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Abstract. Filesystems have held the interest of the formal verification
community for a while, with several high-performance filesystems con-
structed with accompanying proofs of correctness. However, the question
of verifying an existing filesystem and incorporating filesystem-specific
guarantees remains unexplored, leaving those application developers un-
derserved who need to work with a specific filesystem known to be fit
for their purpose. In this work, we present an implementation of a veri-
fied filesystem which matches the specification of an existing filesystem,
and with our new model AbsFAT tie it to the reasoning framework of
separation logic in order to verify properties of programs which use the
filesystem. This work is intended to match the target filesystem, FAT32,
at a binary level and return the same data and error codes returned by
mature FAT32 implementations, considered canonical. We provide a log-
ical framework for reasoning about program behavior when filesystem
calls are involved in terms of separation logic, and adapt it to simplify
and automate the proof process in ACL2. By providing this framework,
we encourage and facilitate greater adoption of software verification by
application developers.

Keywords: Filesystems · Theorem Proving · Separation Logic.

1 Introduction

Filesystems have been of interest to the formal verification community for a
while. This paper discusses our recent work on supporting code proofs for pro-
grams making use of a verified filesystem, using separation logic. Although al-
ternative approaches towards code proofs exist, we find separation logic to be a
natural choice for its intuitiveness as well as its easy applicability towards veri-
fying code through term rewriting as implemented in general purpose theorem
proving systems.

This work introduces AbsFAT, an axiomatization of a subset of the POSIX
system calls offered by filesystems, specifically FAT32. We build on our earlier
work [18] developing the FAT32 models HiFAT and LoFAT in the ACL2 general-
purpose theorem prover; our axiomatic approach here complements the refine-
ment approach the earlier work advocated. Although refinement remains nec-
essary to keep tractable the problem of verifying the binary compatible model
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{True}
r := mkdir(path); s := stat(path)

{(r Ù 0)→ (s Ù 0)}

Fig. 1: A simple conjecture involving mkdir and stat

LoFAT, axiomatization is needed in order to prove properties about external
programs which are not (and should not be) developed with the details of our
formalization in mind, except for the POSIX-like interface that LoFAT offers.

Fig. 1 is an example of a simple external program that calls mkdir, a system
call for creating a directory at the given path, and then stat, a system call for
checking the existence of a file at given path and obtaining pertinent metadata
(which we overlook for the purposes of this proof). This example conjectures a
Hoare triple with the precondition True and the postcondition (r Ù 0) → (s Ù

0). This conjecture says that stat succeeds when mkdir succeeds, and proving
it requires precise specifications of these system calls both in terms of changes
in filesystem state and in terms of return values and success/error conditions.
AbsFAT provides such specifications, and ACL2 is able to prove this conjecture
automatically through rewriting with AbsFAT. Programmers working at this level
of abstraction rely on these return values and success/error conditions, around
which they build their program logic; this makes the present work valuable.

Our principal contributions are

– the development of AbsFAT on the basis of abstract separation logic;
– the formalization of its connection to the existing models HiFAT and LoFAT,

which involves the development of a number of system calls and showing
that they are equivalent to the versions of those system calls in HiFAT and
in turn in LoFAT;

– the development of a library of lemmas which facilitate a number of Hoare-
style code proofs through rewriting, accompanied by examples of such proofs.

We detail these contributions in the rest of the paper, providing necessary back-
ground about program reasoning and FAT32 in Section 2, detailing our approach
towards and implementation of abstract separation logic in Section 3, and eval-
uating our work in Section 4.

