
HAL Id: hal-02957010
https://hal.science/hal-02957010

Submitted on 4 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integration and Evaluation of Deep Reinforcement
Learning Controller in a Building Co-Simulation

Environment
Ahmed Amrani, Rim Kaddah, Jean-Philippe Tavella, Mathieu Schumann

To cite this version:
Ahmed Amrani, Rim Kaddah, Jean-Philippe Tavella, Mathieu Schumann. Integration and Evalua-
tion of Deep Reinforcement Learning Controller in a Building Co-Simulation Environment. Building
Simulation and Optimization (BSO-V 2020), Sep 2020, Loughborough (virtual conference), United
Kingdom. �hal-02957010�

https://hal.science/hal-02957010
https://hal.archives-ouvertes.fr

Integration and Evaluation of Deep Reinforcement Learning Controller in a Building Co-

Simulation Environment

Ahmed Amrani1, Rim Kaddah1, Jean-Philippe Tavella2, Mathieu Schumann2
1IRT SystemX, Palaiseau, France

2EDF Lab Paris-Saclay, Palaiseau, France

Abstract

Deep Reinforcement Learning (DRL) is a promising

Artificial Intelligence (AI) approach for buildings heating

control. However, DRL controllers require dynamic

simulation involving heterogeneous physical models

(building, power-grid, etc.). Co-simulation allows the

inter-operation between heterogeneous components when

exported following the Functional Mock-Up Interface

(FMI) standard.

Controllers based on DRL can be implemented using

various languages but are mostly based on Python

libraries like Tensorflow. Their integration into co-

simulation environments requires their exportation as

Functional Mockup Units (FMUs). Thus, language-

specific FMI-compliant export tools are needed for every

programming language, specific library or platform used.

This process is costly in effort and time and results in

large FMUs.

This paper proposes a novel method that simplifies AI-

based controller integration regardless of the language or

platform in a co-simulation environment and apply our

methodology to assess a DRL controller. For the first

objective, we use existing FMI export tools to create an

FMU having the same input and output parameters as the

controller. In the proposed architecture, the FMU acts as

a proxy whose objective is to communicate with an

external DRL controller deployed on a local or remote

machine. We propose an application of this generic

architecture for heating control in a house using

DACCOSIM NG co-simulation environment. Through

this architecture, the deployed DRL-based controller is

connected to a house energy model, which includes

weather conditions and heating. We show that our

proposed controller is capable to learn the system

dynamics and keep temperature within 1 degree of

setpoint 93% of the time.

Introduction

Research questions related to building smart control

systems can arise aim to tackle challenges at the building,

the district or community level, a scale where the building

interacts with the other components of the energy system

and the grid, forming a complex system (Vialle et al.,

2017; Reinbold et al., 2019). Research at these levels

bring together experts from various fields, each with their

own area of expertise, knowledge and models (building

energy, electricity and heating networks, energy

generation, etc.). The simulation of such complex

environment involves a variety of components based on a

specific physics, which might be created using generic or

domain-specific tools and implemented by various teams.

In this situation, the use of co-simulation environments

allows the inter-operation between heterogeneous

components, and an increasing number of modelling

environments became compatible with the Functional

Mock-Up Interface (FMI) standard for interoperability.

AI-based approaches are added to this cross-domain

applications, creating a need to find a simple way to

integrate such systems and make them interoperate

especially AI algorithms involving online calibration.

As matter of fact and despite major technological

developments, optimal control of heating in buildings

remains an important challenge for which adaptive AI

approaches can bring new effective solutions.

In practice, the complexity of building thermal dynamics,

the stochasticity of occupant behaviour and the

heterogeneous environmental disturbances make classical

rule-based and model-based control strategies inefficient

due to lack of adaptability and model update.

Furthermore, it is still a challenge to implement an

accurate representation of building dynamics into a

controller in real buildings (Zacekova et al., 2014), and its

use for real-time control raises issues of computation time

(Yang et al., 2015).

