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Abstract: In this paper, we analyze the sensitivity of the optimal mixes to cost and variability
associated with solar technologies and examine the role of Thermal Energy Storage (TES) combined to
Concentrated Solar Power (CSP) together with time-space complementarity in reducing the adequacy
risk—imposed by variable Renewable Energies (RE)—on the Moroccan electricity system. To do
that, we model the optimal recommissioning of RE mixes including Photovoltaic (PV), wind energy
and CSP without or with increasing levels of TES. Our objective is to maximize the RE production
at a given cost, but also to limit the variance of the RE production stemming from meteorological
fluctuations. This mean-variance analysis is a bi-objective optimization problem that is implemented
in the E4CLIM modeling platform—which allows us to use climate data to simulate hourly Capacity
Factors (CFs) and demand profiles adjusted to observations. We adapt this software to Morocco and
its four electrical zones for the year 2018, add new CSP and TES simulation modules, perform some
load reduction diagnostics, and account for the different rental costs of the three RE technologies by
adding a maximum-cost constraint. We find that the risk decreases with the addition of TES to CSP,
the more so as storage is increased keeping the mean capacity factor fixed. On the other hand, due to
the higher cost of CSP compared to PV and wind, the maximum-cost constraint prevents the increase
of the RE penetration without reducing the share of CSP compared to PV and wind and letting the
risk increase in return. Thus, if small level of risk and higher penetrations are targeted, investment
must be increased to install more CSP with TES. We also show that regional diversification is key to
reduce the risk and that technological diversification is relevant when installing both PV and CSP
without storage, but less so as the surplus of energy available for TES is increased and the CSP profiles
flatten. Finally, we find that, thanks to TES, CSP is more suited than PV and wind to meet peak loads.
This can be measured by the capacity credit, but not by the variance-based risk, suggesting that the
latter is only a crude representation of the adequacy risk.

Keywords: renewable energy; concentrated solar power; photovoltaic; electricity mix; storage;
Morocco

1. Introduction

Climate mitigation in the energy sector, as well as the global increase of the energy demand are
the main drivers of an energy transition towards Renewable Energies (REs) technologies. Among the
RE sources, solar energy is one of the most promising source to replace fossil fuels in meeting the
world’s future energy needs [1]. Currently, there are two main ways for converting solar energy into
electricity: Solar Photovoltaic (PV) and Concentrated Solar Power (CSP). In 2019, the top PV markets
were China, the European Union, the United States and Honduras with the highest PV-penetration
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level by far [2]. Suited sites for CSP are distributed along the descending branches of the Hadley
cells in the subtropical arid regions, which display minimum cloud cover and maximum direct solar
radiation, particularly in the Middle East and North African countries [3–5], leading to a reduced
cost of the CSP MWh in this region compared to Spain [6], the country with the world’s largest CSP
capacity in 2018.

However, for any particular power system, RE portfolios including these solar technologies
are likely to result in different patterns of cost, mean production and variability, which have
a great influence in the decision whether PV or CSP or CSP with Thermal Energy Storage (TES),
hereafter referred as CSP-TES, should be employed.

In terms of cost, PV in Morocco is approaching grid parity [7] as a result of declining costs during
the last years [8] and this trend is expected to continue [9]. CSP, on the other hand, has high cost of
capital [10], even its Levelized Cost of Electricity (LCOE) tends to be lowered by its high capacity
factor [11], and therefore requires policy mechanisms to lower the investment risk [12,13]. In addition,
although not commonly used in existing PV farms, batteries are likely to make PV more expensive
than CSP combined with relatively cheap TES [14].

In terms of production, CSP can only harness direct solar radiation, making it more sensitive to the
presence of clouds and dust in the atmosphere. On the contrary, PV uses both direct and diffuse solar
radiation so that its average production tends to be less variable compared to CSP. As a consequence,
current commercial CSP technologies are only suited for large capacities and in specific locations,
which tend to be far away from consumption sites, while PV systems can be installed everywhere,
from distributed to centralized plants, and are therefore accessing a larger market than CSP [15].

In terms of variability, it changes over time on hourly, daily, and seasonal scales, as well as
regionally [16,17] for PV and CSP without storage. In addition to the fluctuation of solar radiation
intensity (i.e., by clouds and shading of modules/collectors), the intermittency of the production from
these technologies can lead to an oversupply at midday and a trough in the net load in the evening,
which impact the system’s ramping requirement [18] and the integration costs [19,20]. This effect is
particularly striking in the dry regions with high solar resources. The daily variability of wind power,
in some zones, is also large but more spread over the day since it is less tightly coupled to the diurnal
cycle. An advantage of CSP over PV, in these generally dry and warm regions, is its positive correlation
with the summer peak demand for cooling because the efficiency of the steam cycle’s thermodynamic
conversion to electricity increases with increasing temperature, while for PV cells, higher temperatures
reduce their efficiency. CSP-TES, on the other hand, is able to directly store heat during daylight hours
to convert it into electricity later on for several hours. By increasing the size of the CSP solar field
compared to the electricity-generating turbine, as measured by the solar multiple [7,21,22], not only
is the mean of the capacity factor increased, but its relative variance is reduced as well. The solar
multiple, which is proportional to the number of hours of production from the thermal energy stored,
is thus a key parameter of CSP plants. As opposed to PV, CSP without storage and wind, this makes
CSP-TES a partly dispatchable resource which could constitute an interesting solution to flatten the
daily RE-production profile and limit ramping and curtailment concerns [23]. Therefore, the capacity
credit—which expresses the fraction of the rated capacity able to meet peak demand—of CSP-TES
tends to be higher than that of PV and CSP without storage since CSP-TES can provide for the daily
and seasonal peak loads and thus contributes to system adequacy, that would otherwise be satisfied
by fossil-fuel generation [24], as shown also by Oukili et al. for Morocco [25,26], leading to an increase
in its economic value [27]. For instance, Brand et al. [22] find that at high RE penetrations, CSP-TES
may prove more optimal than PV, due to increased reserve requirements [28], while PV tends to suffice
for low penetrations [7]. It is also shown [22] that CSP-TES adds more value to Morocco’s actual
coal-based power system than to Algeria’s gas-based system, since gas-fired plants ramp up and down
more easily than coal-fired plants. Richts et al. [7] expresses the economic advantage of CSP-TES over
PV in Morocco by the difference cost—the LCOE minus avoided costs of the conventional power
system—and find that CSP-TES yields a lower difference cost than PV.
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Therefore, the high level of capital required by CSP-TES must be weighed against the avoided
production costs of the conventional power system—needed to smooth out any power fluctuations
caused by variable wind and solar energy—thus implying less energy dependency to fossil fuels, less
carbon costs, less flexibility options costs and less integration costs. However, if the variability of the
production is ignored, the large cost of CSP-TES can lead to favor PV over CSP-TES. This differences
between solar technologies must be accounted when designing an optimal portfolio based on RE
technologies. Such approach has rarely been addressed explicitly to the authors’ knowledge.

Pragmatic approaches are carried out, relying for instance on the sensitivity of the optimal
mix to technology costs [29], the technical and economic feasibility of systems with high RE
penetrations [30,31], the impact of CSP-TES in such systems [32,33], the role of storage on the economic
viability of CSP-TES [22,34–36], or the analysis of wind energy costs in different sites of Morocco [37]
and the role of other flexibility options than CSP-TES such as pumped hydro storage (PHS) and
interconnections on the Moroccan load [38]. Studies combining different energy with CSP have
been performed, including the combination with wind energy to reduce investment and electricity
production prices [39] or with PV plants to enhance energy production and profitability [21,40,41].
Richts et al. [7] perform technical and economical simulations of CSP and PV in Morocco in which
different scenarios of both technologies are modeled, highlighting the advantages and disadvantages
of each one. Du et al. [42] optimize operational decisions in a forecasting model for power systems with
CSP at high RE penetrations. Rye et al. [43] analyze the role of storage in accommodating a large-scale
integration of RE in Morocco using a Flow-Based Market Model.

So far, existing research tend to focus on optimal mixes based on RE. For instance, Alhamwi et al.
apply, for Morocco, the standard deviation of mismatch energy and the so-called storage-model
approach adapted from previous contributions [17] to quantify the optimal mix of a 100% solar-wind
scenario [44], and of solar-wind-hydropower combination [45,46] taking only the resource variability
into account. Tantet et al. [47] uses the mean-variance analysis for the specific case of Italy to derive
multiple scenarios of regional electricity mixes based on PV and wind only accounting explicitly
for climate variability. However, none of these studies address the response of regional RE portfolio
including different solar technologies and wind energy as well, to the integration of CSP with increasing
storage capability and to the differences associated with solar technologies’ rental costs.

Our study complements these research works as it is an analysis of the sensitivity of a RE
portfolio based on PV, wind and CSP to cost and thermal storage duration, making use of regional
and technological synergies in the optimization of the proportion of wind and solar resources in
the electricity mix. This study also evaluates the impact of these synergies together with TES on
the risk of not covering the load. We use Morocco as case study as it is relevant country to analyze
objectively various scenarios mixes of PV/CSP/CSP-TES share. Morocco is indeed located in the
best suited region of the world for solar energy production with favorable technical and economic
conditions for achieving large-scale implementation of solar energy [48,49]. In particular, Morocco
had 34% of its electricity covered by REs in 2018 [50] and aims at deploying 2 GW (resp. 4 GW) of
global solar installed capacity, which is equivalent to 14% (resp. 20%) of the electrical capacity by
the end of 2020 (resp. 2030) [38]. However, this strategy does not explicitly set the share of PV and
CSP, and the amount of TES associated with CSP. Currently a number of CSP plants are being
built or connected to the grid, or are planned [38], including hybrid PV-CSP-TES plants (such as the
Noor Midelt project). However, on objective approach is missing to discuss possible scenarios for
the PV/CSP/CSP-TES share in the Moroccan electricity mix. This study addresses these issues by
answering the following questions:

• How do cost and storage affect the ranges of penetration and risk where one of the solar
technologies dominates over the others?

• Does technological and regional diversification (i.e., time-space complementarity) reduce the risk
for the grid?
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• How does TES in a PV-wind-CSP mix help reduce the adequacy risk (i.e., variability of the
aggregated RE production with respect to the electricity demand)?