2 Background

2.1 ACL2

ACL2 [17] is an interactive theorem prover for first-order logic. Prior work on pro-
gram verification with ACL2 has highlighted its library support for code proofs
based on executable models [9] and its support for rewriting-based proofs of sep-
aration properties in the context of program verification [22] through the use of
proof tactics (i.e. rewrite rules) which act upon a quantifier-free representation
of separation predicates.
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2.2 Program logic

Floyd-Hoare logic [11,7], which introduced Hoare triples
{precondition} statement {postcondition}

for simple and compound statements comprising a program, forms the basis of
program verification. In recent years, the logic has been strengthened in many dif-
ferent program verification domains, and been successfully automated for static
analysis both at the programming language level and at the machine code level.
In this paper, we are interested in Floyd-Hoare logic as applied to linearly ad-
dressed memory for storage of fixed-size elements, such as bytes. Such memory
models have been developed to model RAM, which usually provides byte- or
word-addressing; we find the idea immediately applicable to filesystems, which
operate on various kinds of linearly addressed storage media while abstracting
away the details of those media to expose a directory tree interface to the user.

One such extension is separation logic [25,26], which was initially developed
to address certain scalability challenges in reasoning about programs operating
on a RAM-like memory model, i.e. the flat heap model. Heaps are mappings
from locations (heap cells) to fixed-size data values; they can be composed using
the separating conjunction operator ∗. The heap P ∗Q is defined as the union of
the mappings P and Q, along with the assertion that no mappings are common
between P and Q which is implicit whenever P ∗ Q appears in a Hoare triple.
Yang et al. [30] describe a bargain of sorts: in exchange for using only tight
specifications, i.e. Hoare triples {P}stmt{Q} in which the precondition P names
all the locations modified by stmt, we get a frame rule allowing us to infer from
this Hoare triple the new Hoare triple {P ∗R} stmt {Q ∗R}. This derivation is
sound since the formula P * R contains the assertion that locations in P and R
are disjoint from each other; and the new Hoare triple preserves tightness.

Structured Separation Logic (SSL) [29], an extension of this theory, replaces
the flat heap with a structured heap. Here, a heap cell is allowed to be either a
flat heap cell containing a fixed-size value, or a structured heap cell containing a
rich value such as a linked list or a sublist thereof. The utility in reasoning about
filesystems is immediately obvious, when we consider rich values to include the
contents of directories.

In SSL, the notion of a structured heap goes together with the notion of an
abstract heap which helps reason about accesses and updates to substructures
of structured data. Like structured heaps, abstract heaps contain flat heap cells
and structured heap cells; in addition, they contain abstract heap cells, pairs of
values each consisting of a substructure of some structured data and the path
where the substructure fits in the larger structure. When a substructure is placed
in an abstract heap cell, at the same time the structure where it fits is changed
to replace the substructure with a body address pointing to this heap cell. This
process of creating an abstract heap cell is known as abstract allocation; it serves
to create a new cell in the abstract heap and “separate” a substructure. The
converse operation is abstract deallocation; it does away with an abstract heap
cell by folding its contents back into the larger structure whence they came,
in a manner similar to application of functions in lambda calculus. Abstract
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allocation and abstract deallocation can both be carried out at will depending
on the needs of the proof, since neither has any effect on the state of the system.
Since Hoare judgments about sequences of commands often require abstract
allocations and deallocations to be written out explicitly, we use Hoare triples
of the form {P} id {Q}, to represent them, where id is a vacuous statement (i.e.
a no-op).

The path stored in each heap cell is known as a path promise, ensuring that
the substructure in the first element is identifiable as to its origin in the sub-
structure. In the context of SSL applied to filesystems, this marks a difference in
approach from prior work in specifying filesystems [10,20] which choose to index
into the heap by file path, making the path of each file its heap address. While a
variable may be deallocated and thus removed from the abstract heap, its path
promise cannot change as long as it is in the abstract heap.

2.3 FAT32

FAT32 has been widely used, on personal computers where it was for several years
the Windows operating system’s default, and on removable media and embedded
devices where it continues to be ubiquitous. Microsoft provides an authoritative
specification [19] which specifies the on-disk layout of the filesystem in terms
of file data, directory-level metadata and volume-level metadata. Two pertinent
details follow.

– FAT32’s data region is indexed by its file allocation table, which holds a
linked list for each file called a clusterchain. Looking up a file’s clusterchain
in the data region yields its contents. Clusterchains are not shared between
files; thus, there is no hard linking.