Deep reinforcement learning (DRL) is being studied in

recent works as a promising AI approach for heating

control in buildings, based on real-time measured data as

an input (Nagy et al., 2018; Wei et al. 2017; Kazmi et al.,

2017; Mason and Grijalva, 2019). Moreover, compared to

classical Q-learning, DRL is better suited for control

problems in a large parameter space (Wei et al., 2017).

Among the methods for assessing the performance of a

DRL controller, the use of dynamic simulation is a

flexible mean for testing various situations and explore

parameters.

Controllers based on DRL themselves can also be

implemented using various languages. Most recent works

mainly use Python libraries such as TensorFlow or

PyTorch (Nguyen et al., 2019). The integration of such

components into a co-simulation environments would

normally require to export them as executable

components (FMU), which raises number of difficulties

elaborated in related works section.

We propose a generic approach for enabling compatibility

between FMI-based co-simulation environments and

external algorithms, and apply this architecture to assess

the performance of a DRL controller to learn an effective

control strategy for a building heating system.

The paper is organised as follows: In the next section, we

present related work regarding co-simulation and

interoperability. Then, we present the DACCOSIM NG

co-simulation platform which we use in our use case.

Next, we present the new architecture designed to connect

a DRL controller to a co-simulation environment. The

proposed approach is then applied to the assessement of a

DRL-based building heating control system which is

presented along with promising results in section

Simulation and experiments. Finally, we provide

conclusions and perspectives.

Related work

Co-simulation

Physical models can be created using numerous tools

(Dymola, Matlab, Simulink, etc.), or programming

languages (Java, Python, etc.). Co-simulation is a solution

for enabling interoperability between a variety of

executable components, each based on a particular

domain of expertise and specific physics. Co-simulation

also allows scaling-up of very large Cyber-Physical

Systems such as the energy systems, composed of various

componens such as buildings and grids, by splitting the

whole system in relatively independent components, each

aggregating a part of the dynamics of the global system

(Reinbold et al., 2019; Tavella, et al., 2016; Ptolemaeus,

2014). The Functional Mock-Up Interface standard (FMI

standard, n.d.) is a framework for the development of such

interoperable executable models. The components

exported using this standard are called Functional Mock-

Up Units (FMU) and are composed of an XML file which

defines the model inputs, outputs and parameter, as well

as a C-code compiled for execution on a targeted

operating system.

We propose to use the DACCOSIM NG platform (Dad et

al., 2016; Galtier et al., 2015; Galtier et al., 2017; Vialle

et al., 2017), an open-source plateform for FMI-based co-

simulation developped and maintained by EDF and

CentraleSupélec (DACCOSIM NG tool, n.d.), and which

is already applied to the study of buildings and energy

networks as a complex, multi-domains Cyber-Physical

System. DACCOSIM NG is a co-simulation master that

allows parallel computation of all sub-models in order to

achieve scaling-up and reduced computation time

(ModeliScale, n.d.).

Control integration

Several libraries exist to allow the exploitation of FMUs

from a Python program, such as pyFMI (Andersson et al.,

2016) and OMPython (Ganeson et al., 2012). The

OMPython library allows python code to interface with

OpenModelica in order to run simulations. The pyFMI

library is used by the libraries Dymrl and ModelicaGym

(Lukianykhin and Bogodorova, 2019) in order to exploit

Modelica or Dymola FMUs as an OpenAI Gym

environment.

However in our context, the co-simulation environment

that is used for the study of Cyber-Physical Systems is a

master of co-simulation, and need to be able to call AI-

based Python libraries or tools from within the co-

simulation. In the co-simulation, the controller requires an

interaction with the controlled component at each

iteration. Therefore, it is necessary to generate the AI-

based control components in the form of an FMU as is the

case for the other components.

Thus, FMI compliant export capabilities would need to be

implemented or adapted each time a new programming

language, specific library or platform is used. JavaFMI

(Hernández-Cabrera et al., 2020) and SimulatorToFMU

(Nouidui and Wetter, 2018) are software packages which

allows to export a Java or Python program as a Functional

FMU for use in a co-simulation environment. However,

depending on the targeted platform, language and library,

this process can be costly in terms of development effort

and time, or even be impossible at this time because of the

complexity of the desired Python libraries. Moreover, it

can generate large FMU models since it requires the

inclusion of external libraries.

