Ahmed Amrani

Rim Kaddah

Jean-Philippe Tavella

Mathieu Schumann

Integration and Evaluation of Deep Reinforcement Learning Controller in a Building Co-Simulation Environment

published or not. The documents may come

Introduction

Research questions related to building smart control systems can arise aim to tackle challenges at the building, the district or community level, a scale where the building interacts with the other components of the energy system and the grid, forming a complex system [START_REF] Vialle | Scaling FMI-CS Based Multi-Simulation Beyond Thousand FMUs on Infiniband Cluster[END_REF][START_REF] Reinbold | Assessing scalability of a lowvoltage distribution grid co-simulation through functional mock-up interface[END_REF]. Research at these levels bring together experts from various fields, each with their own area of expertise, knowledge and models (building energy, electricity and heating networks, energy generation, etc.). The simulation of such complex environment involves a variety of components based on a specific physics, which might be created using generic or domain-specific tools and implemented by various teams. In this situation, the use of co-simulation environments allows the inter-operation between heterogeneous components, and an increasing number of modelling environments became compatible with the Functional Mock-Up Interface (FMI) standard for interoperability. AI-based approaches are added to this cross-domain applications, creating a need to find a simple way to integrate such systems and make them interoperate especially AI algorithms involving online calibration. As matter of fact and despite major technological developments, optimal control of heating in buildings remains an important challenge for which adaptive AI approaches can bring new effective solutions. In practice, the complexity of building thermal dynamics, the stochasticity of occupant behaviour and the heterogeneous environmental disturbances make classical rule-based and model-based control strategies inefficient due to lack of adaptability and model update. Furthermore, it is still a challenge to implement an accurate representation of building dynamics into a controller in real buildings [START_REF] Zacekova | Towards the real-life implementation of MPC for an office building: Identification issues[END_REF], and its use for real-time control raises issues of computation time [START_REF] Yang | Reinforcement learning for optimal control of low exergy buildings[END_REF]. Deep reinforcement learning (DRL) is being studied in recent works as a promising AI approach for heating control in buildings, based on real-time measured data as an input [START_REF] Nagy | Deep Reinforcement Learning for Optimal Control of Space Heating[END_REF][START_REF] Wei | Deep reinforcement learning for building HVAC control[END_REF][START_REF] Kazmi | Gigawatt-hour Scale Savings on a Budget of Zero: Deep Reinforcement Learning based Optimal Control of Hot Water Systems[END_REF][START_REF] Mason | A review of reinforcement learning for autonomous building energy management[END_REF]. Moreover, compared to classical Q-learning, DRL is better suited for control problems in a large parameter space [START_REF] Wei | Deep reinforcement learning for building HVAC control[END_REF]. Among the methods for assessing the performance of a DRL controller, the use of dynamic simulation is a flexible mean for testing various situations and explore parameters. Controllers based on DRL themselves can also be implemented using various languages. Most recent works mainly use Python libraries such as TensorFlow or PyTorch [START_REF] Nguyen | Machine Learning and Deep Learning frameworks and libraries for large-scale data mining: a survey[END_REF]. The integration of such components into a co-simulation environments would normally require to export them as executable components (FMU), which raises number of difficulties elaborated in related works section. We propose a generic approach for enabling compatibility between FMI-based co-simulation environments and external algorithms, and apply this architecture to assess the performance of a DRL controller to learn an effective control strategy for a building heating system. The paper is organised as follows: In the next section, we present related work regarding co-simulation and interoperability. Then, we present the DACCOSIM NG co-simulation platform which we use in our use case. Next, we present the new architecture designed to connect a DRL controller to a co-simulation environment. The proposed approach is then applied to the assessement of a DRL-based building heating control system which is presented along with promising results in section Simulation and experiments. Finally, we provide conclusions and perspectives.