As a suitable tool for performing the analysis, a new Python Software called Energy for Climate
Integrated Model (E4CLIM) [47] has been utilized. In this study, we implement new modules in
the E4CLIM software to simulate the CSP solar field, thermal storage and electricity production by
the CSP power block. We also adapt E4CLIM to the Moroccan case using observed production and
demand data. In addition, to take the large difference in rental costs between PV and CSP-TES, we
add a new constraint to the optimization problem to allow the model to recommission PV, wind and
CSP/CSP-TES capacities at a cost limited by the total cost of the actual Moroccan PV-wind-CSP-TES
mix. Furthermore, finally, we implement new RE load-reduction diagnostics to take into account the
temporal adequacy of the power system.

After this introduction, we give in Section 2 a brief description of the E4CLIM modeling
platform, the mean-variance optimization framework, and the addition of a maximum-rental-cost
constraint to this software. We also present the CSP and TES modules, the RE combinations adopted,
the load-diagnostics implemented in E4CLIM, and detail the data sources for Morocco. In Section 3,
we present the model results for various penetrations and technology combinations. The results also
highlight the sensitivity of the Moroccan electricity mix to cost and storage and the benefits gained by
adding TES and by taking into account the technological and regional diversification. The last section,
Section 4, summarizes our findings, discusses the role of CSP and TES for electricity-systems adequacy,
presents some implications regarding the Moroccan electricity mix and concludes the limitations of the
current study and the ongoing research work.

2. Methodology

We first describe the previous version of the modeling platform on which this study builds
on before to develop the CSP modules that we add to it, and present the data and load-reduction
diagnostics used for the Moroccan case study.

2.1. Brief Description of E4CLIM 1.0

To elaborate electricity mix scenarios, we use the open-source Python Software Energy for Climate
Integrated Model (E4CLIM) [47] that allows from geographical data for specific area and from climate
data to simulate:

• Onshore wind production at each climate grid cell from wind speed at hub height,
generally extrapolated from 10 m wind data using an empirical power law with exponent
with default value of 1

7 [51]. The corrected wind speed is then fed to a power curve accounting
for deviations of the air density from the standard density for which the power curve has been
obtained. The air density is computed from the air temperature, pressure, and specific humidity
at the surface using the ideal gas law for moist air. We choose the Siemens wind turbine with
an electrical capacity of 2.3 MW, hub height of 101 m, rotor area of 8000 m2 and specific capacity
of 0.29 kW/m2 corresponding to the medium specific capacity and medium hub height according
to [52]. The wind production variability may be sensitive to the choice of power curve.

• Utility-scale PV production for arrays without tracking, composed of multi-crystalline silicon
cells, using the global tilted solar radiation and temperature data at each climate grid point.
The model is based on a parametric approach to model the PV efficiency ([53], Chap. 23) using
common values for a temperature coefficient of 0.004 K−1, a reference temperature of 25 °C and
a cell temperature at nominal operating cell temperature 46 °C. Each module has a nominal
power of 250 W, an area of 1.675 m2, resulting in an efficiency of about 15%. The efficiency of the
inverter is assumed to be of 86%. Note that the PV production variability may be sensitive to
the choice of the PV technology since amorphous silicon, for instance, is less sensitive to high
temperatures than crystalline.
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• Parabolic-trough CSP without or with increasing storage duration (i.e., solar multiple),
specifically developed for this study, is calculated as explained in Section 2.3.

• the regional electricity demand by taking the sensitivity of the demand to temperature into
account as well as the type of day (work day, Saturday, Sunday and holidays). The model
is a linear Bayesian regression fitted against demand observations using a grid search with
cross-validation. See ([47], Appendix A.3.4) for more information.

Before the optimization step, the solar and wind capacity factors are summed over zones and bias
corrected against observations. Finally, the E4CLIM software generates an electricity mix—ignoring the
actual mix—by optimizing the geographical and technological distribution of solar and wind capacities
using the mean-variance analysis, inspired by Markowitz’ portfolio theory [54], as an alternative to the
more traditional least-cost approach. The bi-objective optimization problem aims at maximizing the
mean RE penetration µ and minimizing the risk squared σ2 with respect to optimization constraints.
The risk can be interpreted as an adequacy risk for the electrical grid stemming for flexibility
requirements to meet the demand at any time.

The RE penetration is defined as the expected value of the ratio of total energy generation over
total demand, and can be calculated using the following Equation (1):

µ = E
[
∑
k

ωk
ηk

∑i Di

]
= ∑

k
ωkE

[
ηk

∑i Di

]
. (1)

The global risk squared is defined by Equation (2) as the variance of the total RE production over
the total demand:

σ2
global = V

[
∑
k

ωk
ηk

∑i Di

]
, (2)

where E and V represent the expected value and variance operators over time. The index k is
a multi-index representing a pair k = (i, j) of zone i and technology j. The quantity Di is the demand
for zone i, ωk represents the installed capacity for a zone-technology pair and ηk the Capacity Factor
(CF) for a zone-technology pair, so ωk · ηk represents the energy generation for a zone-technology pair.
Thus, for both objective functions, we normalize the CFs by the total demand.

The solution of the optimization problem gives the optimal installed capacity ωk as a function of
the penetration µ or risk σ and is known as the efficient frontier or Pareto front which can be visualized
in a so-called mean-risk diagram. We define three RE deployment strategies, each giving a different
Pareto front:

• A global strategy which considers the mean and the variance (µ, σglobal) of the ratio between the
total solar and wind production over the total demand.

• A technology techno (µ, σtechnology) for which the variance is defined as the sum over zones
of the variance of the total solar and wind production per technology over the total demand,
thus setting correlations between different zones to zero and keeping only those between different
technologies of the same zone.

• A base strategy (µ, σbase) for which the variance is defined as the sum over zones and technologies
of the variance of the production per zone and technology over the demand, thus setting all
correlations to zero.

In the optimization problem, some constraints are necessary. First, the capacities ωk for all k are
constrained to be positive. Second, instead of using the total installed capacity as an upper bound in the
optimization [47], so ∑k ωk ≤ ωmax, in this study, a different strategy is followed, as explained next.
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2.2. Maximum-Cost Constraint

To take into account the rental cost of CSP that differs significantly from that of PV, we use the
following maximum-cost constraint as indicated in Equation (3):

∑
k

ωkck ≤ Ctot. (3)

The constants ck := cj are the yearly rental cost of a technology j (fixed cost only, as marginal cost
of RE technologies is considered zero). The yearly rental cost cj, is computed from the lifetime
investments cost (CAPEX), the fixed operation and maintenance costs (OPEX)—which are both
annualized—the discount rate DR and the lifetime N in years, using the Equation (4):

cj =
N

∑
1

CAPEXj + OPEXj

(1 + DRj)N . (4)

The quantity Ctot is calculated by (5):

Ctot := ∑
k

ω0
kck, (5)

and represents the total cost of PV, wind and CSP-SM1.5 (CSP with a solar multiple of 1.5, as defined
below) energy capacities, ω0

k for all k, installed in Morocco in 2018 (the description of the cost data for
this study follows in Section 2.6.5).

2.3. CSP Modules in E4CLIM

To investigate how solar technologies can be differentiated in optimized electricity mixes, three
modules have been developed and added in the E4CLIM model:

• A generalized CSP module simulating the Solar Field (SF) which converts the solar radiation into
thermal energy

• A thermal energy storage module (TES) which stores the excess of thermal energy from SF
• A Power Block (PB) module which converts into electricity the thermal energy from SF and/or

from TES

In our study, we select the parabolic-trough CSP plant among other CSP technologies because it
is the most widely commercially deployed CSP technology [55], in particular in Morocco [56]. In the
following sections, CSP refers to parabolic-trough CSP with continuous north-south tracking.

For the SF modeling, we need the SF size, the Solar Multiple (SM), the collector length and
width, the focal length, the spacing between rows, the SF inlet and outlet temperatures, the angle
of incidence, the ambient temperature and the Direct Normal Radiation (DNI). For the TES and PB
modeling, we need the power production nominal capacity and the nominal PB efficiency. We adapt
these technical parameters from those of the 50 MW CSP-TES plant Andasol 1—which we take as
reference for this study. The latter are provided in Table A1.

2.3.1. Solar Field

In our model, the SF production, PSF, to be dispatched to the PB and/or the TES is given by
Equation (6):

PSF = ηSF × ASF ×DNI, (6)

where the DNI is estimated from the climate data (Section 2.6.2), ASF is the SF area and ηSF is the
overall SF efficiency. The latter is given by Equation (7):

ηSF = ηSF,geo × ηSF,opt × ηSF,th × ηSF,avail, (7)
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where ηSF,geo, ηSF,opt, ηSF,th and ηSF,avail are efficiencies respectively associated with geometrical, optical,
thermal and additional losses associated with the collectors’ availability. These efficiencies are
presented in Appendix A.2.

2.3.2. Power Block

The CSP net electrical power output, Pelec,net, is given by Equation (8):

Pelec,net = PinηPB, (8)

where Pin is the available thermal energy for PB (detailed in Section 2.3.3) and ηPB is the overall PB
efficiency. The latter is given by Equation (9):

ηPB = ηturbηgen(1− ξ), (9)

where the terms ηturb, ηgen and ξ are described in Appendix A.3.

2.3.3. Thermal Energy Storage

The amount of energy than can be stored in the TES during the day depends on the size of the SF
compared to the PB. It is characterized by Solar Multiple (SM), which is defined as the ratio between
the thermal power produced by the solar field at the design point and the thermal power required by
the power block at nominal conditions. For instance, a CSP plant with a SM of 1 has a SF large enough
to provide nominal turbine capacity under nominal irradiation conditions on the collector aperture
area. No surplus of energy is in this case available for storage. A CSP with a SM of 2 has an SF and
a TES large enough to provide nominal turbine capacity under nominal irradiation conditions and to
store about the same amount in the TES. SF size and TES capacity can be increased with SM3 and SM4.

The reference configuration of the TES is that of the 50 MW plant Andasol 1 (Table A1) with SM1.5
(around 7.5 h storage duration) [11]. In our study, SMs of 2, 3 and 4 are also considered by increasing
ASF proportionally from its reference value (Table A1) as in [7]. Moreover, no constraints on the storage
volume or on the maximum charge/discharge power are applied. We thus assume that the TES is
over-dimensioned. The state of charge SOC is thus only determined by the energy supplied to and
extracted from the TES. A case without storage is also considered, in which case the area ASF is set for
the SM to be 1.