Co-simulation environment

To benefit from the advantages of co-simulation, we

propose a new architecture to use AI-based components

in a FMI-based co-simulation environment. Although the

methodology can be generalized to co-simulation in

general, we demonstrate the proposal in the DACCOSIM

NG (DNG) co-simulation environment.

Figure 1: General co-simulation architecture

(DACCOSIM NG tool, n.d.).

DACCOSIM NG (DNG) is a generic FMI-based co-

simulation master and simulation environment developed

in Java language. DNG allows the design and execution

of co-simulation graphs based on executable components

exported as FMUs from FMI-compatible tools. Co-

simulation graphs are defined either through a Graphical

User Interface (GUI) or scripts (CLI). A user’s guide is

available with the tool distribution for more detailed

information about the usage of DNG (DACCOSIM NG

tool, n.d.).

Graphs

A co-simulation graph is composed of nodes and arrows,

representing connections between nodes. The general

architecture is depicted in figure 1. Nodes can be FMUs,

operators (adder, multiplier, offset and gain), or external

inputs/outputs. Connections define which output

variables of a source node are connected to which input

variables of a target node. Before running a graph, DNG

starts by opening the file in which the co-simulation is

defined and loads the graph in memory. Then each FMU

in the graph is also loaded so that the DNG engine can

operate the co-initialization and stepping.

Co-initialization

Co-initialization is the setting of consistent system-wide

initial values for all the components. The algorithm starts

by building a global dependency directed graph for the

connected variables of the FMUs. It uses the connections

established by the user to find external dependencies

between the outputs from source FMUs and the inputs

from sink FMUs. Thanks to Tarjan’s SCC algorithm

(Tarjan, 1972), Strongly Connected Components (SCCs)

corresponding to cyclic dependencies in the graph are

contracted into single vertexes to get a Directed Acyclic

Graph (DAG) naturally giving the order in which the

variables must be initialized. SCCs are solved in a parallel

way thanks to an iterative algorithm called JNRA

(Jacobian based Newton-Raphson Algorithm) inspired by

traditional Newton-Raphson algorithms.

Stepping

DNG Master can be parametrized with constant or

variable steppers. Variable stepping is more efficient as

integration steps can increase when state variables are not

strongly evolving. On the contrary, when the error

controlled by the Master is too important, a smaller step

is required and synchronization between FMUs is

possible with the rollback feature offered by the FMI

standard. A fixed step size (constant stepping) is used

when FMUs cannot rollback.

AI-based model integration

Global view of the software architecture

In order to use a Python AI-based controller in an FMI-

based co-simulation, we propose a software architecture

that uses a dedicated FMU having the same input and

output parameters as the controller, but acting as a proxy

between the co-simulation environment and the external

AI-based controller that can be deployed on a local or

remote machine.

The proposed architecture is based on the following

components (see figure 3):

 An inter-process communication mechanism,

where the FMU controller proxy acts as a client

and the effective controller acts as a server.

 An encoding/decoding message mechanism used

to encode in binary format the structured

messages transmitted between the client and the

server.

 The effective (AI-based) controller, an external

module implemented with the most suitable

programming language and libraries. It requires

dynamic interaction with the physical models.

 The FMU controller proxy, a new type of FMU

integrated in the co-simulation environment. This

FMU has the same inputs and outputs as the

controller. It acts as a proxy whose objective is to

communicate with the effective controller.

Inter-process communication mechanism

Figure 2: request-reply pattern.

To ensure communication between the FMU controller

proxy (client) and the effective AI-based controller

(server) we use the ZeroMQ (ZeroMQ, n.d.) middleware.

ZeroMQ is a messaging system that uses sockets to carry

atomic messages. ZeroMQ allows different messaging

patterns such as synchronous Request/Response,

asynchronous Request/Response, Publish/Subscribe, or

Push/Pull. To establish the communication between the

FMU controller proxy and the effective controller, we use

synchronous Request/Replay messaging type (figure 2).