Related work

Co-simulation Physical models can be created using numerous tools (Dymola, Matlab, Simulink, etc.), or programming languages (Java, Python, etc.). Co-simulation is a solution for enabling interoperability between a variety of executable components, each based on a particular domain of expertise and specific physics. Co-simulation also allows scaling-up of very large Cyber-Physical Systems such as the energy systems, composed of various componens such as buildings and grids, by splitting the whole system in relatively independent components, each aggregating a part of the dynamics of the global system [START_REF] Reinbold | Assessing scalability of a lowvoltage distribution grid co-simulation through functional mock-up interface[END_REF][START_REF] Tavella | Toward an accurate and fast hybrid multi-simulation with the FMI-CS standard[END_REF][START_REF] Ptolemaeus | System Design, Modeling, and Simulation Using Ptolemy II[END_REF]. The Functional Mock-Up Interface standard (FMI standard, n.d.) is a framework for the development of such interoperable executable models. The components exported using this standard are called Functional Mock-Up Units (FMU) and are composed of an XML file which defines the model inputs, outputs and parameter, as well as a C-code compiled for execution on a targeted operating system. We propose to use the DACCOSIM NG platform (Dad et al., 2016;[START_REF] Galtier | FMI-based distributed multi-simulation with DACCOSIM[END_REF][START_REF] Galtier | Building Parallel FMUs (or Matryoshka Co-Simulations[END_REF][START_REF] Vialle | Scaling FMI-CS Based Multi-Simulation Beyond Thousand FMUs on Infiniband Cluster[END_REF], an open-source plateform for FMI-based cosimulation developped and maintained by EDF and CentraleSupélec (DACCOSIM NG tool, n.d.), and which is already applied to the study of buildings and energy networks as a complex, multi-domains Cyber-Physical System. DACCOSIM NG is a co-simulation master that allows parallel computation of all sub-models in order to achieve scaling-up and reduced computation time (ModeliScale, n.d.).

Control integration

Several libraries exist to allow the exploitation of FMUs from a Python program, such as pyFMI [START_REF] Andersson | PyFMI: A Python Package for Simulation of Coupled Dynamic Models with the Functional Mock-up Interface[END_REF] and OMPython [START_REF] Ganeson | 9th International Modelica Conference (Modelica'2012). An OpenModelica Python Interface and its use in PySimulator[END_REF]. The OMPython library allows python code to interface with OpenModelica in order to run simulations. The pyFMI library is used by the libraries Dymrl and ModelicaGym [START_REF] Lukianykhin | EOOLT. ModelicaGym: applying reinforcement learning to Modelica models[END_REF] in order to exploit Modelica or Dymola FMUs as an OpenAI Gym environment.

However in our context, the co-simulation environment that is used for the study of Cyber-Physical Systems is a master of co-simulation, and need to be able to call AIbased Python libraries or tools from within the cosimulation. In the co-simulation, the controller requires an interaction with the controlled component at each iteration. Therefore, it is necessary to generate the AIbased control components in the form of an FMU as is the case for the other components. Thus, FMI compliant export capabilities would need to be implemented or adapted each time a new programming language, specific library or platform is used. JavaFMI [START_REF] Hernández-Cabrera | javaFMI[END_REF] and SimulatorToFMU [START_REF] Nouidui | Building Performance Analysis Conference and SimBuild[END_REF] are software packages which allows to export a Java or Python program as a Functional FMU for use in a co-simulation environment. However, depending on the targeted platform, language and library, this process can be costly in terms of development effort and time, or even be impossible at this time because of the complexity of the desired Python libraries. Moreover, it can generate large FMU models since it requires the inclusion of external libraries.

Co-simulation environment

To benefit from the advantages of co-simulation, we propose a new architecture to use AI-based components in a FMI-based co-simulation environment. Although the methodology can be generalized to co-simulation in general, we demonstrate the proposal in the DACCOSIM NG (DNG) co-simulation environment. User Interface (GUI) or scripts (CLI). A user's guide is available with the tool distribution for more detailed information about the usage of DNG (DACCOSIM NG tool, n.d.).

Graphs

A co-simulation graph is composed of nodes and arrows, representing connections between nodes. The general architecture is depicted in figure 1. Nodes can be FMUs, operators (adder, multiplier, offset and gain), or external inputs/outputs. Connections define which output variables of a source node are connected to which input variables of a target node. Before running a graph, DNG starts by opening the file in which the co-simulation is defined and loads the graph in memory. Then each FMU in the graph is also loaded so that the DNG engine can operate the co-initialization and stepping.