Our TES operation aims at maximizing the power output throughout the day and night (if possible)
by following the nominal thermal capacity Ptherm,nom as much as possible. The latter is explained in
Appendix A.3.

The dispatching conditions at some time spell t are as follows:

• If PSF(t) ≥ Ptherm,nom, the excess energy PSF→TES := PSF(t) − Ptherm,nom is stored in the TES,
so that the PB produces at nominal capacity.

• If PSF(t) ≤ Ptherm,nom, the thermal energy PTES→PB := Ptherm,nom − PSF(t) is injected to the PB
from the TES, so the PB produces at nominal capacity, unless the current state of charge is not
large enough to cover this deficit, in which case the TES is emptied to inject as much energy to
the PB as possible.

The conversion of energy is always associated with losses. The TES can have an efficiency of
about 95% [23]. In this study, we consider a 90% round-trip efficiency for the TES system. Given these
dispatch conditions, the total available thermal energy injected in the PB is Pin = PSF→PB + PTES→PB,
where PSF→PB is the thermal energy that goes directly from SF to PB.

Figure 1 illustrates the TES operation over two consecutive days in summer. The top panel
shows the time evolution of thermal energies (PSF, PSF→PB, PSF→TES, PTES→PB and Pin), and the SOC
for an SM of 1.5. On day 1, at 7 a.m., when the sun rises, the SF production, PSF (orange line), increases.
Because this energy is lower than nominal thermal capacity Ptherm,nom (horizontal gray line) the first
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hours, it is directly supplied to the PB as PSF→PB (red line). At 9 a.m., the SF production becomes larger
than the nominal capacity, so the excess PSF→TES is sent to the TES (brown line) and the PB produces at
nominal capacity (red line). At 3 p.m., the SF production is smaller than the nominal capacity, so the
stored thermal energy PTES→PB is withdrawn from the TES (green line) to maintain the PB production
at nominal capacity until 6pm (blue line). At 7 p.m., the state of charge (gray dashed line) does not
allow the TES to fill the energy deficit up to Ptherm,nom, and the residual thermal energy stored in the
TES is discharged to the PB at once (blue line).
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Figure 1. Top: Time evolution of the thermal energies: Solar Field energy (PSF), Energy from Solar Field
to Power Block (PSF→PB), Energy stored (PSF→TES), Energy discharged (PTES→PB) and Total available
energy injected to the Power Block (Pin = PSF→PB +PTES→PB) and the State of charge (SOC) for a Solar
Multiple (SM) of 1.5. Bottom: Capacity factors for SMs of 1, 2, 3 and 4.

Moreover, the bottom panel of Figure 1 allows us to compare, for the same two days as in the left
panel, the resulting CFs for different SMs. One can see that, as the SM is increased, the mean of the CF
increases, while its variance decreases, since the larger solar field allows us to store more energy to
keep producing at nominal capacity the early evening (SM of 1.5 and 2) or later at night and the next
day (SM of 3 and 4).
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2.4. Optimization Experiments

To investigate the response of the Moroccan electricity mix to the integration of CSP with
increasing storage capabilities, as measured by the SM, and examine the sensitivity of the optimal mix
to rental cost (4) of PV and CSP, we carry out 6 optimization experiments summarized in Table 1.

Table 1. Optimization experiments.

Combination Wind PV
CSP

Storage SM

PV-Wind Yes Yes ∅ ∅
PV-Wind-CSP-SM1 Yes Yes No SM1
PV-Wind-CSP-SM1.5 Yes Yes Yes 1.5
PV-Wind-CSP-SM2 Yes Yes Yes 2
PV-Wind-CSP-SM3 Yes Yes Yes 3
PV-Wind-CSP-SM4 Yes Yes Yes 4

Thus, all combinations with CSP but PV-Wind-CSP-SM1 include storage. All combinations
are optimized using the same value Ctot corresponding to the PV-Wind-CSP-SM1.5 combination
(i.e., 3.96 Ge/yr).

2.5. Residual Load Duration Curve Diagnostics

The risk is an aggregate measure of the variability of the RE production which does not take into
account the specific timing of the fluctuations. However, the RE production tend to be more valuable if
it occurs during a peak load than during a low load. That is why we introduce, after the optimization
step, several additional diagnostics that reflect the impact of temporal renewable variability and
illustrate the contribution of each renewable technology to the reduction of different load bands
(i.e., peak, mid and base load).

To give a graphical representation of these properties, we show in Figure 2 the Load Duration
Curve (LDC) and the Residual Load Duration Curve (RLDC)—see Appendix B—obtained from
the analysis of Section 3. The LDC is plotted in black and the RLDC for a particular optimal
PV-Wind-CSP1.5 mix in green. To show the contribution of each technology to the RLDC, we also
represent the RLDC with PV only (brown), wind only (blue) and CSP only (orange).

We divide the LDC and the RLDC into three intervals (vertical lines in Figure 2 delimiting the
peak, mid and base time index). The peak load, associated with the 500 largest values; the mid load,
associated with the 4706 largest values; and the base load, associated with all values between the peak
and the off-peak load. The horizontal bands correspond to the load values of each load band. For each
interval of the time index 0 ≤ h ≤ 8760, we compute the load reduction by averaging the difference
between the LDC and the RLDC over the band load time index and dividing the result by the total PV,
wind and CSP capacity as following (10):

LR(h0, h f ) =

1
h f−h0

h f

∑
h=h0

LDC(h)− RLDC(h)

∑
k

ωk
=

1
h f−h0

h f

∑
h=h0

D(th)− RL(t′h)

∑
k

ωk
, (10)

where h0 and h f are the first and last time index of the load interval considered, th is the peak load time
index, t′h is the residual peak load time index. For instance, here, we define the Capacity Credit (CC) as
the peak-load reduction [57]. It is thus given by the LR for h0 = 1 and h f = 500. Similarly, the mid-load
reduction (base-load reduction) is given by the LR for h0 = 1 and h f = 4706 (resp. h0 = 1 and
h f = 8759). In addition, for each interval, the load reduction is decomposed into a contribution from
each technology.
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Figure 2. LDC (plain black), RLDC (plain green), RLDC for PV only (dashed brown), RLDC for CSP
only (dashed orange), and RLDC for wind only (dashed blue) for the optimal PV-Wind-CSP-SM1.5
mix for the global strategy with the maximum-cost constraint and at a mean penetration of 20%.
See Section 3 for more information.

2.6. Data

2.6.1. Domain, Zones and Technologies

Morocco is located in the Maghreb region in North Africa. It is bordered to the North by the Strait
of Gibraltar and the Mediterranean Sea, to the South by Mauritania, to the East by Algeria and to the
West by the Atlantic Ocean (see the inset graph of Figure 3).

To assign the administrative regions and the climatic grid cells to the electrical zones in E4CLIM,
we use the geographical data downloaded from the Global Administrative Areas (GADM) online
database (https://gadm.org/). The available data for Morocco do not include Western Sahara because
it is considered a non-autonomous territory by the United Nations (UN)—as mentioned in the caption
of Figure 3. Yet, the Moroccan electrical zones and the corresponding data provided by the ONE
cover Western Sahara. We thus consider the region covered by Morocco and Western Sahara and
concatenate the GADM data to define the electrical zones. The available administrative regions have
been aggregated in the 4 electrical zones (Figure 3) referred as NORTH, CENTER, EAST and SOUTH.

Only wind, solar PV and CSP are considered as renewable energies in this study.
Moreover, electricity power can flow unconstrained from any generation site to any demand site
(no network constraints and no exchanges with other countries). Moreover, the mismatch between
the demand and the renewable-energy production is not taken into account as the mean (1) and
risk (2) from the optimization problem are used as proxies for the service needed from the conventional
plants and imports.

https://gadm.org/
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Figure 3. Morocco’s electrical zones. Inset: Morocco’s undisputed territory (dark green) and Western
Sahara (green), a territory claimed and occupied by Morocco.

2.6.2. Climate Data

We use input data over the year 2018 taken from the Modern Era Retrospective analysis for
Research and Applications version 2 (MERRA-2) reanalysis [58]. The MERRA-2 reanalysis provides
hourly values of surface pressure, temperature, density wind speed and downward radiation at the
ground with a horizontal resolution of 0.5°× 0.625° in latitude and longitude, respectively.

2.6.3. Demand Data

To fit the electricity demand model, the National Office of Electricity (ONE) provides us with
a complete time series of hourly electricity demand for Morocco in 2018. For that purpose, a time series
of the national demand is broken down by electrical zone using scaling factors provided by the ONE
and based on the size, population density and economic activity of each zone. These factors are of
10%, 83%, 5% and 2% for the NORTH, CENTER, EAST and SOUTH zones, respectively. The national
calendar of public holidays for Morocco, used to separate the impact of working days, Saturdays and
days-off on the electricity demand is collected from the web portal (https://publicholidays.africa/).
The yearly-means of the fitted demand are reported in Table 2.

Table 2. Predicted yearly demand for 2018 (fitted) and CFs averaged over the same year (after bias
correction) per zone and technology.

Zones Demand (TWh/yr)
CFs (%)

Wind PV CSP-SM1 CSP-SM1.5 CSP-SM2 CSP-SM3 CSP-SM4

NORTH 0.45 37.8 19.2 33.8 34.0 34.0 34.0 34.2
CENTER 3.76 40.0 19.6 39.6 39.6 39.5 39.6 39.8
EAST 0.22 47.3 21.1 38.4 38.4 38.4 38.4 38.6
SOUTH 9.04× 10−2 46 21.7 41.1 41.1 41.1 41.1 41.3

2.6.4. Capacity Factor Data and Bias Correction

Once the regional wind, PV and CSP CFs are computed at each grid cell of the MERRA-2
reanalysis, they are spatially averaged over each zone. Then, the CF prediction is statistically adjusted

https://publicholidays.africa/
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to 2018 observations so that the hourly CFs computed from the climate data are rescaled for their
averages over the year 2018 to coincide with the averages of the observed CFs over the same year
(Appendix C.2). For zones where no data are available for a given technology (marked by an empty
set ∅ in the Tables A2 and A3), a bias corrector averaged over all available zones for that technology is
applied to the CF computed from the climate data for that zone and technology.

