσ ∈ Rd be an orthonormal basis of σ. Let ψ be a smooth function,
we define its interpolant on Xi,m by

ψnDi,m = TnDi,mψ :=
(

(ψ(xK , t
n))K∈Ti,m , (ψ(xσ, t

n))σ∈Fi,m∪FΓ,m

)
.

Following [18], a consistent approximate gradient of ψ is defined by

∇̂Di,mψDi,m(x, t) =
ψnσ − ψnK
dK,σ

nK,σ +
d−1∑
j=1

(
∇ψ(xσ, t

n) · tjσ
)
tjσ, (x, t) ∈ DK,σ × (tn−1, tn].

Using that |DK,σ| =
|σ|dK,σ

d , it can be checked that

∫
Qitf

∇Di,muDi,m · ∇̂Di,mψDi,m dx dt =

N∑
n=1

4t
∑

K∈Ti,m

∑
σ∈FK

|σ|
dK,σ

(
unK,σ − unσ

)(
ψnK − ψnσ

)
.

The following proposition establishes that the limit functions (πi, Pi)i∈{1,2} of Proposition
4.5 satisfy the variational formulation (2.18)-(2.19). The transmission conditions (2.16)-(2.17)
are shown to be verified in the next subsection.

Proposition 4.6. The functions (πi, Pi)i∈{1,2} satisfy the variational formulation (2.18)-(2.19)
given in Definition 2.1.
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Proof. Let us select ϕ a smooth function in C∞c (Ω × [0, tf )) and define, for i ∈ {1, 2}, the
interpolant ϕnDi,m = TnDi,mϕ. Adding the sum over K ∈ Tm of equation (3.3) multiplied by

4t ϕnK and the sum over σ ∈ Fm of equation (3.5) multiplied by 4t ϕnσ, summing over n ∈
J1, NK, one obtains that

Am +Bm + Cm = 0,

with

Am =
N∑
n=1

∑
K∈Tm

φK |K|
(
srtK (πnK)− srtK (πn−1

K )
)
ϕnK ,

Bm =
N∑
n=1

4t
∑
K∈Tm

∑
σ∈FK

TK,σfnw
rtK (sup,n

K,σ )MT
rtK (cnK,σ)(PnK − PnK,σ)(ϕnK − ϕnσ),

Cm =

N∑
n=1

4t
∑
K∈Tm

∑
σ∈FK

TK,σηnK,σ(πnK − πnσ)(ϕnK − ϕnσ).

Applying a discrete integration-by-parts (see [19, Section D.1.7]) to Am gives

Am = −
N∑
n=1

∑
K∈Tm

φK |K| srtK (πn−1
K )

(
ϕnK − ϕn−1

K

)
−
∑
K∈Tm

φK |K| srtK (π0
K)ϕ0

K ,

= −
∑

i∈{1,2}

∫
Qitf

φisTi,m(·, · − 4t)δmϕTi,m dx dt+

∫
Ωi

φisi(π
0
Ti,m)ϕ(·, 0) dx

 .

Note that the function sTi,m is extended by si(π
0
Ti,m) for negative times. Thanks to the strong

convergence (4.3) and to the uniform convergence of δmϕTi,m towards ∂tϕi, we infer

Am −−−−→ −
∑
i=1,2

∫
Qitf

φsi(πi)∂tϕdx dt+

∫
Ωi

φsi(π
0
i )ϕ(·, 0) dx

 .

Let us define ΛTi,m =
∑

K∈Ti,m ΛK1K . It can be checked that ΛTi,m → Λ a.e. in Ω × (0, tf ).

Assumption (A5) and Hölder’s inequality ensure that

Wi,m :=

∫
Qitf

∣∣si(πTi,m)− si(ΠDi,mπDi,m)
∣∣2 dx dt

≤ C
∫
Qitf

∣∣ξi(πTi,m)− ξi(ΠDi,mπDi,m)
∣∣2Θ

dx dt

≤ C
∣∣∣Qitf ∣∣∣1−Θ

∫
Qitf

∣∣ξi(πTi,m)− ξi(ΠDi,mπDi,m)
∣∣2 dx dt

Θ

(4.10)

≤ Ch2Θ
Tm
∥∥∇Di,mξi(πDi,m)

∥∥2Θ

L2(Qitf
)d
.