Co-initialization

Co-initialization is the setting of consistent system-wide initial values for all the components. The algorithm starts by building a global dependency directed graph for the connected variables of the FMUs. It uses the connections established by the user to find external dependencies between the outputs from source FMUs and the inputs from sink FMUs. Thanks to Tarjan's SCC algorithm [START_REF] Tarjan | Depth first search and linear graph algorithms[END_REF], Strongly Connected Components (SCCs) corresponding to cyclic dependencies in the graph are contracted into single vertexes to get a Directed Acyclic Graph (DAG) naturally giving the order in which the variables must be initialized. SCCs are solved in a parallel way thanks to an iterative algorithm called JNRA (Jacobian based Newton-Raphson Algorithm) inspired by traditional Newton-Raphson algorithms.

Stepping DNG Master can be parametrized with constant or variable steppers. Variable stepping is more efficient as integration steps can increase when state variables are not strongly evolving. On the contrary, when the error controlled by the Master is too important, a smaller step is required and synchronization between FMUs is possible with the rollback feature offered by the FMI standard. A fixed step size (constant stepping) is used when FMUs cannot rollback.

AI-based model integration

Global view of the software architecture In order to use a Python AI-based controller in an FMIbased co-simulation, we propose a software architecture that uses a dedicated FMU having the same input and output parameters as the controller, but acting as a proxy between the co-simulation environment and the external AI-based controller that can be deployed on a local or remote machine.

The proposed architecture is based on the following components (see figure 3):  An inter-process communication mechanism, where the FMU controller proxy acts as a client and the effective controller acts as a server.  An encoding/decoding message mechanism used to encode in binary format the structured messages transmitted between the client and the server.  The effective (AI-based) controller, an external module implemented with the most suitable programming language and libraries. It requires dynamic interaction with the physical models.  The FMU controller proxy, a new type of FMU integrated in the co-simulation environment. This FMU has the same inputs and outputs as the controller. It acts as a proxy whose objective is to communicate with the effective controller. To ensure communication between the FMU controller proxy (client) and the effective AI-based controller (server) we use the ZeroMQ (ZeroMQ, n.d.) middleware. ZeroMQ is a messaging system that uses sockets to carry atomic messages. ZeroMQ allows different messaging patterns such as synchronous Request/Response, asynchronous Request/Response, Publish/Subscribe, or Push/Pull. To establish the communication between the FMU controller proxy and the effective controller, we use synchronous Request/Replay messaging type (figure 2). In this pattern, the client sends a request and the server replies to it. The server blocks on receive until it receives a request and the client blocks on send until it receives a reply back from previous request. The low-level library of ZeroMQ is implemented in C++ and exposes a C-API. ZeroMQ supports binding for several languages such as Python with PyZMQ library. It offers a native implementation for some languages such as Java with JeroMQ library (Jeromq, n.d.).

Inter-process communication mechanism

The encoding/decoding message mechanism

In our architecture, there are two types of messages exchanged: control actions, and the states of some FMU physical models. In order to encode and to decode these messages, we use the Google protocol buffers (Protobuf) which is a mechanism for serializing structured messages. With Protobuf, the structure of the messages exchanged must be specified using the protocol specific format. Then, for each language, Protobuf generates a code to encode and decode the messages. In our architecture, the generated code is used in the effective controller and in the FMU proxy controller. The effective controller AI-based controllers can be implemented using different languages. However, most recent, advanced and powerful deep learning algorithms are based on Python libraries such as TensorFlow, Keras or keras-rl. We implemented the building heater controller in Python using these libraries.

As for the specific type of AI-based control, we look into Deep Reinforcement Learning schemes as a way to integrate an adaptive control mechanism. Hence, at each co-simulation iteration, the DRL controller receives the system state and decides on a control action. Since the controller acts as a server, it sends an action every time it receives state information of the simulated physical system. Therefore, the controller implements the ZeroMQ messaging patterns "synchronous Request/Response" using the Python PyZMQ library.

Generation of the FMU Controller proxy

The FMU controller proxy is the FMU integrated in the co-simulation platform. We implement it in Java and export it into an FMU using the Java FMU-builder tool part of JavaFMI [START_REF] Hernández-Cabrera | javaFMI[END_REF]. The FMU controller proxy acts as a client: at each iteration of co-simulation, it sends the system state to the effective controller and receives the control action. Similarly to the effective controller, the FMU controller proxy implements the ZeroMQ messaging patterns "synchronous Request/Response" using the Java JeroMQ library (Jeromq, n.d.).