We compute the CFs, for each technology and zone, from the 2018 wind, PV and CSP installed
capacities, ω0

k for all k, and productions given in the Tables A2 and A3, respectively. The geographical
distribution of capacities presented in Table A2 is also represented in Figure A1. The data are derived
from Table A4 where we compile data from various sources. For the CSP, only the Noor 2 and Noor 3
power plants in CENTER are selected to compute a CF corresponding to a SM of 1.5. The reference
capacities are also used to compute the maximum total cost (5).

The yearly-means of the resulting corrected CFs and the predicted yearly demand for 2018 are
reported in Table 2 for each zone and technology. It shows that wind CFs are the largest, with CSP CFs
following before PV CFs. It thus appears that solar tracking by parabolic CSP more than compensates
for the absence of conversion of diffuse radiation compared to PV.

It is important to note that, although higher SMs are obtained by increasing the SF area, the bias
correction is bringing the means of the CFs for different SMs to a similar value. This is the effect
looked after since the corresponding costs (see Section 2.6.5) are kept the same even though larger
SF areas should in principle cost more. On the other hand, the variance of the CFs is decreased for
higher SMs thanks to the relative increase in storage. Doing so, the optimization problem is only
sensitive to the change of the variance associated with the change of the SM (see discussion of the
maximum-penetration ratios and the minimum-variance ratios in the next Section 3).

2.6.5. Cost Data

Except for the discount rate, the economic data needed to compute the yearly rental cost ck (4)
come from the scenario-based cost trajectories to 2050 of the European Commission Joint Research
Center (JRC) [52] for the year 2015. They include the following power production technologies: onshore
wind turbines with medium specific capacity and medium hub height, utility-scale PV without tracking
and parabolic trough with 6 to 8 hours storage (equivalent to SM1.5). In our study, we neglect the cost
of TES capacity as TES is cheap [14]. The system cost is much more sensitive to the cost of the power
technologies than to the cost of storage [29]. The cost of CSP is kept the same for different SMs, as
discussed in the previous Section 2.6.4. A real discount rate has been evaluated between of 4 and 5%
in Morocco ([59], p. 27), so a value of 4.5% is used, in this study, for all technologies. This cost data and
the resulted yearly rental cost—calculated using Equation (4)—are summarized in Table 3. It shows
that the rental costs of wind and PV are relatively comparable, while they are more than four times
lower than that of CSP.

Table 3. Capital investment, fixed operation and maintenance costs, lifetime are from the European
Commission Joint Research Center (JRC) technical report [52] for the year 2015 (see Tables 12 and 10
for PV, Tables 2 and 5 for wind and Tables 15 and 16 for CSP), the discount rate is from the Design
and Sustainability of Renewable Energy Incentives: An Economic Analysis Report ([59], p. 27) and the
yearly rental cost per technology calculated using Equation (4).

Technology Wind PV CSP

Lifetime Capital Investment Cost (Me/MW) 1.35 1.02 6.00
Fixed Operation and Maintenance Cost (Me/MW) 4.05× 10−2 1.73× 10−2 1.02× 10−1

Discount Rate (%) 4.50 4.50 4.50
Lifetime (years) 25 25 30

Yearly Rental Cost (Me/MW/yr) 1.37 1.03 6.06
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Injecting the cost and capacity data from Tables 3 and A2, respectively, in (5) yields a maximum
total cost, Ctot, of 3.96 Ge/yr.

3. Results

Approximations of the fronts of the mean-variance problem (Section 2.1) are represented in the
left panels of Figure 4 for the PV-Wind (top), PV-Wind-CSP SM1 (middle) and PV-Wind-CSP-SM1.5
(bottom) combinations. The corresponding plots are also represented in left panels of Figure 5 for
PV-Wind-CSP-SM2 (top), PV-Wind- CSP-SM3 (middle) and PV-Wind-CSP-SM4 (bottom). The risk,
σglobal/technology/base, is in abscissa and the mean penetration (1), µ, in ordinate.
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Figure 4. Left: approximations of the fronts with the risk, σglobal/technology/base, in abscissa and the
mean penetration (1), µ, in ordinate. Right: shares of wind (blue line), PV (brown line) and CSP
(orange line) capacities versus the mean penetration for the global strategy with maximum-cost
constraint. Top: PV-Wind. Middle: PV-Wind-CSP-SM1. Bottom: PV-Wind-CSP-SM1.5.
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Figure 5. Left: approximations of the fronts with the risk, σglobal/technology/base, in abscissa and the
mean penetration (1), µ, in ordinate. Right: shares of wind (blue line), PV (brown line) and CSP
(orange line) capacities versus the mean penetration for the global strategy with maximum-cost
constraint. Top: PV-Wind-CSP-SM2. Middle: PV-Wind-CSP-SM3. Bottom: PV-Wind-CSP-SM4.

In each panel, different fronts are represented. Each point of the front represented by the plain blue
curve is associated with a Pareto-optimal mix, taking into account correlations between technologies
and zones (global strategy) while satisfying the maximum-cost constraint (3). The straight black
line passing through the origin represents the front for the global strategy as well, but without the
maximum-cost constraint. Points to the right of this front are not Pareto optimal. Points to the left of
this front (in gray) are not feasible.

The 2018 mix, or actual mix, is represented by the gray cross. In addition, particular optimal
mixes from the global front with the total-cost constraint are depicted. The blue triangle represents
the optimal mix with the same penetration as the actual mix, namely the penetration-as-actual mix.
The blue diamond represents the optimal mix with the same risk as the actual mix, namely the
risk-as-actual mix. The blue square represents the optimal mix with the largest penetration,
namely the maximum-penetration mix. The blue plus represents an optimal mix for which the
maximum-constraint is activated but with moderate penetration, namely the cost-activated mix.
The black dot is the point with the largest penetration to be on both the constrained (plain blue line)
and unconstrained (plain black line) global fronts, namely the cost-activation mix. In other words,
it represents the optimal mix with the highest penetration for which the maximum-cost constraint is
not active.
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The right panels of Figures 4 and 5 represent, as a function of the penetration and for the
constrained global front and different combinations, the shares of wind (blue line), PV (brown line)
and CSP (orange line) capacities summed over all zones. The blue, brown and orange crosses represent
respectively the shares of wind, PV and CSP capacities for the actual mix. The dashed vertical line is
the penetration level to the right of which the maximum-cost constraint is active and corresponds to
the black dot in the left panels.

In the following subsections, we examine common features for all combinations which help
understand the general behavior of the model, draw insights on the sensitivity of the optimal mixes
to the cost of solar technologies and the CSP’s SM, and evaluate the effect of TES and of correlations
between Capacity Factors (CFs)—for different zones and/or technologies—on the risk adequacy.

3.1. Optimal Mixes Features Common to All Combinations

Comparing the panels from Figures 4 and 5, some features of the fronts and technology shares
remain unchanged from one combination to the other. The results are qualitatively different at low
and at high penetrations.

3.1.1. At Low Penetrations

As long as the constrained global front (plain blue) coincides with the unconstrained one (straight
black) at low penetrations, the shares of the different technologies in the mix are independent of the
penetration (see the side of the right panels of Figures 4 and 5 to the left of dashed line). At such low
penetrations, little capacity is invested in so that the maximum-cost constraint is satisfied without
activation. In fact, we show in Appendix D.3 that as long as the maximum-cost constraint is inactive
and if we assume that all the cross-correlations between the normalized CFs are zero (i.e., if the
covariance matrix is diagonal), all optimal capacities are positive and proportional to what we call the
minimum-variance ratios and can be estimated by Equation (11):

E
[

ηk
∑i Di

]
Var

[
ηk

∑i Di

] . (11)

In this case, the optimal mixes are not sensitive to rental costs. The minimum-variance ratios are
given in Table 4. Different renewable combinations lead to differences in this ratio (see Section 3.2).

Table 4. Minimum-variance ratios (103 MW) given by (11).

Zones Wind PV CSP-SM1 CSP-SM1.5 CSP-SM2 CSP-SM3 CSP-SM4

NORTH 3.30 11.4 5.30 10.2 11.3 24.8 61.3
CENTER 11.8 12.3 5.64 12.6 14.2 43.0 400
EAST 8.41 11.3 5.58 12.3 13.8 39.0 223
SOUTH 35.6 10.8 5.54 12.4 14.0 43.7 750

To investigate the role played by correlations between CFs for different zones
(regional diversification) and technologies (technological diversification), we compare the global
(black line), technology (dashed black line) and base (point-dashed black line) fronts without the
maximum-cost constraint (left panels of Figures 4 and 5). These unconstrained fronts agree with
the corresponding fronts with the maximum-cost constraint (only the global one being represented,
in blue) only at low penetrations, when this constraint is inactive. They thus help understand the role
of correlations at low penetrations only. In the technology strategy, all correlations between different
zones are ignored, while, in the base strategy, correlations between different technologies of the same
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zone are also ignored (Section 2.1). These fronts are straight lines with a slope given by the mean-risk
ratio (12),

α :=
µ

σglobal
, (12)

at any point on the front. This ratio quantifies the increase in percentage point in the mean penetration
achieved by letting the standard deviation rise by one point. Its values for the three strategies and six
combinations are reported in Table 5.

Table 5. Mean-risk ratios (12) of the global, technology and base fronts without the maximum-cost
constraint for the different combinations.

Combination PV-Wind PV-Wind
CSP-SM1

PV-Wind
CSP-SM1.5

PV-Wind
CSP-SM2

PV-Wind
CSP-SM3

PV-Wind
CSP-SM4

Global 1.96 1.95 2.09 2.14 2.67 5.83
Technology 1.65 1.64 1.78 1.82 2.47 5.42
Base 1.58 1.37 1.53 1.58 2.26 5.35

We can see that the ratios decrease from the global to the base front so that the technology front is
flatter than the global front and the base front flatter than the technology front. This shows that ignoring
correlations between different zones and between different technologies of the same zone prevents
reducing the risk as much as possible. The impact differs between combinations (see Section 3.2).

3.1.2. At High Penetrations

At high penetrations, the constrained front shows a larger risk than the unconstrained one, as the
maximum-cost constraint prevents the investment in more capacity. As a result, technology shares are
no longer constant at such high penetrations. As the penetration is increased, the wind share increases
in all combination at the expense of the solar technologies.