In this pattern, the client sends a request and the server

replies to it. The server blocks on receive until it receives

a request and the client blocks on send until it receives a

reply back from previous request.

The low-level library of ZeroMQ is implemented in C++

and exposes a C-API. ZeroMQ supports binding for

several languages such as Python with PyZMQ library. It

offers a native implementation for some languages such

as Java with JeroMQ library (Jeromq, n.d.).

The encoding/decoding message mechanism

In our architecture, there are two types of messages

exchanged: control actions, and the states of some FMU

physical models. In order to encode and to decode these

messages, we use the Google protocol buffers (Protobuf)

which is a mechanism for serializing structured messages.

With Protobuf, the structure of the messages exchanged

must be specified using the protocol specific format.

Then, for each language, Protobuf generates a code to

encode and decode the messages. In our architecture, the

generated code is used in the effective controller and in

the FMU proxy controller.

 Figure 3: AI-based control architecture.

The effective controller

AI-based controllers can be implemented using different

languages. However, most recent, advanced and powerful

deep learning algorithms are based on Python libraries

such as TensorFlow, Keras or keras-rl. We implemented

the building heater controller in Python using these

libraries.

As for the specific type of AI-based control, we look into

Deep Reinforcement Learning schemes as a way to

integrate an adaptive control mechanism. Hence, at each

co-simulation iteration, the DRL controller receives the

system state and decides on a control action. Since the

controller acts as a server, it sends an action every time it

receives state information of the simulated physical

system. Therefore, the controller implements the ZeroMQ

messaging patterns "synchronous Request/Response"

using the Python PyZMQ library.

Generation of the FMU Controller proxy

The FMU controller proxy is the FMU integrated in the

co-simulation platform. We implement it in Java and

export it into an FMU using the Java FMU-builder tool

part of JavaFMI (Hernández-Cabrera et al., 2020). The

FMU controller proxy acts as a client: at each iteration of

co-simulation, it sends the system state to the effective

controller and receives the control action. Similarly to the

effective controller, the FMU controller proxy

implements the ZeroMQ messaging patterns

"synchronous Request/Response" using the Java JeroMQ

library (Jeromq, n.d.).

Key features of the proposed approach

The proposed approach has several advantages over the

approach of generating an FMU from a Python program

and its dependencies:

 The controller can be executed on the local

machine or on a remote machine. In the case

where the controller requires large computational

resources as it might be the case for Deep

Learning, it is possible to deploy it on remote

machine with an adapted computing power (e.g.

GPU machine).

 The phase of code porting to the co-simulation

execution environment (e.g., different CPU,

operating system, etc.) can be avoided.

Depending on the operating system, language

and library, code porting can be very complex

and time consuming.

 The generation of large FMUs is avoided when

the AI model is based on libraries of significant

size.

 We keep the possibility to easily evaluate several

algorithms developed with different languages,

different frameworks and for different platforms.

In the following section, we use this new architecture to

assess the efficiency of a DRL-based controller for

heating control in a residential buildings.

Simulation and experiments

Description

For this Use Case, we built a single-family house energy

model using the BuildSysPro Modelica library

(BuildSysPro, n.d.; Plessis et al., 2014). The building

envelope is a detailed monozone thermal model including

1-D walls, windows as well as air renewal to take all the

heat transfer modes into account (figure 4).

The global building model, as shown in figure 5, includes

a weather file reader, and two ways of controlling heating:

by means of an ideal PI controller, or by controlling

directly the power injected in the building air node. In

both cases we assume the heating system to be ideal, such

as the injected heating power is equal to the consumed

electrical power.

Figure 4: Modelica building envelope model.

The model includes inputs (occupant presence, set point

for power, set point for temperature) and outputs

(temperatures and heating power and energy), that are

visible in a co-simulation environment once exported as

an FMU.

Figure 5: Building model for heating control, to be

exported as an FMU.

The building model is used to compute indoor

temperature by taking into account the dynamics of the

building envelope, the use of a heating system, and the

impact of external weather conditions.