The last inequality is obtained by first developing the integral in (4.10) into
∑

K∈Tm
∑

σ∈FK
∫
DK,σ

,

and then by introducing the definition of the two-point discrete gradient and the fact that

|DK,σ| =
|σ|dK,σ

d to conclude. Observing that

∥∥∇Di,mξi(πDi,m)
∥∥2

L2(Qitf
)d
≤ 1

Λ

N∑
n=1

4t
∥∥∥ξi(πnDi,m)

∥∥∥2

1,Di,m
,

the energy estimate (3.27) shows that Wi,m ≤ Ch2Θ
Tm . The strong convergence (4.3) then yields

si(ΠDi,mπDi,m) −−−−→ si(πi) a.e. in Qitf and strongly in L2(Qitf ). (4.11)

21



As a consequence, the weak convergence (4.7) and the uniform convergence of ∇̂Di,mϕDi,m
towards ∇ϕ give

B′m :=
∑

i∈{1,2}

∫
Qitf

fnw
i

(
si(ΠDi,mπDi,m)

)
MT
i

(
si(ΠDi,mπDi,m)

)
ΛTi,m∇Di,mPDi,m · ∇̂Di,mϕDi,m dx dt

−−−−→
∑

i∈{1,2}

∫
Qitf

Mnw
i

(
si(πi)

)
Λ∇Pi · ∇ϕdx dt.

It is subsequently shown that Bm and B′m tend to the same limit. For shortness, let us set
wnK,σ = wrtK (πnσ), and wnK = wrtK (πnK), for w = s, ξ. We observe that

∣∣Bm −B′m∣∣ ≤ N∑
n=1

4t
∑
K∈Tm

∑
σ∈FK

TK,σ

(∣∣∣fnw
rtK (snK)− fnw

rtK (snK,σ)
∣∣∣MT

rtK (cnK,σ)

+
∣∣∣MT

rtK (cnK,σ)−MT
rtK (snK,σ)

∣∣∣ fnw
rtK (snK,σ)

)∣∣PnK − PnK,σ∣∣ |ϕnK − ϕnσ| .
Now, Assumption (A3) implies∣∣∣fnw

rtK (snK)− fnw
rtK (snK,σ)

∣∣∣MT
rtK (cnK,σ) +

∣∣∣MT
rtK (cnK,σ)−MT

rtK (snK,σ)
∣∣∣ fnw

rtK (snK,σ)

≤ C
( ∣∣∣Mnw

rtK (snK)−Mnw
rtK (snK,σ)

∣∣∣+
∣∣∣Mw

rtK (snK)−Mw
rtK (snK,σ)

∣∣∣ ).
By virtue of the Cauchy-Schwarz inequality, the estimation (3.28), the previous estimate and
(4.11), it results that

∣∣Bm −B′m∣∣ ≤ Cϕ
 N∑
n=1

4t
∑
K∈Tm

∑
σ∈FK

TK,σ
∣∣PnK − PnK,σ∣∣2

1/2

×

 ∑
α∈{nw,w}

N∑
n=1

4t
∑
K∈Tm

∑
σ∈FK

|DK,σ|
(
Mα

rtK (snK)−Mα
rtK (snK,σ)

)2

1/2

≤ C
∑

i∈{1,2}

 ∑
α∈{nw,w}

∥∥Mα
i

(
si(πTi,m)

)
−Mα

i

(
si(ΠDi,mπDi,m)

)∥∥2

L2(Qitf
)

1/2

−−−−→ 0.

Let us finally establish the convergence of the capillary term. First, for every σ ∈ F , there
exists unK,σ ∈ [π?, π??] such that, setting ynK,σ := srtK (unK,σ),

FrtK (πnK)− FrtK (πnσ) =
√
ηrtK (ynK,σ)

(
ξrtK (πK)− ξrtK (πnσ)

)
.

As a consequence of (4.6) we get

C′m :=

N∑
n=1

4t
∑
K∈Tm

∑
σ∈FK

TK,σ
√
ηrtK (ynK,σ)(ξnK − ξnK,σ)(ϕnK − ϕnσ)

=
∑

i∈{1,2}

∫
Qitf

ΛTi,m∇Di,mFi(πDi,m) · ∇̂Di,mϕDi,m dx dt −−−−→
∑

i∈{1,2}

∫
Qitf

Λ∇Fi(πi) · ∇ϕdx dt.

