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Abstract 

Deep Reinforcement Learning (DRL) is a promising 

Artificial Intelligence (AI) approach for buildings heating 

control. However, DRL controllers require dynamic 

simulation involving heterogeneous physical models 

(building, power-grid, etc.). Co-simulation allows the 

inter-operation between heterogeneous components when 

exported following the Functional Mock-Up Interface 

(FMI) standard.  

Controllers based on DRL can be implemented using 

various languages but are mostly based on Python 

libraries like Tensorflow. Their integration into co-

simulation environments requires their exportation as 

Functional Mockup Units (FMUs). Thus, language-

specific FMI-compliant export tools are needed for every 

programming language, specific library or platform used. 

This process is costly in effort and time and results in 

large FMUs. 

This paper proposes a novel method that simplifies AI-

based controller integration regardless of the language or 

platform in a co-simulation environment and apply our 

methodology to assess a DRL controller. For the first 

objective, we use existing FMI export tools to create an 

FMU having the same input and output parameters as the 

controller. In the proposed architecture, the FMU acts as 

a proxy whose objective is to communicate with an 

external DRL controller deployed on a local or remote 

machine. We propose an application of this generic 

architecture for heating control in a house using 

DACCOSIM NG co-simulation environment. Through 

this architecture, the deployed DRL-based controller is 

connected to a house energy model, which includes 

weather conditions and heating. We show that our 

proposed controller is capable to learn the system 

dynamics and keep temperature within 1 degree of 

setpoint 93% of the time. 

Introduction 

Research questions related to building smart control 

systems can arise aim to tackle challenges at the building, 

the district or community level, a scale where the building 

interacts with the other components of the energy system 

and the grid, forming a complex system (Vialle et al., 

2017; Reinbold et al., 2019). Research at these levels 

bring together experts from various fields, each with their 

own area of expertise, knowledge and models (building 

energy, electricity and heating networks, energy 

generation, etc.). The simulation of such complex 

environment involves a variety of components based on a 

specific physics, which might be created using generic or 

domain-specific tools and implemented by various teams. 

In this situation, the use of co-simulation environments 

allows the inter-operation between heterogeneous 

components, and an increasing number of modelling 

environments became compatible with the Functional 

Mock-Up Interface (FMI) standard for interoperability. 

AI-based approaches are added to this cross-domain 

applications, creating a need to find a simple way to 

integrate such systems and make them interoperate 

especially AI algorithms involving online calibration. 

As matter of fact and despite major technological 

developments, optimal control of heating in buildings 

remains an important challenge for which adaptive AI 

approaches can bring new effective solutions.  

In practice, the complexity of building thermal dynamics, 

the stochasticity of occupant behaviour and the 

heterogeneous environmental disturbances make classical 

rule-based and model-based control strategies inefficient 

due to lack of adaptability and model update. 

Furthermore, it is still a challenge to implement an 

accurate representation of building dynamics into a 

controller in real buildings (Zacekova et al., 2014), and its 

use for real-time control raises issues of computation time 

(Yang et al., 2015). 

Deep reinforcement learning (DRL) is being studied in 

recent works as a promising AI approach for heating 

control in buildings, based on real-time measured data as 

an input (Nagy et al., 2018; Wei et al. 2017; Kazmi et al., 

2017; Mason and Grijalva, 2019). Moreover, compared to 

classical Q-learning, DRL is better suited for control 

problems in a large parameter space (Wei et al., 2017). 

Among the methods for assessing the performance of a 

DRL controller, the use of dynamic simulation is a 

flexible mean for testing various situations and explore 

parameters.  

Controllers based on DRL themselves can also be 

implemented using various languages. Most recent works 

mainly use Python libraries such as TensorFlow or 

PyTorch (Nguyen et al., 2019). The integration of such 

components into a co-simulation environments would 

normally require to export them as executable 

components (FMU), which raises number of difficulties 

elaborated in related works section.  

We propose a generic approach for enabling compatibility 

between FMI-based co-simulation environments and 



   

 

   

 

external algorithms, and apply this architecture to assess 

the performance of a DRL controller to learn an effective 

control strategy for a building heating system. 

The paper is organised as follows: In the next section, we 

present related work regarding co-simulation and 

interoperability. Then, we present the DACCOSIM NG 

co-simulation platform which we use in our use case. 

Next, we present the new architecture designed to connect 

a DRL controller to a co-simulation environment. The 

proposed approach is then applied to the assessement of a 

DRL-based building heating control system which is 

presented along with promising results in section 

Simulation and experiments. Finally, we provide 

conclusions and perspectives. 