The proposed controller is also connected to the weather

reader in order to integrate external environmental

variables, as well as indoor temperature and the household

occupancy schedule.

To demonstrate the functioning of our proposed

architecture, discuss the effectiveness of DRL for heating,

and pave the way for scaling-up at the district/smart grid

scale, we use the DACCOSIM NG environment to co-

simulate the household and the controller (figure 3).

To implement the DRL controller, we use a Deep Q

Learning (DQN) approach (Mnih et al., 2015). DQN has

been studied in previous litterature as well as other Deep

learning based algorithms (Wei et al., 2017; Nagy et al.,

2018) . In our proposed method, the controller acts on the

heating system injected power, making control more

challenging but opens new opportunities as elaborated in

the conclusion. Our solution is implemented as follows.

Controller state space

In this model the heating control is impacted by indoor

temperature and the outdoor temperature 𝑇𝑜𝑢𝑡 (°C).

Since, in order to use DQN, Markov property should be

valid, we found that including historical information on

𝑇𝑖𝑛 is required. This way we include in the control process

relevant information on the building thermal state and

inertia that we don’t directly access through the indoor

temperature or external environmental variables at each

time step. So, the state at time step t is represented by 𝑆𝑡 =

(𝑇𝑜𝑢𝑡
𝑡 , 𝑇𝑖𝑛

𝑡 , … , 𝑇𝑖𝑛
𝑡−𝑛). Input values, in this case, are

continuous.

Controller action space

We propose to control the power consumed by the heating

system and provided to the building, assuming the heater

efficiency is equal to 1. This provides a larger flexibility

by modulating power input. For this, our action space is

represented by a discretisation of power into power levels.

These levels include turn off capability associated with a

power level equal to 0. Action taken at time slot t is

represented by 𝐴𝑡 = (𝑃𝑡) where 𝑃𝑡 denotes power

consumption.

Controller model and q-values update

The controller model encoding q-values is an Artificial

Neural Network (ANN) formed of an input layer

expressing the state space, two hidden layers with a

sigmoid activation function and final output layer

expressing Q values for each action.

In the training process, q-value estimates are updated

following eq. (1):

𝑄𝑡+1(𝑠𝑡 , 𝑎𝑡) = 𝑄𝑡(𝑠𝑡 , 𝑎𝑡) + 𝛼 (𝑟𝑡+1 +

𝛾 max
𝑎𝑡+1

𝑄𝑡(𝑠𝑡+1, 𝑎𝑡+1) −𝑄𝑡(𝑠𝑡 , 𝑎𝑡)) (1)

In eq. (1), 𝛼 ∈ [0,1] is the learning rate where 0 is

associated with no learning and 1 is associated with

leaning and no memory on previous q-values.

The discount factor 𝛾 ∈ [0,1] allows in our case to

integrate in the importance of heating inertia. Hence, a

value of 0 does not integrate any effect of decision on the

future and 1 attributes a high importance to future states

and associated optimal decisions.

The controller is assessed based on its capability to follow

a target temperature denoted by 𝑇𝑟𝑒𝑓 . We use reward

function of eq.(2) to model the desired behaviour.

𝑟𝑡 = −(𝑇𝑖𝑛
𝑡 − 𝑇𝑟𝑒𝑓)

2
 (2)

The training process is conducted on batches selected

from historical decisions and state transition experience.

So given a batch size N, a batch is the set of N latest

observations ending by the last state-decision made.

Action selection strategy

In the learning process, the decision is taken such that the

action providing the greatest q-value is selected. We

found that through learning, an implicit exploration will

take place around the desired setpoint. Implementing a ε-

greedy random exploration, in this case, showed worst

results as it drives the exploration in the direction of

overheating or underheating which are not in our zones of

interest.

Results and discussion

Analysis parameter taken to implement the DQN

described previously are summarized in table 1.

Table 1: Numerical analysis parameters.