On the other hand, let us reformulate C′m as follows

C′m =

N∑
n=1

4t
∑
K∈Tm

∑
σ∈FK

TK,σ
√
ηrtK (ynK,σ)

√
ηrtK (znK,σ)(πnK − πnσ)(ϕnK − ϕnσ),
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where zK,σ is given by

ηrtK (znK,σ) =


(
ξnK − ξnK,σ
πnK − πnσ

)2

if πnK 6= πnσ

ηrtK (πnK) otherwise.

In addition, setting

C′′m :=
N∑
n=1

4t
∑
K∈Tm

∑
σ∈FK

TK,σ
√
ηrtK (ynK,σ)

√
ηnK,σ(πnK − πnσ)(ϕnK − ϕnσ),

it results that

∣∣Cm − C′′m∣∣ ≤ Cϕ N∑
n=1

4t
∑
K∈Tm

∑
σ∈FK

TK,σdK,σ
∣∣∣√ηrtK (ynK,σ)−

√
ηnK,σ

∣∣∣√ηnK,σ |πnK − πnσ |
≤ C

 N∑
n=1

4t
∑
K∈Tm

∑
σ∈FK

TK,σηnK,σ |πnK − πnσ |
2

1/2

×

 N∑
n=1

4t
∑
K∈Tm

∑
σ∈FK

|DK,σ|
(√

ηrtK (ynK,σ)−
√
ηnK,σ

)2

1/2

≤ C

 N∑
n=1

4t
∑
K∈Tm

∑
σ∈FK

|DK,σ|
(√

ηrtK (ynK,σ)−
√
ηnK,σ

)2

1/2

,

where the Cauchy-Schwarz inequality is used in the second line, and the a priori estimate
(3.26) in the last one. Moreover, the definition of the capillary diffusion function ηi ensures the
existence of a positive constant C such that∣∣∣√ηrtK (ynK,σ)−

√
ηnK,σ

∣∣∣
≤ C

(∣∣∣√Mnw
rtK

(snK)−
√
Mnw

rtK
(snK,σ)

∣∣∣+
∣∣∣√Mw

rtK
(snK)−

√
Mw

rtK
(snK,σ)

∣∣∣) .
Following the same steps as for the convergence of the transport term, one deduces that∣∣Cm − C′′m∣∣ −−−−→ 0.

Similarly, one obtains the following estimate

∣∣C′m − C′′m∣∣ ≤ Cϕ N∑
n=1

4t
∑
K∈Tm

∑
σ∈FK

TK,σdK,σ
∣∣∣√ηrtK (znK,σ)−

√
ηnK,σ

∣∣∣√ηrtK (ynK,σ) |πnK − πnσ | .

Thanks to (3.13), there exists C > 0 such that ηrtK (ynK,σ) ≤ CηnK,σ. Therefore

∣∣C′m − C′′m∣∣ ≤ C N∑
n=1

4t
∑
K∈Tm

∑
σ∈FK

TK,σdK,σ
∣∣∣√ηrtK (znK,σ)−

√
ηnK,σ

∣∣∣√ηnK,σ |πnK − πnσ | .
Proceeding as in the convergence of |Cm − C′′m| it can be shown that∣∣C′m − C′′m∣∣ −−−−→ 0.

Finally, the passage to the limit in the discrete pressure equation follows similarly as done for
Bm. This concludes the proof of Proposition 4.6.
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4.3 Convergence of the discrete trace functions

In this section we prove that the functions (πi, Pi)i∈{1,2} satisfy the transmission conditions

(2.16) and (2.17). For a given vector uDi = (unDi)n∈J1,NK ∈ (Xi)
N , let us define the one-sided

trace Γ by

γDi(uDi)(x, t) = unK,σ, (x, t) ∈ σ × (tn−1, tn], σ ∈ FΓ, {K} = Tσ ∩ Ti.

light of (4.4)t he sequence (Fi(πDi,m))m∈N converges strongly up to a subsequence towards
Fi(πi) which belongs to L2(0, tf ;H1(Ωi)). As a result, the trace of Fi(πi) denoted by γiFi(πi)
exists in the space L2(Γ × (0, tf )). The first objective of the arguments presented below is to
show that the sequence (γDi,m(Fi(πDi,m)))m∈N tends up to a subsequence to γiFi(πi) strongly
in L1(Γ× (0, tf )). To this end, we need to make use of another discrete trace function given by

γ̂Di(uDi)(x, t) = unK , (x, t) ∈ σ × (tn−1, tn], σ ∈ FΓ, {K} = Tσ ∩ Ti.