Related work 

Co-simulation  

Physical models can be created using numerous tools 

(Dymola, Matlab, Simulink, etc.), or programming 

languages (Java, Python, etc.). Co-simulation is a solution 

for enabling interoperability between a variety of 

executable components, each based on a particular 

domain of expertise and specific physics. Co-simulation 

also allows scaling-up of very large Cyber-Physical 

Systems such as the energy systems, composed of various 

componens such as buildings and grids, by splitting the 

whole system in relatively independent components, each 

aggregating a part of the dynamics of the global system 

(Reinbold et al., 2019; Tavella, et al., 2016; Ptolemaeus, 

2014). The Functional Mock-Up Interface standard (FMI 

standard, n.d.) is a framework for the development of such 

interoperable executable models. The components 

exported using this standard are called Functional Mock-

Up Units (FMU) and are composed of an XML file which 

defines the model inputs, outputs and parameter, as well 

as a C-code compiled for execution on a targeted 

operating system. 

We propose to use the DACCOSIM NG platform (Dad et 

al., 2016; Galtier et al., 2015; Galtier et al., 2017; Vialle 

et al., 2017), an open-source plateform for FMI-based co-

simulation developped and maintained by EDF and 

CentraleSupélec (DACCOSIM NG tool, n.d.), and which 

is already applied to the study of buildings and energy 

networks as a complex, multi-domains Cyber-Physical 

System. DACCOSIM NG is a co-simulation master that 

allows parallel computation of all sub-models in order to 

achieve scaling-up and reduced computation time 

(ModeliScale, n.d.). 

Control integration  

Several libraries exist to allow the exploitation of FMUs 

from a Python program, such as pyFMI (Andersson et al.,  

2016) and OMPython (Ganeson et al., 2012). The 

OMPython library allows python code to interface with 

OpenModelica in order to run simulations. The pyFMI 

library is used by the libraries Dymrl and ModelicaGym 

(Lukianykhin and Bogodorova, 2019) in order to exploit 

Modelica or Dymola FMUs as an OpenAI Gym 

environment.  

However in our context, the co-simulation environment 

that is used for the study of Cyber-Physical Systems is a 

master of co-simulation, and need to be able to call AI-

based Python libraries or tools from within the co-

simulation. In the co-simulation, the controller requires an 

interaction with the controlled component at each 

iteration. Therefore, it is necessary to generate the AI-

based control components in the form of an FMU as is the 

case for the other components. 

Thus, FMI compliant export capabilities would need to be 

implemented or adapted each time a new programming 

language, specific library or platform is used. JavaFMI 

(Hernández-Cabrera et al., 2020) and SimulatorToFMU 

(Nouidui and Wetter, 2018) are software packages which 

allows to export a Java or Python program as a Functional 

FMU for use in a co-simulation environment. However, 

depending on the targeted platform, language and library, 

this process can be costly in terms of development effort 

and time, or even be impossible at this time because of the 

complexity of the desired Python libraries. Moreover, it 

can generate large FMU models since it requires the 

inclusion of external libraries. 

Co-simulation environment  

To benefit from the advantages of co-simulation, we 

propose a new architecture to use AI-based components 

in a FMI-based co-simulation environment. Although the 

methodology can be generalized to co-simulation in 

general, we demonstrate the proposal in the DACCOSIM 

NG (DNG) co-simulation environment. 

 

 

Figure 1: General co-simulation architecture 

(DACCOSIM NG tool, n.d.). 

 

DACCOSIM NG (DNG) is a generic FMI-based co-

simulation master and simulation environment developed 

in Java language. DNG allows the design and execution 

of co-simulation graphs based on executable components 

exported as FMUs from FMI-compatible tools. Co-

simulation graphs are defined either through a Graphical 



   

 

   

 

User Interface (GUI) or scripts (CLI). A user’s guide is 

available with the tool distribution for more detailed 

information about the usage of DNG (DACCOSIM NG 

tool, n.d.). 

Graphs  

A co-simulation graph is composed of nodes and arrows, 

representing connections between nodes. The general 

architecture is depicted in figure 1. Nodes can be FMUs, 

operators (adder, multiplier, offset and gain), or external 

inputs/outputs. Connections define which output 

variables of a source node are connected to which input 

variables of a target node. Before running a graph, DNG 

starts by opening the file in which the co-simulation is 

defined and loads the graph in memory. Then each FMU 

in the graph is also loaded so that the DNG engine can 

operate the co-initialization and stepping. 