– Each directory in FAT32 is explicitly required to include, in addition to
directory entries for regular files and subdirectories, an entry for itself (.)
and its parent (..).

Our previous work [18] introduced LoFAT and HiFAT, two models at different
levels of abstraction. LoFAT is a disk-image level model of FAT32, while HiFAT is a
directory tree-based model of FAT32 which abstracts LoFAT. LoFAT includes the
capability to read its state from a FAT32 disk image and write back its state to a
disk image; efficient implementations of both of these make the model executable.
The efficient execution of the model supports a suite of co-simulation tests for
programs from the Coreutils and mtools sets of programs; in each of these tests,
the canonical program is run with the same input as the ACL2 test program to
check that the standard outputs of these two programs, if any, are identical and
filesystem states, if changed, are identical as well. The system calls in LoFAT are
proved to be refinements of the corresponding system calls in HiFAT, because the
latter is an easier model to reason about. These refinement properties rest on
transformations between the two models and proofs that these transformations
are inverses of each other under appropriate equivalence relations.
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{(path⤇ P/b/a) ∗ (αP
↦ b[C ∗ can_create(a)])}

r := mkdir(path)
{r Ù 0 ∗ αP

↦ b[C + a[∅]]}

{(path⤇ P/b/a) ∗ (αP
↦ b[C + a ∶ s])}

r := mkdir(path)
{r Ù EEXIST}

{(path⤇ P/b/a) ∗ (αP
↦ b[C + a[β]])}

r := mkdir(path)
{r Ù EEXIST}

{(path⤇ P/b/a) ∗ (αP
↦ b ∶ s)}

r := mkdir(path)
{r Ù ENOTDIR}

{(path⤇ P/a) ∗ ENOENT(P )}
r := mkdir(path)
{r Ù ENOENT}

Fig. 2: Hoare triples describing the possible behaviors of mkdir

3 Abstract Separation Logic for Filesystem Verification

In AbsFAT, the model for reasoning about filesystem calls in programs, filesystem
states are represented as collections of logically separate variables. Maintaining
this separation through state changes from applications of system call specifi-
cations, abstract allocations, and abstract deallocations is a substantial part of
how the proofs are resolved in the theorem prover. This formal development is
structured around these principles:

– To profit from separation logic, properties of the filesystem state are repre-
sented as local properties where possible, in a way that allows them to be
proved by rewriting without induction.

– Global properties, which pertain to the whole system and which have the
potential to expand the state space, are packaged into disabled predicates in
order to keep the state space manageable (for the prover) and make them
more comprehensible (to the user.) This, in turn, leads to the creation of
general and reusable lemmas to resolve subgoals involving these predicates
which arise from file operation specifications.

– Also in the interest of reducing state space and helping user comprehension,
file operation specifications are kept compact.

– Wherever new global properties are required specifically for FAT32, they are
distinguished where possible to simplify possible reuse of the proof infras-
tructure for a future filesystem formalization.

– A completion semantics is used, in which the effect of a system call is deter-
ministically evaluated regardless of whether it returns an error code.

3.1 System calls and support for filesystem clients

It is illustrative to more closely examine Fig. 1 and its proof, which in turn
requires us to consider the specification of mkdir itself. This system call has
one success condition and several error conditions, as shown in Fig. 2, where
path ⤇ P/b/a means that path matches a directory P with subdirectory b,
which has a component a; b[C ∗ can_create(a)] describes a directory b in which
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a can be created; b[C +a ∶ s] describes a directory b where regular file a already
exists with contents s, b[C + a[β]] describes a directory b where directory a
exists with contents β, and b ∶ s describes a regular file b with contents s. In
all but the first of these five Hoare triples, mkdir exits returning an error code,
as standardized by POSIX which defines the meanings for each one of the errors
ENOENT, ENOTDIR, . . . and their applicability to a given system call.1

The AbsFAT axiomatization works on frames, collections of logically separate
abstract variables, and supports claims such as the following which is likely to
arise in the context of any proof involving the system call mkdir:

When a given filesystem state corresponds to a given well-formed sep-
aration logic frame, the state after a successful call to mkdir(path) corre-
sponds to a new well-formed frame with all abstract variables unrelated
to dirname(path) unchanged, and with a new variable α representing the
current state of dirname(path) containing a new empty directory named
basename(path).