The following result states that both definitions of the discrete trace have the same asymptotic
behavior on the functions having bounded energy estimation. More importantly, it relates the
interface solution to the whole approximate function in the overall domain. See [7, Lemma 4.7]
for more details on the proof.

Lemma 4.7. For any family uDi = (unDi)n∈J1,NK ∈ (Xi)
N , one has∫

Γ×(0,tf )
|γ̂Di(uDi)− γDi(uDi)|dσ(x) dt ≤ ‖∇DiuDi‖L2(Qitf

)d (|Γ| tfhT )1/2.

The proposition below enables the strong convergence on the discrete trace of the Kirchhoff
function Fi.

Proposition 4.8. By extraction of a subsequence, the sequence (γDi,m(Fi(πDi,m)))m∈N con-
verges to γiFi(πi) strongly in the sense of L1(Γ× (0, tf ))-norm.

Proof. The proof is already provided in [7, Proposition 4.9]. It makes use of the boundedness
of Fi(πDi,m)) (in L∞ norm) which holds due to Lemma 3.5. An alternative and more general
proof can be given based on the Discrete Functional Analysis tools from [19].

For i ∈ {1, 2}, let (uDi,m)m∈N, with uDi,m ∈ (Xi,m)Nm for all m ∈ N, be a sequence such that

∑
m∈N

∫ tf

0
‖uDi,m‖1,Di,m dt < +∞

and ΠTi,muDi,m converges strongly in L2(Qitf ) towards some ui ∈ L2(0, tf ;H1(Ωi)). Let us

denote by Ii,m the interpolation operator from L2(0, tf ;H1(Ωi)) to (Xi,m)Nm defined by

(Ii,mui)nK =
1

|K|∆t

∫ tn

tn−1

∫
K
ui dx dt for all K ∈ Ti,m and n = 1, . . . , N,

and

(Ii,mui)nσ =
1

|σ|∆t

∫ tn

tn−1

∫
σ
ui dσ(x) dt for all σ ∈ Fi,m and n = 1, . . . , N.

We have∫ tf

0
‖γDi,muDi,m − γiui‖2L2(Γ) dt

≤ 2

∫ tf

0
‖γDi,muDi,m − γDi,mIi,mui‖2L2(Γ) dt+ 2

∫ tf

0
‖γDi,mIi,mui − γiui‖2L2(Γ) dt.

(4.12)
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In order to prove that the right-hand-side of (4.12) tends to zero as m → ∞ we make use of
Proposition B.7, Proposition B.9 and Lemma B.21 from [19]. The adaptation of those results
to our time dependent problem is straightforward.

In view of Proposition B.9, the second term in the right-hand-side of (4.12) tends to zero,
while, using Lemma B.21 (with p = 2) we can estimate the first term as∫ tf

0
‖γDi,muDi,m − γDi,mIi,mui‖2L2(Γ) dt ≤ C

(
T 1
m + T 2

m + T 3
m

)
,

where

T 1
m =

∫ tf

0
‖uDi,m − Ii,mui‖1,Di,m‖ΠTi,muDi,m −ΠTi,mIi,mui‖L2(Ωi) dt,

T 2
m =

∫ tf

0
‖ΠTi,muDi,m −ΠTi,mIi,mui‖2L2(Ωi)

dt,

T 3
m = hTm

∫ tf

0
‖uDi,m − Ii,mui‖21,Di,m dt,

and C is a constant depending only on Ωi, d and ζ0. From Proposition B.7 we deduce that the
sequence

∫ tf
0 ‖uDi,m − Ii,mu‖

2
1,Di,m dt is bounded, and therefore lim

m→∞
T 3
m = 0. In addition in

view of Proposition B.9 we have
∫ tf

0 ‖ΠTi,muDi,m − ΠTmIi,mu‖2L2(Ωi)
dt → 0 as m → ∞, which

implies that T 1
m and T 2

m tend to zero and conclude the proof.