Co-initialization 

Co-initialization is the setting of consistent system-wide 

initial values for all the components. The algorithm starts 

by building a global dependency directed graph for the 

connected variables of the FMUs. It uses the connections 

established by the user to find external dependencies 

between the outputs from source FMUs and the inputs 

from sink FMUs. Thanks to Tarjan’s SCC algorithm 

(Tarjan, 1972), Strongly Connected Components (SCCs) 

corresponding to cyclic dependencies in the graph are 

contracted into single vertexes to get a Directed Acyclic 

Graph (DAG) naturally giving the order in which the 

variables must be initialized. SCCs are solved in a parallel 

way thanks to an iterative algorithm called JNRA 

(Jacobian based Newton-Raphson Algorithm) inspired by 

traditional Newton-Raphson algorithms. 

Stepping 

DNG Master can be parametrized with constant or 

variable steppers. Variable stepping is more efficient as 

integration steps can increase when state variables are not 

strongly evolving. On the contrary, when the error 

controlled by the Master is too important, a smaller step 

is required and synchronization between FMUs is 

possible with the rollback feature offered by the FMI 

standard. A fixed step size (constant stepping) is used 

when FMUs cannot rollback. 

AI-based model integration  

Global view of the software architecture 

In order to use a Python AI-based controller in an FMI-

based co-simulation, we propose a software architecture 

that uses a dedicated FMU having the same input and 

output parameters as the controller, but acting as a proxy 

between the co-simulation environment and the external 

AI-based controller that can be deployed on a local or 

remote machine. 

The proposed architecture is based on the following 

components (see figure 3): 

 An inter-process communication mechanism, 

where the FMU controller proxy acts as a client 

and the effective controller acts as a server. 

 An encoding/decoding message mechanism used 

to encode in binary format the structured 

messages transmitted between the client and the 

server.  

 The effective (AI-based) controller, an external 

module implemented with the most suitable 

programming language and libraries. It requires 

dynamic interaction with the physical models. 

 The FMU controller proxy, a new type of FMU 

integrated in the co-simulation environment. This 

FMU has the same inputs and outputs as the 

controller. It acts as a proxy whose objective is to 

communicate with the effective controller. 

Inter-process communication mechanism  

 

Figure 2: request-reply pattern. 

 

To ensure communication between the FMU controller 

proxy (client) and the effective AI-based controller 

(server) we use the ZeroMQ (ZeroMQ, n.d.) middleware. 

ZeroMQ is a messaging system that uses sockets to carry 

atomic messages. ZeroMQ allows different messaging 

patterns such as synchronous Request/Response, 

asynchronous Request/Response, Publish/Subscribe, or 

Push/Pull. To establish the communication between the 

FMU controller proxy and the effective controller, we use 

synchronous Request/Replay messaging type (figure 2). 

In this pattern, the client sends a request and the server 

replies to it. The server blocks on receive until it receives 

a request and the client blocks on send until it receives a 

reply back from previous request. 

The low-level library of ZeroMQ is implemented in C++ 

and exposes a C-API. ZeroMQ supports binding for 

several languages such as Python with PyZMQ library. It 

offers a native implementation for some languages such 

as Java with JeroMQ library (Jeromq, n.d.). 

The encoding/decoding message mechanism 

In our architecture, there are two types of messages 

exchanged: control actions, and the states of some FMU 



   

 

   

 

physical models. In order to encode and to decode these 

messages, we use the Google protocol buffers (Protobuf) 

which is a mechanism for serializing structured messages. 

With Protobuf, the structure of the messages exchanged 

must be specified using the protocol specific format. 

Then, for each language, Protobuf generates a code to 

encode and decode the messages. In our architecture, the 

generated code is used in the effective controller and in 

the FMU proxy controller. 

 

 
 

 Figure 3: AI-based control architecture. 

 

The effective controller 

AI-based controllers can be implemented using different 

languages. However, most recent, advanced and powerful 

deep learning algorithms are based on Python libraries 

such as TensorFlow, Keras or keras-rl. We implemented 

the building heater controller in Python using these 

libraries. 

As for the specific type of AI-based control, we look into 

Deep Reinforcement Learning schemes as a way to 

integrate an adaptive control mechanism. Hence, at each 

co-simulation iteration, the DRL controller receives the 

system state and decides on a control action. Since the 

controller acts as a server, it sends an action every time it 

receives state information of the simulated physical 

system. Therefore, the controller implements the ZeroMQ 

messaging patterns "synchronous Request/Response" 

using the Python PyZMQ library. 