Key features of the proposed approach

The proposed approach has several advantages over the approach of generating an FMU from a Python program and its dependencies:

 The controller can be executed on the local machine or on a remote machine. In the case where the controller requires large computational resources as it might be the case for Deep Learning, it is possible to deploy it on remote machine with an adapted computing power (e.g. GPU machine).  The phase of code porting to the co-simulation execution environment (e.g., different CPU, operating system, etc.) can be avoided. Depending on the operating system, language and library, code porting can be very complex and time consuming.  The generation of large FMUs is avoided when the AI model is based on libraries of significant size.  We keep the possibility to easily evaluate several algorithms developed with different languages, different frameworks and for different platforms. In the following section, we use this new architecture to assess the efficiency of a DRL-based controller for heating control in a residential buildings.

Simulation and experiments

Description

For this Use Case, we built a single-family house energy model using the BuildSysPro Modelica library (BuildSysPro, n.d.;[START_REF] Plessis | BuildSysPro: a Modelica library for modelling buildings and energy systems[END_REF]. The building envelope is a detailed monozone thermal model including 1-D walls, windows as well as air renewal to take all the heat transfer modes into account (figure 4). The global building model, as shown in figure 5, includes a weather file reader, and two ways of controlling heating: by means of an ideal PI controller, or by controlling directly the power injected in the building air node. In both cases we assume the heating system to be ideal, such as the injected heating power is equal to the consumed electrical power. The building model is used to compute indoor temperature by taking into account the dynamics of the building envelope, the use of a heating system, and the impact of external weather conditions. The proposed controller is also connected to the weather reader in order to integrate external environmental variables, as well as indoor temperature and the household occupancy schedule.

To demonstrate the functioning of our proposed architecture, discuss the effectiveness of DRL for heating, and pave the way for scaling-up at the district/smart grid scale, we use the DACCOSIM NG environment to cosimulate the household and the controller (figure 3).

To implement the DRL controller, we use a Deep Q Learning (DQN) approach [START_REF] Mnih | Humanlevel control through deep reinforcement learning[END_REF]. DQN has been studied in previous litterature as well as other Deep learning based algorithms [START_REF] Wei | Deep reinforcement learning for building HVAC control[END_REF][START_REF] Nagy | Deep Reinforcement Learning for Optimal Control of Space Heating[END_REF] . In our proposed method, the controller acts on the heating system injected power, making control more challenging but opens new opportunities as elaborated in the conclusion. Our solution is implemented as follows.

Controller state space

In this model the heating control is impacted by indoor temperature and the outdoor temperature 𝑇 𝑜𝑢𝑡 (°C).

Since, in order to use DQN, Markov property should be valid, we found that including historical information on 𝑇 𝑖𝑛 is required. This way we include in the control process relevant information on the building thermal state and inertia that we don't directly access through the indoor temperature or external environmental variables at each time step. So, the state at time step t is represented by 𝑆 𝑡 = (𝑇 𝑜𝑢𝑡 𝑡 , 𝑇 𝑖𝑛 𝑡 , … , 𝑇 𝑖𝑛 𝑡-𝑛). Input values, in this case, are continuous.

Controller action space

We propose to control the power consumed by the heating system and provided to the building, assuming the heater efficiency is equal to 1. This provides a larger flexibility by modulating power input. For this, our action space is represented by a discretisation of power into power levels. These levels include turn off capability associated with a power level equal to 0. Action taken at time slot t is represented by 𝐴 𝑡 = (𝑃 𝑡) where 𝑃 𝑡 denotes power consumption.

Controller model and q-values update

The controller model encoding q-values is an Artificial Neural Network (ANN) formed of an input layer expressing the state space, two hidden layers with a sigmoid activation function and final output layer expressing Q values for each action.

In the training process, q-value estimates are updated following eq. (1):

𝑄 𝑡+1 (𝑠 𝑡 , 𝑎 𝑡) = 𝑄 𝑡 (𝑠 𝑡 , 𝑎 𝑡) + 𝛼 (𝑟 𝑡+1 + 𝛾 max 𝑎 𝑡+1

𝑄 𝑡 (𝑠 𝑡+1 , 𝑎 𝑡+1) -𝑄 𝑡 (𝑠 𝑡 , 𝑎 𝑡))

(1)

In eq. (1), 𝛼 ∈ [0,1] is the learning rate where 0 is associated with no learning and 1 is associated with leaning and no memory on previous q-values.