Analogously, this fact holds true in the weak sense for the global pressure. The proof of this
result can be found in [19] or [7].

Proposition 4.9. Up to a subsequence, the sequence of discrete traces of the global pressures
(γDi,m(PDi,m))m∈N converges to γiPi weakly in L2(Γ× (0, tf )).

Let us define πΓ,Dm as follows

πΓ,Dm(x, t) := γDm,1(πDm,1)(x, t) := πnσ , (x, t) ∈ σ × (tn−1, tn]

for all σ ∈ FΓ,m and n ∈ {1, . . . , N}. Note that γDm,1(πDm,1) = γDm,2(πDm,2). In addition
πΓ,Dm belongs to [π?, π??] and therefore there exists a measurable function πΓ defined a.e. on
Γ× (0, tf ) such that, up to a subsequence,

πΓ,Dm −−−−→ πΓ weakly in L2(Γ× (0, tf )). (4.13)

We have the following result.

Proposition 4.10. The function πΓ satisfies

Fi(πΓ) = γiFi(πi), (4.14)

Gαi (πΓ,Dm) −−−−→ Gαi (πΓ) weakly in L2(Γ× (0, tf )) up to a subsequence. (4.15)

Proof. Notice that Fi(πΓ,Dm) = γDi,mFi(πDi,m), and by virtue of Proposition 4.8, we have

γDi,mFi(πDi,m) −−−−→ γiFi(πi) strongly in L2(Γ× (0, tf )).

Fi being increasing, we can reproduce the Minty trick of [19, Lemma D.10] to identify the limits
and get Fi(πΓ) = γiFi(πi). This achieves the proof of the first transmission condition, namely
(4.14). Let us now prove the second claim. We present the proof in the case of α = nw, a
similar reasoning is conducted for α = w.

Let us define the following truncation function

Ti(u) =


πi if u > πi

u if πi ≤ u ≤ πi
πi if u < πi.
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We remark that F ′i = 0 outside [πi, πi] and therefore Fi ◦ Ti = Fi. Accordingly, Fi
(
πΓ,Dm

)
=

Fi
(
Ti(πΓ,Dm)

)
, which in view of Proposition 4.8 implies that

Fi
(
Ti(πΓ,Dm)

)
−−−−→ Fi

(
Ti(πΓ)

)
a.e. in Γ× (0, tf ).

Since Fi is invertible on [πi, πi] and its inverse function is continuous, it holds

Ti
(
πΓ,Dm

)
−−−−→ Ti(πΓ) a.e. in Γ× (0, tf ). (4.16)

In order to prove (4.15) we remark that in view of (2.9) together with Assumptions (A2) and
(A3), the function Gnw

i is identically zero on (−∞, πi) and is affine on (πi,+∞). We can write
Gnw
i (u) in the following form

Gnw
i (u) = Gnw

i (Ti(u)) +
(
u− Ti(u)

)
fnw
i

(
si(Ti(u))

)
.

In view of (4.13), (4.16) and using Lebesgue’s dominate convergence theorem we deduce that

Gnw
i (πΓ,Dm) −−−−→ Gnw

i (πΓ) weakly in L2(Γ× (0, tf )),

which concludes the proof.

It follows from Propositions 4.9 and 4.10 that the functions (πi, Pi)i∈{1,2} satisfy the trans-
mission conditions (2.16) and (2.17).

5 Numerical comparison of the PPU and HU TPFA schemes

The objective of this numerical section is to compare four different spatial discretizations in
terms of accuracy and efficiency. Moreover, two different strategies to solve the nonlinear
systems at each time step are also investigated either based on a local nonlinear interface solver
or on a regularization of the interface system.