Generation of the FMU Controller proxy  

The FMU controller proxy is the FMU integrated in the 

co-simulation platform. We implement it in Java and 

export it into an FMU using the Java FMU-builder tool 

part of JavaFMI (Hernández-Cabrera et al., 2020). The 

FMU controller proxy acts as a client: at each iteration of 

co-simulation, it sends the system state to the effective 

controller and receives the control action. Similarly to the 

effective controller, the FMU controller proxy 

implements the ZeroMQ messaging patterns 

"synchronous Request/Response" using the Java JeroMQ 

library (Jeromq, n.d.). 

Key features of the proposed approach 

The proposed approach has several advantages over the 

approach of generating an FMU from a Python program 

and its dependencies: 

 The controller can be executed on the local 

machine or on a remote machine. In the case 

where the controller requires large computational 

resources as it might be the case for Deep 

Learning, it is possible to deploy it on remote 

machine with an adapted computing power (e.g. 

GPU machine). 

 The phase of code porting to the co-simulation 

execution environment (e.g., different CPU, 

operating system, etc.) can be avoided. 

Depending on the operating system, language 

and library, code porting can be very complex 

and time consuming.  

 The generation of large FMUs is avoided when 

the AI model is based on libraries of significant 

size. 

 We keep the possibility to easily evaluate several 

algorithms developed with different languages, 

different frameworks and for different platforms. 

In the following section, we use this new architecture to 

assess the efficiency of a DRL-based controller for 

heating control in a residential buildings. 

Simulation and experiments 

Description 

For this Use Case, we built a single-family house energy 

model using the BuildSysPro Modelica library 

(BuildSysPro, n.d.; Plessis et al., 2014). The building 

envelope is a detailed monozone thermal model including 



   

 

   

 

1-D walls, windows as well as air renewal to take all the 

heat transfer modes into account (figure 4).  

The global building model, as shown in figure 5, includes 

a weather file reader, and two ways of controlling heating: 

by means of an ideal PI controller, or by controlling 

directly the power injected in the building air node. In 

both cases we assume the heating system to be ideal, such 

as the injected heating power is equal to the consumed 

electrical power. 

 

 

Figure 4: Modelica building envelope model. 

 

The model includes inputs (occupant presence, set point 

for power, set point for temperature) and outputs 

(temperatures and heating power and energy), that are 

visible in a co-simulation environment once exported as 

an FMU. 

 

Figure 5: Building model for heating control, to be 

exported as an FMU. 

 

The building model is used to compute indoor 

temperature by taking into account the dynamics of the 

building envelope, the use of a heating system, and the 

impact of external weather conditions.  

The proposed controller is also connected to the weather 

reader in order to integrate external environmental 

variables, as well as indoor temperature and the household 

occupancy schedule.  

To demonstrate the functioning of our proposed 

architecture, discuss the effectiveness of DRL for heating, 

and pave the way for scaling-up at the district/smart grid 

scale, we use the DACCOSIM NG environment to co-

simulate the household and the controller (figure 3). 

To implement the DRL controller, we use a Deep Q 

Learning (DQN) approach (Mnih et al., 2015). DQN has 

been studied in previous litterature as well as other Deep 

learning based algorithms (Wei et al., 2017; Nagy et al., 

2018) . In our proposed method, the controller acts on the 

heating system injected power, making control more 

challenging but opens new opportunities as elaborated in 

the conclusion. Our solution is implemented as follows. 

 

Controller state space 

In this model the heating control is impacted by indoor 

temperature and the outdoor temperature 𝑇𝑜𝑢𝑡  (°C).  

Since, in order to use DQN, Markov property should be 

valid, we found that including historical information on 

𝑇𝑖𝑛 is required. This way we include in the control process 

relevant information on the building thermal state and 

inertia that we don’t directly access through the indoor 

temperature or external environmental variables at each 

time step. So, the state at time step t is represented by 𝑆𝑡 =

( 𝑇𝑜𝑢𝑡
𝑡 , 𝑇𝑖𝑛

𝑡 , … , 𝑇𝑖𝑛
𝑡−𝑛 ).  Input values, in this case, are 

continuous. 

 

Controller action space  

We propose to control the power consumed by the heating 

system and provided to the building, assuming the heater 

efficiency is equal to 1. This provides a larger flexibility 

by modulating power input. For this, our action space is 

represented by a discretisation of power into power levels. 

These levels include turn off capability associated with a 

power level equal to 0. Action taken at time slot t is 

represented by 𝐴𝑡 = (𝑃𝑡)  where 𝑃𝑡  denotes power 

consumption. 

 

Controller model and q-values update 

The controller model encoding q-values is an Artificial 

Neural Network (ANN) formed of an input layer 

expressing the state space, two hidden layers with a 

sigmoid activation function and final output layer 

expressing Q values for each action. 