As seen in Figures 4 and 5, wind is dominating the point on the constrained front with the highest
penetration (blue square in the left panels) which is the limit beyond which it is not possible to further
increase the penetration while satisfying the maximum-cost constraint and the positivity bounds on
capacities. At this point, wind penetration approaches 100%. As demonstrated in Appendix D.1 and
taken numerical accuracy into account, this mix is such that only one capacity is positive, the one of
the zone i and technology j, for which the quantity (13) that we call the maximum-penetration ratio,

E
[

ηk
∑i Di

]
ck

, (13)

is maximized. In fact, if the CFs were not normalized by the total demand, these ratios would be the
inverse of the levelized cost of electricity for a given technology in a particular zone multiplied by the
number of hours in a year.

If k∗ maximizes (13), then ω∗k = Ctot/ck and ωk = 0 for all k 6= k∗. This ratio is thus maximized
when the expectation of the CF over the total demand is large and when the rental cost is small.
The maximum-penetration ratios for each technology and zone depend on the costs (Table 3) and
average demand and CFs (Table 2), and are given in Table 6.
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Table 6. Maximum-penetration ratios (yr/Te) given by (13).

Zone Wind PV CSP-SM1 CSP-SM1.5 CSP-SM2 CSP-SM3 CSP-SM4

NORTH 60.7 41.1 12.3 12.4 12.4 12.4 12.5
CENTER 64.2 42.0 14.4 14.4 14.4 14.4 14.5
EAST 76.0 45.2 14.0 14.0 14.0 14.0 14.1
SOUTH 74.0 46.5 15.0 15.0 15.0 15.0 15.1

The maximum-penetration ratios are larger for wind than for PV, and larger for PV than for CSP.
This helps to understand why, whatever the combination including CSP, CSP is first replaced by PV
which is then replaced by wind as the penetration is increased and the maximum-cost constraint
becomes more and more active. Eventually, only wind capacity in EAST remains whatever the
combination. Thus, the maximum-penetration mix represented by the blue square in the left panels of
Figures 4 and 5 is located at the same point in the mean-risk plane for all combinations.

Optimal mixes for penetrations lower than the maximum tend to include a positive share of PV,
whatever the combination. As shown in Appendix D.2, when the maximum-cost constraint is active
and if k0 = k∗ is the index of the capacity which is installed to maximize the mean penetration, the first
capacity k that is installed after k0 for lower penetrations is the one that minimizes the quantity (14),

ck0

2Ctot

E
[

ηk0
∑i Di

]
ck0

−
E
[

ηk
∑i Di

]
ck

Var
[

ηk0
∑i Di

]
ck0

−
Cov

[
ηk

∑i Di
,

ηk0
∑i Di

]
ck

=
ck0

2Ctot

E
[

ηk0
∑i Di

]
Var

[
ηk0

∑i Di

]
1−

E
[

ηk
∑i Di

]/
ck

E
[

ηk0
∑i Di

]/
ck0

1−Corr
[

ηk
∑i Di

,
ηk0

∑i Di

] √
Var
[

ηk
∑i Di

]/
ck√

Var
[

ηk0
∑i Di

]/
ck0

(14)

In addition to identify the second capacity to be installed as the penetration is decreased from
its maximum, it reveals the role of covariances between CFs of different technologies and zones.
This quantity is minimized when the maximum-penetration ratio (13) of k is large compared to that of
k0 already installed, when the correlation between k and k0 is small and when the standard deviation
of normalized CF of k divided by its cost is small (resp. large) compared to that of k0 if the correlation
is positive (resp. negative).

The ratios for each technology and zone are displayed in Table 7. We can see that, the ratio for
wind in SOUTH is the smallest. We verify that this is indeed the second capacity to be installed by the
numerical model when the penetration is decreased from its maximum (not shown here).

Table 7. Ratios (no units) given by (14) to identify the second capacity to be installed as the mean
penetration is decreased from its maximum.

Zones Wind PV CSP-SM1 CSP-SM1.5 CSP-SM2 CSP-SM3 CSP-SM4

NORTH 0.47 0.44 0.71 0.70 0.70 0.68 0.67
CENTER 0.22 0.45 0.70 0.68 0.68 0.66 0.66
EAST ∅ 0.41 0.70 0.69 0.69 0.67 0.66
SOUTH 2.65 × 10−2 0.42 0.71 0.68 0.68 0.66 0.65

Last, we can see that the actual mix (gray cross in the left panels of Figures 4 and 5) is to the right
of the constrained global front (blue line), whatever the combination. As a result, this mix has a larger
risk than the penetration-as-actual mix (blue triangle) and a smaller penetration than the risk-as-actual
mix (blue diamond). This shows that the current geographical and technological distribution of PV,
wind and CSP in Morocco is sub-optimal and could be optimal (on the blue line) if the risk is reduced
or the penetration is increased. For instance, according to the model, if all the CSP in Morocco had a SM
of 1.5 (Figure 4f), the actual risk could be reduced by increasing the wind and CSP shares and removing
PV completely. Increasing the share of CSP would also lower the risk for higher SMs (Figure 5).
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3.2. Optimal Mix Differences between Combinations

The main interest of this study lies in the differences between combinations. We first observe,
by comparing Figure 4b with Figure 4d, that the introduction of CSP without storage (SM1) does
not significantly affect the optimal technology shares. Little CSP is indeed introduced at the expense
of PV, but PV remains largely dominant over CSP. At high-penetrations, when the maximum-cost
constraint is active, this can be understood from the fact that the larger CFs of CSP-SM1 (Table 2) are
not able to compensate for the higher cost of CSP compared to PV (Table 3), as shown by the larger
maximum-penetration ratios (Table 6) and as discussed in the previous Section 3.1.

At low penetrations, the lower share of CSP-SM1 compared to PV is explained by its lower
minimum-variance ratios (Table 4). Indeed, the standard deviations of the CSP-SM1 and PV CFs being
comparable (ignoring differences associated with diffuse radiation harvesting and solar tracking by
CSP or efficiency response to temperature changes), the lower minimum-variance ratios of CSP-SM1
are due to the larger means of the CFs of CSP-SM1 compared to PV (Table 2) and to the fact that the CF
variances tend to scale quadratically with the CF means, to first approximation. Assume for instance
that the hourly CSP-SM1 CF is 1.5 that of the PV CF. Then the mean of the former is 1.5 that of the
latter, but its variance is 1.5× 1.5 that of the latter, so that the minimum-variance ratio of this CSP-SM1
CF is 1.5 smaller than that of this PV CF.

However, with storage (Figures 4b and 5b,d,f), CSP replaces PV completely. For combinations
without CSP or for small SM (SM < 2), the large value of the minimum-variance ratio for wind
in SOUTH (Table 4)—due to the high and regular CF of wind in this zone (Table 2)—explains its
predominance at such low penetrations (Figure 4b–f and 5b). However, the larger the SM—i.e., the
larger the surplus of energy available for storage—the higher the share of CSP compared to wind,
particularly for SM > 2 (Figure 5d,f).

The high share of CSP-TES compared to PV and wind at low penetrations can be understood
from the fact that the CSP minimum-variance ratios increase with the SM to become larger than the
ones for wind and PV (Table 4), because of the reduction of the variance of the CSP CFs with the
increase of the amount of energy available for storage. The reduction of the CSP-CF’s variability due to
storage thus results in a decline of the optimal-mix risk for a given low penetration. On the other hand,
at penetrations beyond which the maximum-cost constraint is active, the share of CSP decreases for
increasing SMs since installing more CSP at a higher cost than PV and wind also means reaching the
maximum budget sooner. Thus, having more CSP at low penetrations does not imply that significantly
more CSP is installed at higher penetrations unless the maximum total cost is increased.

The effect of correlations on the optimization also varies between combinations. For PV-Wind,
the reduction of the mean-risk ratio (Table 5 and Figure 4a) is significant from the global to the
technology strategy, but less so from the technology to the base strategy. This can be understood from
the fact that correlations between different zones for the same technology are large (climatic conditions
vary little within Morocco) and must be taken into account. On the other hand, correlations between
irradiation and wind speed are weaker so that taking them into account is not as critical.

With the introduction of CSP without storage, however, the difference between the technology
and the base fronts are much larger (Table 5 and Figure 4c). In this case, correlations between PV
and CSP are large since the production of both is directly linked to temporal availability of the solar
resource (even if CSP harvests the direct radiation only which is compensated by solar tracking).
Ignoring these correlations thus leads to installing too much PV and CSP capacities, which results in
an increased risk.

As the SM is increased (Figures 4e and 5a,c,e), however, the difference between the technology
and the base front weaken. The increased available storage indeed results in weaker correlations
between PV and CSP. The differences between the global and the technology fronts are also reduced,
due to the fact that the mixes become less diversified as CSP in SOUTH becomes dominant (Table 4).
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3.3. Peak-, Mid- and Base-Load Reduction Diagnostics

For a more detailed description of the variability of the RE production, we now look at properties
of specific mixes along the LDC/RLDC defined in Section 2.5.

Whatever the combination, we select optimal mixes on the constrained global frontier at three
different levels of penetration: 16%, 20% and 27% which correspond to the penetration of the
actual, risk as actual, and cost-activated mix of the PV-wind-CSP-SM1.5 combination, respectively.
The maximum-cost constraint at 27% penetration is active for all combinations.

The properties of these mixes are presented in Tables 8, 9 and 10, respectively. These properties are:
the risk; the total PV, wind and CSP capacity; the shares of PV, wind and CSP capacity; the peak-load
(CC), mid-load and base-load reductions; and the contribution from each technology.

Table 8. Properties of the optimal mix at 16% penetration for the global strategy with the maximum-cost
constraint and for different combinations.