The first two spatial discretizations are both based on the classical Phase Potential Up-
winding (PPU) discretization of transport terms combined with the TPFA discretization of
the gradient fluxes. Two variants are considered, the first one denoted by PPUI uses interface
unknowns at all interior faces σ ∈ F of the mesh and the second denoted by PPU uses interface
unknowns only at faces σ = K|L ∈ FΓ with heterogeneous rock types rtK 6= rtL. Let us refer
e.g. to [37] for the cell-centered PPU discretization of multiphase Darcy flow and to [1] for a
its extension to Discrete Fracture Matrix (DFM) models using interface unknowns at matrix
fracture interfaces. The two other spatial discretizations are the ones described in this article
based on the HU discretization of transport terms combined with the TPFA discretization of the
gradient fluxes. Let us denote by HUI the discretization (3.3)-(3.7) with interface unknowns
at all interior faces σ ∈ F and by HU the discretization with interface unknowns only at faces
σ ∈ FΓ with heterogeneous rock types as described in Subsection 3.3. Note that cK,σ in the
total mobility (3.10) (and similarly cK,L in (3.18)) is approximated by 1

2(srtK (πnK) + srtK (πnσ))
which amounts to use a one point quadrature formula. More advanced quadratures have been
tested but they do not improve the accuracy and can reduce the efficiency of the nonlinear solver.

All these spatial discretizations are combined with a fully implicit Euler time discretization
using the time stepping defined by ∆t1 = ∆tinit and for all n ≥ 1 by

∆tn+1 = max(∆tmax, 1.2∆tn),

in case of a successful time step, and ∆tn+1 =
∆tn

2
, in case of non convergence of the Newton

algorithm in NLmax iterations.
At each time step, the nonlinear system is solved using a Newton algorithm. Its convergence

is improved by a suitable choice of the two primary unknowns. The first primary unknown is
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the non-wetting phase pressure at all cell and face degrees of freedom. For the second primary
unknown, it is well known that the capillary pressure is not a robust choice. It is replaced
by the non-wetting phase saturation at all cells and, for the HUI and PPUI schemes, at all
faces σ ∈ F1 ∪ F2 with homogeneous rock types. For faces σ ∈ FΓ with heterogeneous rock
types, a switch of variable parametrization of the capillary pressure monotone graphs is used as
second primary unknown as introduced in [9]. We would like to indicate that some alternative
linearization schemes to Newton’s method devoted to the improvement of the nonlinear solver
have been proposed in [36, 38, 40].

To further improve the nonlinear convergence, two different strategies are compared to up-
date the face unknowns in the present work. The first technique combines the regularization
presented in (3.15) with a linear Newton update of the face unknowns. The second technique
updates the face unknowns by solving the local nonlinear system on each face. For the HU and
HUI discretizations, this local system is defined by (3.23) and solved by explicit elimination
of the non-wetting phase pressure followed by a dichotomy on πσ. For the PPU and PPUI
schemes, the algorithm to solve the local interface system is detailed in [1]. In Subsection 5.2,
we denote by “-is” the nonlinear update using the interface local nonlinear solver and by “-vol”
the regularization combined with linear Newton update of the face unknowns.

In all cases, the interface unknowns are eliminated without any fill-in before solving the
Jacobian linear system. Then a GMRes iterative algorithm preconditioned by the CPR-AMG
preconditioner [35, 42] is applied on the reduced Jacobian. To obtain a more robust convergence
of the nonlinear solver, a damping of the Newton step is applied enforcing a prescribed maximum
variation of the saturation. This strategy is applied for all test cases and all schemes. The
GMRes stopping criterion on the relative residual is fixed to 10−6. The Newton solver is
convergent if the relative residual is lower than 10−5 or if the weighted maximum norm of the
Newton increment is lower than 10−4. We denote by N4t the number of successful time steps,
by NChop the number of time step chops, by NNewton the average number of Newton iterations
per successful time step, and by NGMRes the average number of GMRes iterations per Newton
iteration. Finally, CPU (s) stands for the CPU time in seconds.

5.1 Oil migration in a 1D basin with capillary barrier

We consider the vertical 1D basin domain Ω = (0, Lz) with Lz = 800 m including a drain rock
type on Ω2 = (0, Lz2 ) and a barrier rocktype on Ω1 = Ω \ Ω2.

The drain and barrier subdomains have the same porosity φ = 0.2, permeability Λ = 10−13

m2, and relative permeabilities given by kαr (sα) = (sα)2, α = nw,w. The capillary pressure is
fixed to

Pc,1(snw) = 6.105 + 103 snw Pa

in the barrier, and to
Pc,2(snw) = 103 snw Pa

in the drain. The fluid properties are defined by their dynamic viscosities µnw = 5. 10−3,
µw = 10−3 Pa.s and their mass densities ρw = 1000 and ρnw = 700 Kg.m−3.