In the training process, q-value estimates are updated 

following eq. (1): 



   

 

   

 

𝑄𝑡+1(𝑠𝑡 , 𝑎𝑡) = 𝑄𝑡(𝑠𝑡 , 𝑎𝑡) +  𝛼 (𝑟𝑡+1 +

𝛾 max
𝑎𝑡+1

𝑄𝑡(𝑠𝑡+1, 𝑎𝑡+1) −𝑄𝑡(𝑠𝑡 , 𝑎𝑡))    (1) 

In eq. (1), 𝛼 ∈ [0,1]  is the learning rate where 0 is 

associated with no learning and 1 is associated with 

leaning and no memory on previous q-values. 

The discount factor 𝛾 ∈ [0,1]  allows in our case to 

integrate in the importance of heating inertia. Hence, a 

value of 0 does not integrate any effect of decision on the 

future and 1 attributes a high importance to future states 

and associated optimal decisions.  

The controller is assessed based on its capability to follow 

a target temperature denoted by 𝑇𝑟𝑒𝑓 . We use reward 

function of eq.(2) to model the desired behaviour. 

𝑟𝑡 = −(𝑇𝑖𝑛
𝑡 − 𝑇𝑟𝑒𝑓)

2
     (2) 

The training process is conducted on batches selected 

from historical decisions and state transition experience. 

So given a batch size N, a batch is the set of N latest 

observations ending by the last state-decision made. 

 

Action selection strategy 

In the learning process, the decision is taken such that the 

action providing the greatest q-value is selected. We 

found that through learning, an implicit exploration will 

take place around the desired setpoint. Implementing a ε-

greedy random exploration, in this case, showed worst 

results as it drives the exploration in the direction of 

overheating or underheating which are not in our zones of 

interest. 

Results and discussion 

Analysis parameter taken to implement the DQN 

described previously are summarized in table 1. 

Table 1: Numerical analysis parameters. 

Parameter Value Parameter Value 

Simulation 

period 

63072000s 

(2 years) 

𝛾 0.2 

co-

simulation 

time step 

300s Action 

power 

levels (W) 

[0, 1000, 

2000] 

𝛼 1 𝑇𝑟𝑒𝑓  22°C 

 

The simulation period is represented by 4 years of winter 

period (2 years in term of total time). For ANN model 

parameters, input historical information on 𝑇𝑖𝑛 is chosen 

n=1. Hidden layers are of size 16. Batch size N is taken 

equal to 576 (2 days). The model is implemented using 

the Tensorflow library. 

Controller temperature tracking results are shown in 

figure 6. The controller is capable of remaining very close 

to 𝑇𝑟𝑒𝑓 with an average temperature of 21.83°C and a 

standard deviation of 0.92 during the first winter period 

then an average temperature of 21.9°C and a standard 

deviation of 0.58 in each of the subsequent winter periods; 

As a matter of fact, temperature is kept within 0.5 degree 

of setpoint 83% of the time and within 1 degree 93% of 

the time. Indeed, as shown in figure 7, it requires 8100 

iteration for the algorithm to reach a stable behaviour (~1 

month). 

Figure 6: Evolution on indoor and external temperature 

as a function of time. 

 

While giving the possibility of taking 3 power levels, in 

the end, the controller only makes on/off decisions with 

on corresponding to 2000W. 

Figure 7: Evolution of reward over iterations. 

 

Conclusion 

We presented a novel methodology to ease the testing of 

new AI-based adaptive control models when used in a co-

simulation environment. For this, we capitalise on 

efficient technologies allowing to work around FMU 

model encapsulation, to propose a proxy controller which 

is able to communicate with external AI libraries. This 

methodology could be extended to any type of 

communication between an executable FMU model in a 

co-simulation environment and an external algorithm. 

An efficient DRL method has been presented and shows 

the capability of the controller to remain in the vicinity of 

the desired temperature setpoint. Since proposed solution 

acts on power, an extension of the solution will be 

developed and analysed in future works to provide 



   

 

   

 

demand side management services targeting a desired 

power profile on a neighborhood level. In this case, power 

is modulated in a way that temperature does not stray 

away from setpoint expressed by the user while providing 

service to the power grid. This will yield in a more 

complex model that can integrate for instance strategies 

to reduce energy cost based on a price signal. We also plan 

on conducting further analysis on the impact of missing 

variables and the way it can affect the efficiency of DRL 

control, as well as computational performance and 

overhead when scaling up to the district level. 
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