Combination PV-Wind PV-Wind
CSP-SM1

PV-Wind
CSP-SM1.5

PV-Wind
CSP-SM2

PV-Wind
CSP-SM3

PV-Wind
CSP-SM4

Total Capacity (MW) 1.79× 103 1.78× 103 1.63× 103 1.63× 103 1.72× 103 1.76× 103

PV Share (%) 21.8 20.5 ∅ 1.23 11.4 15.8
Wind Share (%) 78.1 78.4 77.4 76.3 68.0 64.2
CSP Share (%) ∅ 1.05 22.5 22.4 20.6 20.0

Capacity Credit (%) 30.0 31.4 36.6 40.0 35.7 35.0
from PV 3.56 3.56 ∅ 0.24 2.03 2.53
from Wind 26.3 27.5 26.4 27.5 23.3 24.2
from CSP ∅ 0.35 10.1 12.2 10.3 8.21

Mid-Load Reduction (%) 40.0 40.4 46.8 47.0 44.0 41.4
from PV 5.80 5.51 ∅ 0.32 3.22 4.42
from Wind 34.2 34.4 34.0 33.6 30.1 28.6
from CSP ∅ 0.46 12.7 13.1 10.5 8.36

Base-Load Reduction (%) 40.1 40.3 44.4 44.2 42.0 41
from PV 4.51 4.31 ∅ 0.24 2.43 3.36
from Wind 35.6 35.7 35.2 34.8 31.0 29.3
from CSP ∅ 0.35 9.13 9.14 8.48 8.22

Table 9. Properties of the optimal mix at 20% penetration for the global strategy with the maximum-cost
constraint and for different combinations.

Combination PV-Wind PV-Wind
CSP-SM1

PV-Wind
CSP-SM1.5

PV-Wind
CSP-SM2

PV-Wind
CSP-SM3

PV-Wind
CSP-SM4

Total Capacity (MW) 2.23× 103 2.22× 103 2.13× 103 2.12× 103 2.17× 103 2.18× 103

PV Share (%) 21.8 20.5 10.1 10.4 14.7 16.7
Wind Share (%) 78.1 78.3 78.7 78.3 74.5 72.8
CSP Share (%) ∅ 1.05 11.1 11.2 10.7 10.5

Capacity Credit (%) 26.6 29.7 31.3 33.5 30.8 31.1
from PV 3.94 3.52 1.73 1.81 2.23 2.37
from Wind 22.6 25.8 24.5 25.6 23.3 24.4
from CSP ∅ 0.33 5.01 6.11 5.31 4.30

Mid-Load Reduction (%) 38.8 38.8 42.4 42.6 41.1 40.4
from PV 5.60 5.26 2.60 2.80 4.00 4.54
from Wind 33.2 33.1 33.4 33.1 31.6 31.4
from CSP ∅ 0.43 6.37 6.61 5.47 4.42

Base-Load Reduction (%) 40.1 40.3 42.5 42.5 41.5 41.1
from PV 4.51 4.31 2.05 2.20 3.16 3.56
from Wind 35.6 35.6 35.9 35.7 34.0 33.2
from CSP ∅ 0.35 4.57 4.61 4.41 4.36
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Table 10. Properties of the optimal mix at 27% penetration for the global strategy with the
maximum-cost constraint and for different combinations.

Combination PV-Wind PV-Wind
CSP-SM1

PV-Wind
CSP-SM1.5

PV-Wind
CSP-SM2

PV-Wind
CSP-SM3

PV-Wind
CSP-SM4

Total Capacity (MW) 3.02× 103 3.02× 103 3.00× 103 2.98× 103 2.95× 103 2.93× 103

PV Share (%) 21.8 22.0 19.7 19.1 18.1 17.5
Wind Share (%) 78.1 77.8 80.0 80.4 81.2 81.7
CSP Share (%) ∅ 0.21 0.27 0.43 0.62 0.75

Capacity Credit (%) 23.7 26.0 24.0 23.0 25.0 24.6
from PV 3.7 3.26 2.40 2.00 2.61 2.26
from Wind 20.0 22.7 21.4 20.8 22.0 22.03
from CSP ∅ 0.06 0.11 0.22 0.30 0.30

Mid-Load Reduction (%) 36.8 36.4 37.2 37.3 37.4 38.0
from PV 5.24 5.21 4.86 4.84 4.65 4.60
from Wind 31.5 31.1 32.2 32.2 32.4 33.0
from CSP ∅ 0.08 0.15 0.25 0.31 0.31

Base-Load Reduction (%) 40.1 40.0 40.7 41.0 41.2 41.3
from PV 4.51 4.56 4.11 4.07 3.90 3.75
from Wind 35.6 35.4 36.4 36.7 37.0 37.3
from CSP ∅ 0.07 0.11 0.17 0.25 0.31

We can see from the tables that the capacity credit (CC) decreases and reach a saturation value
with increasing penetration whatever the combination. This saturation effect shows that additional
PV, wind or CSP capacities are less efficient at providing peak load at higher penetrations. This does
not mean that less conventional capacity can be replaced by RE in absolute terms, but rather that
an additional RE plant tends to serve the peak load less per unit of capacity than previously installed
RE plants do. This is also true for the mid-load reduction and the base-load reduction. Moreover, at the
penetrations considered here, there is no curtailment. In other words, the RE production never exceeds
the demand, so that the demand is never entirely satisfied by REs and no RE production is lost.
Otherwise, CSP with TES could have played a role in limiting the amount of energy curtailed by
flattening the production daily cycle.

The load reductions are mostly due to wind. The representation of the LDC and RLDCs for the
optimal PV-Wind-CSP-SM1.5 combination for the global strategy with the maximum-cost constraint
and a mean penetration of 20%, Figure 2, illustrates this effect. It is, however, associated with the high
wind shares and does not necessarily mean that the solar technologies do not contribute to reduce the
load efficiently in relative terms.

In addition, at penetrations including significant shares of CSP (Tables 8 and 9) the CC
tends to be higher for combinations with CSP with storage than for combinations without.
Moreover, the decomposition of the CC by technology shows that the increase in the CC for
combinations with storage is mostly due to CSP rather than to PV. Thus, in addition to reducing
the risk, the introduction of CSP with storage helps satisfy peak loads more than PV or wind at
equivalent shares. CSP with storage thus appears to be able to produce during hours of high loads
(consistent with [60]). However, while further increasing the SM may help increase the CC, this also
depends on the share of CSP in the mix, since the load reductions are based on CSP but also on PV
and wind.

For wind, the base-load reduction is larger than the mid-load reduction, which is larger than the
CC, for all three penetrations. Thus the larger the load, the less wind contributes to it, as is also visible
in Figure 2. For PV and CSP without storage, the mid-load reduction is larger than the base-load
reduction, which is larger than the CC, for all three penetrations. These technologies thus contribute
mainly to the mid load and little to the peak load, as is also visible in Figure 2. That their contribution
to the base load is weak can be understood from the fact that they do not generate at night when the
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load is small. On the other hand, for CSP with storage, the mid-load reduction is larger than the CC,
which is larger than the base-load reduction. Thus, while the addition of storage does not change the
fact that CSP mainly contributes to the mid load, it helps improve the CC significantly, in agreement
with the previous paragraph.

4. Summary and Discussion

We study the response of regional Renewable Energy (RE) mix—including Solar Photovoltaic
(PV) and wind energy as well—to the integration of Concentrated Solar Power (CSP) with Thermal
Energy Storage (TES). We take as objective not only to maximize the production at a given cost,
but also to provide adequacy services to the electricity system by reducing the variability of
the RE production. To this end, we take the variance of the RE production—stemming from
meteorological fluctuations—compared to the demand as proxy for the adequacy risk, thus resulting
in a mean-variance analysis. This bi-objective optimization problem is implemented in the E4CLIM

modeling platform [47], which allows one to simulate hourly Capacity Factors (CFs) and demand
profiles adjusted to observations from climate data. We adapt E4CLIM to Morocco and its four electrical
zones for the year 2018, as a special case, add new CSP and TES simulation modules to it, and use
additional diagnostics. To take the different rental costs of PV, wind and CSP into account, we take
a recommissioning approach, in which the total rental cost of a mix is constrained to be lower than
that of the actual 2018 Moroccan mix. We evaluate the impact of rental cost and CSP storage duration
on the optimal mixes together with the role of technological and regional diversification. To do so,
we analyze mixes along Pareto fronts—from low RE penetrations and low risks to high penetrations
and high risks—including: PV and wind only; PV, wind and CSP without storage; and PV, wind and
CSP with four increasing levels of storage (i.e., SM1), as measured by the Solar Multiple (SM1.5, 2, 3
and 4).

Due to the maximum-cost constraint we identify two regimes along the optimal fronts: one at
low penetrations where only the mean vector and covariance matrix (variances and covariances) of
the CFs (normalized by the total demand) play a role; and one at high penetrations where the rental
cost of each technology also matters. At low penetrations, the share of each technology is constant.
Wind dominates over PV and CSP without storage because the wind is stronger and more regular in the
SOUTH zone on average. However, increasing the surplus of CSP available for TES—as measured by
the SM—makes the CSP production more regular and favors the installation of CSP at low penetrations.
This results in a decrease of the optimal-mix risk.

In addition, because variations in climatic conditions from one zone to the other are relatively
small, it is essential to take correlations between CFs of different zones into account in order to reduce
the risk as much as possible, whatever the technological combination. This is less true concerning
correlations between the PV and wind CFs in the same or in different zones since these correlations
are relatively small, different resources being harvested by these two technologies. It is, however,
essential to take the strong correlations between the CSP-without-storage CFs and the PV CFs into
account. As the SM is increased, however, the CSP profiles flatten. The role played by correlations
between CSP CFs and CFs from other technologies is thus less important for such high SMs.

At high penetrations, the maximum recommissioning budget allowed becomes a limiting factor.
Consequently, in addition to the variances and correlations, the cost of each technology compared
to the CF mean (in our case, an analog of the Levelized Cost of Electricity, LCOE) contributes to
determining which technology is installed in which zone in priority. Wind capacities are preferably
installed, followed by PV—the rental costs of wind and PV being comparable and being much smaller
than that of CSP and the mean wind CFs being higher than the mean PV CFs—so that technology
shares are no longer constant relatively to the penetration.

The definition of the risk based on the variance of the RE production with respect to the demand
that we use is not sensitive to the timing of RE fluctuations. By diagnosing the reduction of some
measure of the peak, mid and base loads, we give a more detailed analysis of the service provided
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by each RE technology. We find that, while CSP contributes to reducing the mid load similarly to PV,
adding TES to CSP significantly increases the overall RE capacity credit of the optimal mixes.