Parameter Value Parameter Value

Simulation

period

63072000s

(2 years)

𝛾 0.2

co-

simulation

time step

300s Action

power

levels (W)

[0, 1000,

2000]

𝛼 1 𝑇𝑟𝑒𝑓 22°C

The simulation period is represented by 4 years of winter

period (2 years in term of total time). For ANN model

parameters, input historical information on 𝑇𝑖𝑛 is chosen

n=1. Hidden layers are of size 16. Batch size N is taken

equal to 576 (2 days). The model is implemented using

the Tensorflow library.

Controller temperature tracking results are shown in

figure 6. The controller is capable of remaining very close

to 𝑇𝑟𝑒𝑓 with an average temperature of 21.83°C and a

standard deviation of 0.92 during the first winter period

then an average temperature of 21.9°C and a standard

deviation of 0.58 in each of the subsequent winter periods;

As a matter of fact, temperature is kept within 0.5 degree

of setpoint 83% of the time and within 1 degree 93% of

the time. Indeed, as shown in figure 7, it requires 8100

iteration for the algorithm to reach a stable behaviour (~1

month).

Figure 6: Evolution on indoor and external temperature

as a function of time.

While giving the possibility of taking 3 power levels, in

the end, the controller only makes on/off decisions with

on corresponding to 2000W.

Figure 7: Evolution of reward over iterations.

Conclusion

We presented a novel methodology to ease the testing of

new AI-based adaptive control models when used in a co-

simulation environment. For this, we capitalise on

efficient technologies allowing to work around FMU

model encapsulation, to propose a proxy controller which

is able to communicate with external AI libraries. This

methodology could be extended to any type of

communication between an executable FMU model in a

co-simulation environment and an external algorithm.

An efficient DRL method has been presented and shows

the capability of the controller to remain in the vicinity of

the desired temperature setpoint. Since proposed solution

acts on power, an extension of the solution will be

developed and analysed in future works to provide

demand side management services targeting a desired

power profile on a neighborhood level. In this case, power

is modulated in a way that temperature does not stray

away from setpoint expressed by the user while providing

service to the power grid. This will yield in a more

complex model that can integrate for instance strategies

to reduce energy cost based on a price signal. We also plan

on conducting further analysis on the impact of missing

variables and the way it can affect the efficiency of DRL

control, as well as computational performance and

overhead when scaling up to the district level.

Acknowledgement

This research work has been carried out at the Institute of

Technological Research SystemX, within the scope of a

joint collaboration with EDF in the Paris-Saclay Energies

(PSE) project.

References

Andersson, C., Åkesson, J. and Führer, C. (2016). PyFMI:

A Python Package for Simulation of Coupled

Dynamic Models with the Functional Mock-up

Interface. Retrieved from

https://portal.research.lu.se/portal/files/7201641/pyf

mi_tech.pdf

BuildSysPro. (n.d.). Retrieved from

https://github.com/EDF-TREE/BuildSysPro

DACCOSIM NG tool. (n.d.). Retrieved from

https://bitbucket.org/simulage/daccosim

Dad, C., Vialle, S., Caujolle, M., Tavella, J.-P. and

Ianotto, M. (2016). Scaling of distributed multi-

simulations on multi-core clusters. IEEE 25th

International Conference on Enabling Technologies:

Infrastructure for Collaborative Enterprises, 142-

147.

FMI standard. (n.d.). Retrieved from https://www.fmi-

standard.org

Galtier, V., Ianotto, M., Caujolle, M., Corniglion, R.,

Tavella, J.-P., Gómez, J. É. and Kremers, E. (2017).

Building Parallel FMUs (or Matryoshka Co-

Simulations). Proceedings of the 12th International

Modelica Conference, 663-671.

Galtier, V., Vialle, S., Dad, C., Tavella, J.-P., Lam-Yee-

Mui, J.-P. and Plessis, G. (2015). FMI-based

distributed multi-simulation with DACCOSIM.

Proceedings of the Symposium on Theory of

Modeling & Simulation: DEVS Integrative M&S

Symposium, 39-46.

Ganeson, A., Fritzson, P., Rogovchenko, O., Asghar, A.,

Sjölund, M. and Pfeiffer, A. (2012). 9th International

Modelica Conference (Modelica'2012). An

OpenModelica Python Interface and its use in

PySimulator, (pp. 537-548). Munich.