Note that the permeability and porosity are chosen homogeneous for this test case in order to
emphasize the capillary barrier effect at the interface between the drain and barrier subdomains.
The basin is initially saturated by water and the oil phase is injected at the bottom boundary
z = 0 using the Dirichlet input boundary condition snw = 0.5 on the time interval t ∈ [0, t1].
For t ∈ [t1, tf ] the input Dirichlet boundary condition is changed to snw = 0, with t1 = 400
years and tf = 800 years. The pressure is fixed to pnw = 8.1 106 Pa at z = 0 and to pw = 105

Pa at z = Lz. The oil phase rises by gravity untill it reaches a stationary state corresponding
to the trapping of the oil phase in the drain.

From Figures 3-4-5 one can check on the coarse mesh nz = 20 that the TPFA HU scheme is
more diffusive than the TPFA PPU scheme although both schemes capture in an excellent way
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the saturation jump at the interface between both rock types thanks to the interface degree
of freedom. This additional diffusion of the HU scheme compared with the PPU scheme was
expected for dominant gravity and capillary effect compared with viscous forces. On the other
hand, the HUI version removes most of this additional diffusion of the HU scheme thanks to
the additional interface unknowns at homogeneous interfaces. We also remark that the four
schemes provide very close solutions on the fine mesh with nz = 200.

The numerical performance of the nonlinear solver is exhibited on Figure 6 using a coarse
time stepping defined by ∆tinit = 1 year and ∆tmax = 10 years on the fine mesh nz = 800. For
all schemes, the interface unknowns are updated at each Newton iteration using an interface
local nonlinear solver. It is clearly seen that the TPFA HU and HUI schemes are more efficient
than the TPFA PPU and PPUI schemes.
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Figure 3: Non-wetting phase saturations as a function of z at different times
t = 200, 410, 800 years, obtained for the TPFA PPU and HU schemes on the
20 cells (left) and 200 cells (right) meshes.
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Figure 4: Non-wetting phase saturations as a function of z at different times
t = 200, 410, 800 years, obtained for the TPFA PPU and HUI schemes on the
20 cells (left) and 200 cells (right) meshes.
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Figure 5: Non-wetting phase saturations as a function of z at different times
t = 200, 410, 800 years, obtained for the TPFA PPU and PPUI schemes on
the 20 cells (left) and 200 cells (right) meshes.
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Figure 6: Accumulated number of Newton iterations as a function of time on
(0, tf ) with tf = 800 years for the TPFA HU, PPU, HUI, PPUI schemes on
the 800 cells mesh with large time steps.

5.2 Oil migration in a 2D large DFM model

The objective of the next test case is to compare the efficiency in terms of nonlinear convergence
and CPU time of the TPFA PPU and HUI schemes (which essentially have the same accuracy).
The test case considers the Discrete Fracture Matrix (DFM) model with the matrix domain
Ω = (0, L)× (0, H), L = 100 m, H = 186.5 m, and a fracture network including 581 connected
components; see Figure 7. The fracture width is df = 10−3 m and the fracture network is
homogeneous and isotropic with Λf = 10−7 m2, φf = 0.2. The matrix is homogeneous and
isotropic with Λm = 10−13 m2, φm = 0.35. The matrix and the fracture network have the same
relative permeabilities given by kαr,f (sα) = kαr,m(sα) = (sα)2, α ∈ {nw,w}, and the capillary
pressure is fixed to

Pc,m(snw) = 105(1− log(1− snw)) Pa

in the matrix, and to
Pc,f (snw) = −100 log(1− snw) Pa

in the fracture network. The fluid properties are defined by their dynamic viscosities µnw =
5. 10−3, µw = 10−3 Pa.s and their mass densities ρw = 1000 and ρnw = 800 Kg.m−3.
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The reservoir is initially saturated with water. Dirichlet boundary conditions are imposed
at the top boundary with zero water pressure and non-water saturation, as well as at the
bottom boundary with snw

m = 0.9 and pw
m = ρwgH. The remaining boundaries are assumed

impervious and the final simulation time is fixed to tf = 360 days. The time stepping is defined
by ∆t1 = ∆tinit = 1 day, ∆tmax = 1 day, and by NLmax = 50 iterations.