These results allow us to discuss the role of CSP-TES compared to PV and wind in reducing the
adequacy risk by mitigating the variability of the RE production. They show that introducing CSP-TES,
in particular with large SMs, reduces the risk. For instance, according to the model, we find that the
risk of the actual 2018 Moroccan mix could be reduced by increasing the share of CSP-TES compared
to PV. Yet, our model favors CSP with TES mostly at low penetrations due to the fixed total-cost
constraint. However, if a high penetration is to be reached while preventing the risk to go past a given
reliability threshold, more investment in RE is necessary. The smaller this threshold, the more likely is
a high share of CSP-TES with a large SM to be optimal compared to PV. Thus, while the low LCOE
of PV compared to CSP may motivate producers and planners to install more PV than CSP today
when the RE penetration in Morocco not as large as what is aimed for, planning an efficient energy
transition towards a high penetration may require steering the energy market to favor CSP-TES over
PV, along with regional diversification.

Our definition of the risk is, however, based on the heuristic that the more variable the RE
production, the more adequacy services will be required to satisfy the electricity demand at all times.
This choice facilitates performing sensitivity analyses akin to the one conducted here, taking the
RE-production variability into account while avoiding having to model the whole energy system.
Yet this is at the cost of providing only an imperfect measure of the system cost. Our analysis thus
allows us to stress the role of CSP-TES in providing adequacy services, but the current set up is
too crude to make operational recommendations for the Moroccan energy transition, in particular
regarding a quantitative estimate of the optimal shares of CSP-TES and PV, let alone the optimal
distribution of SMs for CSP plants. For instance, the variance-based risk does not account for the
superior ability of CSP with storage to meet peak demand—as measured by the capacity credit and
observed in our analysis—compared to PV and wind.

A step in this direction while preserving the tractability of the optimization problem is to
compare the response of the Moroccan mix to the integration of CSP with thermal storage to PV
or wind deployed with battery or Pumped Hydro Storage (PHS); to imports/exports model or to
demand-response mechanisms such as peak shaving or load-shifting. These flexibility modules
could be simulated to evaluate their impact on the optimal mix in terms of cost and adequacy risk.
The modeling framework could also be extended to monitor greenhouse-gas emissions associated with
a given mix in order to directly take the reduction of these emissions as objective while controlling the
system cost derived from a simplified microeconomic problem [61].
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Appendix A. Solar Field and Power Block Modeling

Appendix A.1. Main Characteristics of the 50 MW Reference CSP-TES Plant

We present in Table A1 the technical parameters of the 50 MW reference CSP-TES plant mentioned
in Section 2.3.

Table A1. Main characteristics of the 50 MW CSP-TES Andasol 1 power plant adapted from
Silva et al. [62] (Appendix A).

Property Symbol Value

Total aperture area ASF 510,120 m2

Row distance between collectors drow 17.2 m
Collector length lcoll 150 m
Collector aperture width Wcoll 5.77 m
Focal length f 7.1 m
SF inlet temperature TSF,inlet 293 °C
SF outlet temperature TSF,outlet 393 °C
CSP nominal power Pelec,nom 50 MW

Appendix A.2. Solar Field Modeling

Here, we present the equations needed to compute the overall SF efficiency (Equation (7)).
The overall geometrical efficiency is given by Equation (A1):

ηSF,geo = cos (θi)× IAM× S× R (A1)

where cos(θi) is the cos-loss efficiency, IAM is the Incidence Angle Modifier-loss efficiency, S is the
shading-loss efficiency, and R is the row-end-loss efficiency. The cos-loss occurs when the sun rays
are not perpendicular to the aperture area of the collector. The angle θi is the incidence angle for
a plane rotated about a horizontal east-west axis with continuous north-south tracking. The latter
allows the collectors to operate longer during the day and the energy generated to be more uniform.
It is relevant for locations like Morocco where the variation of the daily irradiation over the year is
small [53]. The cos-loss is determined by Equation (A2):

cos (θi) =
(

1− cos2(δ) sin2(ω)
)1/2

, (A2)

where θi is the angle of incidence, δ the solar declination and ω the hour angle. When the sun is not
perpendicular to the collector plane, it affects the rays reflection and hence the receiver absorption.
The IAM is the variance in output performance of a solar collector as the angle of incidence changes in
relation to the collector plane. The IAM factor is here given by Equation (A3) and laid its formulation
from [7]:

IAM = cos (θi)
[
1 + sin3 (θi)

]
, (A3)

The losses due to shading occurs at low solar altitude angles until a critical zenith angle θz is
reached and depends on the distance between collector rows drow. The shading loss S is given by
Equation (A4) [62,63],

S =
Weff
Wcoll

=
drow

Wcoll

cos θz

cos θi
, (A4)

where Weff is the effective mirror width and Wcoll the mirror width. The quantity S ranges between
0 (full shading) and 1 (no shading). Finally, if the sun beam upon a collectors’ edges is reflected but
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does not hit the receiver, a part of the receiver with the length f tan θi does not contribute to the heat
production. The row-end loss factor is thus written as follows (A5) [62,63],

R = 1− f tan θi
lcoll

, (A5)

where f is the focal length of the collector and lcoll is the collector length.
Optical losses are caused by imperfect reflection, transmission and absorption of the collectors [7].

The overall optical efficiency of the collectors, ηSF,opt, is assumed constant and set to 73%.
Thermal losses occur on the receiver, connections and piping. Only the receiver losses

are considered and are caused by the difference between the average fluid temperature
Tfluid = (TSF,inlet + TSF,outlet)/2, with TSF,inlet and TSF,outlet are the SF inlet and outlet temperatures,
and the temperature of the receiver cover Tcover which is here 37 °C higher than the temperature of the
surrounding ambient air Tamb obtained from the climate data (Section 2.6.2). Conduction losses are
neglected. We write the radiation loss as follows (A6):

qrad = σεAreceiver(T4
fluid − T4

cover), (A6)

where σ the Stefan-Boltzmann constant, Areceiver = lcollWcollπ/C is the receiver area, C is the
concentration ratio (i.e., C = ASF/Areceiver) set to 71, and ε the receiver emissivity (equal to 0.08
for absorbing pipes with ceramic-metal material) [7].

The natural convection losses between the cover and the ambient air can be expressed by
Equation (A7):

qconv = hconv Areceiver(Tcover − Tamb), (A7)

where the parameter hconv is the loss coefficient of the receiver set to 2 W m−2 K−1 which is a low
value because of the coating and the vacuum between the absorbing pipe and cover [7].

The incident solar energy collected by the receiver is DNI C Areceiver. The total thermal efficiency
is therefore given by Equation (A8):

ηSF,th = 1− qconv + qrad
DNI× CAreceiver

(A8)

The forced convection (i.e., by strong winds) is neglected. Finally, the collectors’ availability is set
to 99.5%.

Appendix A.3. Power Block Modeling

Here, we describe the parameters needed to compute PB efficiency (Equation (9)).
The quantity ξ represents the parasitic loss, which corresponds to the electrical needs for the plant

operation. It varies roughly between 4% and 13% of the nominal gross power output of the plant [7],
we set it to 4%.

The term ηturb = (h3 − h4)/(h3 − h2) is the constant thermodynamic efficiency of an ideal
Clausius-Rankine cycle. Given the enthalpy h2 = 232.0 kJ/kg, h3 = 3002 kJ/kg and h4 = 1959 kJ/kg
corresponding to each state of the temperature-entropy diagram of the Rankine cycle for dry cooling [7],
it is here equal to 37.6%. Then, the thermal power of the turbine is calculated by Equation (A9):

Ptherm = ηturbPin, (A9)

where Pin is defined in Section 2.3.3.
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The generator efficiency, ηgen, is approximated by the following Equation (A10) [7],

ηgen =

Ptherm
Ptherm,nom

− (1− ηgen,nom)

Ptherm
Ptherm,nom

. (A10)

Here, ηgen,nom is the nominal generator efficiency, which we set to 97%, as in [7]; Ptherm,nom is the
nominal thermal capacity, which is converted from the CSP nominal electric power Pelec,nom given in
Table A1 by dividing the latter by the nominal PB efficiency ηPB,nom. The latter is derived from the
following formula (A11):

ηPB,nom = ηturbηgen,nom(1− ξ). (A11)

Appendix B. Residual Load Duration Curve Diagnostics

We explain, here, the details required to understand the diagnostics (Section 2.5) computed
after the optimization is done. The Load Duration Curve (LDC), black line in Figure 2, measures
the capacity-utilization requirements for each increment of load. A LDC is similar to a load
time series but the demand data are ordered by decreasing values, rather than chronologically.
There is thus a time index h 7→ th such that the demand D summed over all zones satisfies
LDC(h) := D(th) < D(th−1) =: LDC(h− 1). The height of a LDC at a particular hour measures the
required production at that hour. In this study, we analyze the hourly-sampled LDC for the year 2018
so that the number of samples is 8760.

The Residual Load Duration Curve (RLDC), green line in Figure 2, is similar to the LDC but the
load is replaced by the residual load. The latter is defined as the total energy demand minus the total
RE production, as stated in Equation (A12):

RL(t) = ∑
i

Di(t)−∑
k

ωkηk(t). (A12)

There is thus a time index h 7→ t′h such that the residual load RL satisfies
RLDC(h) := RL(t′h) < RL(t′h−1) =: RLDC(h− 1) for 0 ≤ h ≤ 8760. RLDCs contain crucial
information about the variability of wind and solar supply, as well as correlations with demand,
thereby capturing major challenges of integrating renewable energies into power systems.

Appendix C. Data and Methods to Compute the Capacity Factors

Appendix C.1. Annual Observed Capacity Factors

The reference capacities and generation used to correct bias in the theoretical production models
and to compute the capacity factors for each technology and zone (Section 2.6.4) are presented in
Table A4 and summarized in Tables A2, Figure A1 and Table A3.

Table A2. Reference capacities per zone and technology installed in Morocco in 2018. Zone-technology
pairs for which no capacity is installed are marked by an empty set ∅.

Zone Capacity (MW)

Wind PV CSP

NORTH 396 ∅ ∅
CENTER 60.0 70.0 350
EAST ∅ ∅ ∅
SOUTH 759 100 ∅
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Table A3. Yearly-mean generation averaged per zone and technology observed in Morocco in 2018.
Zone-technology pairs for which no capacity is installed are marked by an empty set ∅.