The discount factor 𝛾 ∈ [0,1] allows in our case to integrate in the importance of heating inertia. Hence, a value of 0 does not integrate any effect of decision on the future and 1 attributes a high importance to future states and associated optimal decisions. The controller is assessed based on its capability to follow a target temperature denoted by 𝑇 𝑟𝑒𝑓 . We use reward function of eq.(2) to model the desired behaviour.

𝑟 𝑡 = -(𝑇 𝑖𝑛 𝑡 -𝑇 𝑟𝑒𝑓) 2 (2)
The training process is conducted on batches from historical decisions and state transition experience.

So given a batch size N, a batch is the set of N latest observations ending by the last state-decision made.

Action selection strategy

In the learning process, the decision is taken such that the action providing the greatest q-value is selected. We found that through learning, an implicit exploration will take place around the desired setpoint. Implementing a εgreedy random exploration, in this case, showed worst results as it drives the exploration in the direction of overheating or underheating which are not in our zones of interest.

Results and discussion

Analysis parameter taken to implement the DQN described previously are summarized in table 1. The simulation period is represented by 4 years of winter period (2 years in term of total time). For ANN model parameters, input historical information on 𝑇 𝑖𝑛 is chosen n=1. Hidden layers are of size 16. Batch size N is taken equal to 576 (2 days). The model is implemented using the Tensorflow library.

Controller temperature tracking results are shown in figure 6. The controller is capable of remaining very close to 𝑇 𝑟𝑒𝑓 with an average temperature of 21.83°C and a standard deviation of 0.92 during the first winter period then an average temperature of 21.9°C and a standard deviation of 0.58 in each of the subsequent winter periods;

As a matter of fact, temperature is kept within 0.5 degree of setpoint 83% of the time and within 1 degree 93% of the time. Indeed, as shown in figure 7, it requires 8100 iteration for the algorithm to reach a stable behaviour (~1 month). While giving the possibility of taking 3 power levels, in the end, the controller only makes on/off decisions with on corresponding to 2000W.

Conclusion

We presented a novel methodology to ease the testing of new AI-based adaptive control models when used in a cosimulation environment. For this, we capitalise on efficient technologies allowing to work around FMU model encapsulation, to propose a proxy controller which is able to communicate with external AI libraries. This methodology could be extended to any type of communication between an executable FMU model in a co-simulation environment and an external algorithm. An efficient DRL method has been presented and shows the capability of the controller to remain in the vicinity of the desired temperature setpoint. Since proposed solution acts on power, an extension of the solution will be developed and analysed in future works to provide demand side management services targeting a desired power profile on a neighborhood level. In this case, power is modulated in a way that temperature does not stray away from setpoint expressed by the user while providing service to the power grid. This will yield in a more complex model that can integrate for instance strategies to reduce energy cost based on a price signal. We also plan on conducting further analysis on the impact of missing variables and the way it can affect the efficiency of DRL control, as well as computational performance and overhead when scaling up to the district level.

Figure 1 :

 1 Figure 1: General co-simulation architecture (DACCOSIM NG tool, n.d.).

Figure 2 :

 2 Figure 2: request-reply pattern.

Figure 3 :

 3 Figure 3: AI-based control architecture.

Figure 4 :

 4 Figure 4: Modelica building envelope model.

Figure 5 :

 5 Figure 5: Building model for heating control, to be exported as an FMU.

Figure 6 :

 6 Figure 6: Evolution on indoor and external temperature as a function of time.

Figure 7 :

 7 Figure 7: Evolution of reward over iterations.

Table 1 :

 1 Numerical analysis parameters.

	Parameter Value	Parameter Value
	Simulation	63072000s	𝛾	0.2
	period	(2 years)		
	co-	300s	Action	[0, 1000,
	simulation		power	2000]
	time step		levels (W)	
	𝛼	1	𝑇 𝑟𝑒𝑓	22°C

Acknowledgement

This research work has been carried out at the Institute of Technological Research SystemX, within the scope of a joint collaboration with EDF in the Paris-Saclay Energies (PSE) project.