Hernández-Cabrera, J. J., Évora-Gómez, J. and Roncal-

Andrés, O. (2020). javaFMI. Retrieved from

https://bitbucket.org/siani/javafmi/wiki/Home

Jeromq. (n.d.). Retrieved from

https://github.com/zeromq/jeromq

Kazmi, H., Mehmood, F., Lodeweyckx, S. and Driesen, J.

(2017). Gigawatt-hour Scale Savings on a Budget of

Zero: Deep Reinforcement Learning based Optimal

Control of Hot Water Systems. Energy, 144.

Lukianykhin, O. and Bogodorova, T. (2019). EOOLT.

ModelicaGym: applying reinforcement learning to

Modelica models. pp 27–36

Mason, K. and Grijalva, S. (2019). A review of

reinforcement learning for autonomous building

energy management. Computers & Electrical

Engineering, 78, 300-312.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A., Veness,

J., Bellemare, M. and Hassabis, D. (2015). Human-

level control through deep reinforcement learning.

Nature, 518, 529‐533.

ModeliScale. (n.d.). Retrieved from

https://www.tenerrdis.fr/fr/projets/modeliscale

Nagy, A., Kazmi, H., Cheaib, F. and Driesen, J. (2018).

Deep Reinforcement Learning for Optimal Control of

Space Heating. Building Simulation and

Optimization Conference, (pp. 96-103). Cambridge.

Nguyen, G., Dlugolinsky, S., Bobák, M., Tran, V., García,

Á. L., Heredia, I. and Hluchý, L. (2019). Machine

Learning and Deep Learning frameworks and

libraries for large-scale data mining: a survey.

Artificial Intelligence Review 52. 77-124

Nouidui, T. and Wetter, M. (2018). Building Performance

Analysis Conference and SimBuild.

SimulatorToFMU: A Python Utility to Support

Building Simulation Tool Interoperability. Chicago.

Plessis, G., Kaemmerlen, A. and Lindsay, A. (2014).

BuildSysPro: a Modelica library for modelling

buildings and energy systems. Modelica Conference.

Retrieved from https://github.com/EDF-

TREE/BuildSysPro

Ptolemaeus, C. (2014). System Design, Modeling, and

Simulation Using Ptolemy II.

PyFMI. (n.d.). Retrieved from

https://pypi.org/project/PyFMI/

Reinbold, V., Protopapadaki, C., Tavella, J.-P. and

Saelens, D. (2019). Assessing scalability of a low-

voltage distribution grid co-simulation through

functional mock-up interface. Journal of Building

Performance Simulation, 12(5), 637-649.

Tarjan, R. (1972). Depth first search and linear graph

algorithms. SIAM JOURNAL ON COMPUTING, 1.

Tavella, J.-P., Caujolle, M., Vialle, S., Dad, C., Tan, C.,

Plessis, G. and Revol, S. (2016). Toward an accurate

and fast hybrid multi-simulation with the FMI-CS

standard. IEEE 21st International Conference on

Emerging Technologies and Factory Automation, 1-

5.

Vialle, S., Tavella, J.-P., DAD, C., Corniglion, R.,

Caujolle, M. and Reinbold, V. (2017). Scaling FMI-

CS Based Multi-Simulation Beyond Thousand

FMUs on Infiniband Cluster. Modelica Conference ,

15-17.

Wei, T., Wang, Y. and Zhu, Q. (2017). Deep

reinforcement learning for building HVAC control.

Design Automation Conference. pp. 1-6

Yang, L., Nagy, Z., Goffin, P. and Schlueter, A. (2015).

Reinforcement learning for optimal control of low

exergy buildings. Applied Energy, 156, 577-586.

Zacekova, E., Vána, Z. and Cigler, J. (2014). Towards the

real-life implementation of MPC for an office

building: Identification issues. Applied Energy, 53-

62.

ZeroMQ. (n.d.). Retrieved from zeromq:

https://zeromq.org/