Table 1 reports the number of d.o.f. (with two physical primary unknowns per d.o.f.) before
reduction (N) and after reduction (Nred), as well as the number of nonzero element in the
Jacobian (with 2× 2 elements) before reduction (NZ) and after reduction (NZred).

Figure 7: Left: triangular mesh of the DFM model with 32340 cells, 48558
faces and 5344 fracture faces (Courtesy of M. Karimi-Fard, Stanford, and A.
Lapène, Total). Non-wetting phase saturation at final simulation time for the
TPFA PPU (middle) and HUI (right) schemes.

The non-wetting phase saturation solution at final time is exhibited in Figure 7 in the matrix
and in the fracture network. Figure 8 plots the matrix and fracture non-wetting phase volumes
as a function of time. Both figures clearly show that the TPFA PPU and HUI schemes provide
very close solutions.

It is clear from Table 2 and Figure 9 that the regularization combined with linear Newton
update is more efficient than the implementation with zero volumes and interface local solver.
Moreover, considering the same implementation, the TPFA HUI scheme is much more efficient
than the TPFA PPU scheme. The regularization parameter ε in (3.15) is fixed to 10−2 at
cell-cell interfaces and to 10−1 at cell-fracture face interfaces. Note that there is no significant
differences between the solution obtained with this regularization and the one obtained with
the interface solver using ε = 0.
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Figure 8: Volume of the non-wetting phase in the matrix (left) and in the
fractures (right) as a function of time for the TPFA PPU and HUI schemes.

scheme N NZ Nred NZred

PPU 48400 208380 37712 154940

HUI 91518 423970 37712 154940

Table 1: Number of d.o.f. of the discretization (N and Nred) and number of
nonzero elements in the Jacobian (NZ and NZred) before and after reduction.

scheme N4t NChop NNewton NGMRes CPU(s)

PPU-is x x x x x

HUI-is 444 42 22.1 47 7350

PPU-vol 399 19 23.8 47 6504

HUI-vol 364 3 14.8 49 3910

Table 2: Numerical behavior of the simulation for the large 2D DFM test case
using the TPFA PPU and HUI schemes combined with an interface nonlinear
solver (is) or with the regularization (3.15) at the interface and linear Newton
update (vol).
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Figure 9: Accumulated number of Newton iterations as a function of time on
(0, tf ) for the TPFA HUI and PPU schemes combined (is) or not (vol) with
an interface nonlinear solver.

6 Conclusions

A fully implicit Two-Point Flux Approximation (TPFA) based on the total velocity formu-
lation and a Hybrid Upwinding (HU) approximation of the transport term is proposed. It
incorporates cell centered as well as face centered unknowns enabling the accurate capture of
the nonlinear transmission conditions at different rocktype interfaces. It is based on natural
physical unknowns avoiding the cumbersome use in the scheme’s design of the global pressure
and of the Kirchhoff transform. Energy estimates on the global pressure are recovered thanks to
a specific centered approximation of the phase mobilities in the definition of the total velocity.
This plays a key role in the convergence proof of the scheme to a weak solution; this proof is
based on relative compactness estimates and on the convergence of traces at different rock type
interfaces.

Numerical experiments compare the proposed TPFA HU scheme to the classical TPFA
Phase Potential Upwinding (PPU) scheme both in terms of accuracy and efficiency on two test
cases including a highly heterogeneous Discrete Fracture Matrix model. Thanks to the face
unknowns incorporated in the discretization for both schemes, the numerical results exhibit
comparable accuracy of both HU and PPU schemes combined with an additional robustness
and a significant gain in CPU time. For both the TPFA HU and PPU schemes, it is also shown
that the regularization strategy at different rock type interfaces based on an additional small
accumulation term combined with a Newton linear update of the interface unknowns performs
better than the nonlinear update of these interface unknowns based on a local nonlinear in-
terface solver. In all cases, the face unknowns are eliminated from the Jacobian system by
Schur complement leading, roughly speaking, to the same complexity as a cell-centered TPFA
discretization.
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