Zone
Generation (TWh)

Wind PV CSP

NORTH 1.31 ∅ ∅
CENTER 0.210 0.12 1.21
EAST ∅ ∅ ∅
SOUTH 3.05 0.19 ∅
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Figure A1. Observed PV, wind and CSP-TES capacity distribution per electrical zones in Morocco in
2018 corresponding to Table A2.

Figure A1. Observed PV, wind and CSP-TES capacity distribution per electrical zones in Morocco in
2018 corresponding to Table A2.
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Table A4. Characteristics of the wind, PV and CSP plants from Morocco operational in 2018. PT: Parabolic Trough CSP. ST: Solar Tower CSP. h: expected hours
of storage. Based on [64,65], at the end of 2018, the total wind, PV and CSP capacities are 1.22× 103 MW, 170 MW and 530 MW, respectively. We ignore the
production from auto-producers, except for wind plants since their installed capacity is included in the total wind capacity. Data from: MEME [50], RES4MED [56],
Energypedia [66], GEO [67], CSP FOCUS [68], SolarPACES [69] and MASEN [70].

Power Plant Name Techno. Region City Cap. (MW) Prod. (GWh/yr) CF (%) Year Source

Abdelkhalek Torres/Koudia Al Baida Wind NORTH Tetouan 50 200 45.7 2000 [50]
Abdelkhalek Torres/Koudia Al Baida Wind NORTH Tetouan 3.5 12 39.1 2001 [66]
Lafarge Wind NORTH Tetouan 32 12 4.20 2005 [56]
Tangier1 (Dhar Saadane; Bni Jmel) Wind NORTH Tanger 140 510 41.6 2009 [50]
Haouma Wind NORTH Ksar sghir 50.6 200 45.1 2014 [50]
Jbel Sendouk/Khalladi Wind NORTH Ksar sghir 120 378 36.0 2018 [50]
Amougdoul Wind CENTER Essaouira 60 210 40.0 2007 [50,56,67]
CIMAR Wind SOUTH Laayoune 5 16 36.5 2011 [56]
Aftissat Wind SOUTH Boujdour 200 1000 57.1 2018 [50]
Akhfennir1 Wind SOUTH Laayoune 102 378 42.4 2014 [50]
Akhfennir2 Wind SOUTH Laayoune 102 378 42.4 2017 [50]
Foum El Oued Wind SOUTH Laayoune 50.6 200 45.1 2014 [50]
Tarfaya Wind SOUTH Tarfaya 300 1084 41.2 2014 [50]
Noor 4 PV CENTER Ouarzazate 70 120 19.6 2018 [50]
Noor Laayoune1 PV SOUTH Laayoune 80 150 21.4 2018 [50]
Noor Boujdour1 PV SOUTH Boujdour 20 40 22.8 2018 [50]
Noor 1 CSP (PT, 3 h) CENTER Ouarzazate 160 520 37.1 2016 [68–70]
Noor 2 CSP (PT, 7 h) CENTER Ouarzazate 200 699 39.9 2018 [68–70]
Noor 3 CSP (ST, 7 h) CENTER Ouarzazate 150 515 39.2 2018 [68–70]
Ain Beni Mathar CSP (PT, 0 h) * EAST Jerrada 20 55 31.4 2011 [68,69]

*The integrated solar combined-cycle power plan Ain Beni Mathar is composed of a 450 MW combined cycle and a 20 MW solar thermal system [71]. We consider only the solar
part here.
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Appendix C.2. Bias Correction Approach

The hourly bias corrected capacity factor is given by the following expression (A13):

CFcorr
h =

CFobs
y

< CFclim
y >

× CFclim
h , (A13)

where
CFobs

y

<CFclim
y >

is the bias corrector, CFh and CFy correspond to hourly and yearly CFs. The brackets

correspond to averages over all years available from the climate data.

Appendix D. Optimization Formulas

Here, we derive a few analytical results to help understand the behavior of the
optimization program.

Appendix D.1. Maximum-Penetration Case

We first consider the case when the penetration is maximized. For that purpose, we leave out
the variance term from the cost function. The Lagrangian corresponding to this single-objective
maximization problem is given by the expression (A14):

L(ω, λ, δ) = ∑
k
E
[

ηk

∑i Di

]
ωk − λ

(
∑
k

ckωk − Ctot

)
+ ∑

k
δkωk, (A14)

where non-negative coefficient λ is the Karush-Kuhn-Tucker (KKT) multiplier associated with the
maximum-cost constraint and δ is the vector of non-negative KKT multipliers associated with the
positive-capacities constraint.

The first-order condition (A15) is,

E
[

ηk

∑i Di

]
+ δk = λck for all k, (A15)

and the slackness conditions (A16) and (A17),

δkωk = 0 (A16)

λ

(
∑
k

ckωk − Ctot

)
= 0. (A17)

Due to the first-order condition and dual feasibility, the case with λ equal to 0 is impossible since
this would imply the contradiction E[ηk/ ∑i Di] = −δk ≤ 0. Thus, λ is positive (i.e., the maximum-cost
constraint is activated) and such that (A18),

λ =
E
[

ηk
∑i Di

]
+ δk

ck
for all k, (A18)

and ∑k ckωk = Ctot.
Let us define the index k0, k1, . . . , such that δk0 /ck0 ≤ δk1 /ck1 ≤ . . . . Then the capacities are

ranked by decreasing maximum-penetration ratio, i.e., E[ηk0 / ∑i Di] ≥ E[ηk1 / ∑i Di] ≥ . . . .
If δk0 ≥ 0, then δk ≥ 0 for all k, all capacities are 0, the maximum-cost constraint is not active and

so λ = 0, leading to a contradiction. Thus, δk0 = 0 and λ = E[ηk0 / ∑i Di]/ck0 .
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Finally, if δk1 = 0, then one would exactly have (A19),

E
[

ηk0
∑i Di

]
ck0

=
E
[

ηk1
∑i Di

]
ck1

, (A19)

which, loosely, has a zero probability.
In conclusion, for all practical purposes, the mean penetration is maximized by installing all

the capacity allowed by the maximum-cost constraint in the zone and technology with the highest
maximum-penetration ratio (13), i.e., ωk0 = Ctot/ck0 and ωk1 = ωk2 = · · · = 0.

Appendix D.2. High-Penetration Case

We now start from the situation maximizing the mean penetration, as described in the previous
Section D.1 and start to give some weight to the variance. To proceed, we scalarize the bi-objective
problem by introducing a positive weight q. The Lagrangian of the scalarized maximization problem
is given by (A20):

L(ω, λ, δ) = ∑k E
[

ηk
∑i Di

]
ωk − q ∑k,l ωkCov

[
ηk

∑i Di
, ηl

∑i Di

]
ωl − λ (∑k ckωk − Ctot) + ∑k δkωk, (A20)

The first-order condition becomes (A21),

E
[

ηk

∑i Di

]
− 2q ∑

l
Cov

[
ηk

∑i Di
,

ηl

∑i Di

]
ωl + δk = λck for all k, (A21)

and the slackness conditions are the same as in Section D.1.
The solution to this problem for q = 0 is that of the previous Section D.1. Increasing q from this

situation, we thus assume that ωk0 is positive, so that δk0 is 0. If all other capacities remain 0, and the
covariance between k0 and k is small, the total-capacity constraint remains active (λ > 0) as long
as (D.2),

q <
E
[

ηk0
∑i Di

]
2Var

[
ηk0

∑i Di

] := qc.

We now increase q from 0, while remaining in the interval [0, qc], so that λ > 0, and look for the
largest value of q such that all capacities but that of k0 remain 0. In this case, ωk0 is still equal to Ctot/ck0 .
In other words, we impose that δk > 0 for all k different from k0. The first-order condition (A21) then
implies (A22),

E
[

ηk

∑i Di

]
− 2qCov

[
ηk

∑i Di
,

ηk0

∑i Di

]
ωk0 < λck, (A22)

which is equivalent to, with λ = E[ηk0 / ∑i Di]− 2qVar[ηk0 / ∑i Di]ωk0 /ck0 , with (A23):

q <
ck0

2Ctot

E
[

ηk0
∑i Di

]
ck0

−
E
[

ηk
∑i Di

]
ck

Var
[

ηk0
∑i Di

]
ck0

−
Cov

[
ηk

∑i Di
,

ηk0
∑i Di

]
ck

. (A23)

Thus, the first capacity to be installed after k0 is the one for which the right-hand side of this last
expression is the smallest.

Appendix D.3. Low-Variance Case

We now turn to the case for which the variance is small. The extreme case of zero variance
corresponds to the situation where all capacities are 0 because no weight is put on the mean penetration.
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Let us consider the less trivial situation in which a weight r > 0 is put on the mean penetration.
That is, we scalarize the mean-variance problem to yield a corresponding Lagrangian given by (A24),

L(ω, λ, δ) = r ∑k E
[

ηk
∑i Di

]
ωk −∑k,l ωkCov

[
ηk

∑i Di
, ηl

∑i Di

]
ωl − λ (∑k ckωk − Ctot) + ∑k δkωk, (A24)

The first-order condition becomes (A25),

rE
[

ηk

∑i Di

]
− 2 ∑

l
Cov

[
ηk

∑i Di
,

ηl

∑i Di

]
ωl + δk = λck for all k. (A25)

Since Ctot > 0, there is an interval [0, rc], with rc > 0, such that as long as r stays within this
interval, the maximum-cost constraint is inactive, i.e., ckωk < Ctot and λ = 0.

Let us consider that r is increased from 0 while remaining in [0, rc]. If some cross-covariances
are non-zero, it may be that some capacities are zero. If instead we assume that the covariance
matrix is diagonal, i.e., that Cov[ηk/ ∑i Di, ηl/ ∑i Di] = 0 for all k, l such that k 6= l. The first-order
condition (A25) implies (A26),

ωk =
rE
[

ηk
∑i Di

]
+ δk

2Var
[

ηk
∑i Di

] for all k. (A26)

Thus, in this case, δk > 0 implies that r = 0.
As a conclusion, if the covariance matrix is diagonal and for r in [0, rc], either r = 0 and all

capacities are 0, or r > 0 and all capacities are positive and such that (A27),

ωk = r
E
[

ηk
∑i Di

]
2Var

[
ηk

∑i Di

] for all k. (A27)
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