This claim, expressed in terms of the Linux utility functions basename [13] and
dirname [14], is an example of the benefits of local reasoning. It expresses the
new state after an operation as a change to the old state that clearly leaves the
remainder of the filesystem unchanged and simplifies reasoning about the next
operation on the filesystem in both cases, when this next operation affects the
directory tree under dirname(path) and when it does not. Since our system makes
filesystem operations deterministic, including at the AbsFAT level, we are able
to make the stronger claim:

When a given filesystem state corresponds to a given well-formed
separation logic frame, the state after a call to mkdir(path), successful
or not, corresponds to a new well-formed frame with all abstract vari-
ables unchanged which are logically separate from the contents of base-
name(path). Further, when dirname(path) exists as a directory and no
file exists at path, the frame will have a new variable α representing the
current state of dirname(path) containing a new empty directory named
basename(path).

The proof of the Fig. 1 conjecture splits into a number of cases, as expected
from our understanding of the mkdir specification; Fig. 3 shows these case splits.

1 We use the values ENOENT, ENOTDIR as the return values of system calls, but
POSIX enumerates these as values assigned to the global variable errno, which is
different from the function’s actual return value. Our implementation of each system
call must return both these values, in order to capture the entirety of the effect of the
system call in ACL2, a functional language lacking global program state. For brevity
in this paper, however, we find it convenient to refer to a single return value which
is zero in the case of success, and one of the errno values enumerated by POSIX [15]
in the case of failure. This is no less informative than providing the return value
and the errno value separately, since none of our system calls sets errno to 0 upon
success.
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{(path⤇ P/a) ∗ ENOENT(P )}
r := mkdir(path)
{r Ù ENOENT}
s := stat(path)

{(r Ù 0)→ (s Ù 0)}

{(path⤇ P/a) ∗ (αP
↦ a ∶ −)}

r := mkdir(path)
{r Ù EEXIST}
s := stat(path)

{(r Ù 0)→ (s Ù 0)}

{(path⤇ P/a) ∗ (αP
↦ a[−])}

r := mkdir(path)
{r Ù EEXIST}
s := stat(path)

{(r Ù 0)→ (s Ù 0)}

{(path⤇ P/a) ∗ ENOENT(P/a)}
r := mkdir(path)

{r Ù 0}
s := stat(path)

{(r Ù 0)→ (s Ù 0)}

{True}
r := mkdir(path); s := stat(path)

{(r Ù 0)→ (s Ù 0)}

Fig. 3: Proof tree for the conjecture in Fig. 1

While all but one of the cases are vacuous, since the postcondition implication
{(r Ù 0) → (s Ù 0)} is vacuously true whenever r is nonzero, the cases still
need to be explored for soundness of the proof. The justification for developing
the theorem proving infrastructure becomes apparent simply from exploring the
number of cases arising in this proof for a trivial sequence of two operations,
which is not conducive to hand proofs.

As one might expect, a complementary conjecture that mkdir leaves the
filesystem state unchanged in an error condition, i.e. when ¬(r Ù 0), is also
automatically provable with the help of AbsFAT.

3.2 Rewriting

AbsFAT’s abstract separation-logic based formulation of file operations has a
logically straightforward representation in the theorem proving environment,
which connects neatly with the existing HiFAT directory-tree representation.
Thus, a valid filesystem instance can be represented as a frame, an association
list mapping variables to unrooted trees in which the root is distinguished from
the other variables.

The usability of a proof technique depends, to a significant extent, on the
degree to which it can be automated by the prover, freeing the user from the
manual instantiation of lemmas and other laborious aspects of theorem proving.
In ACL2, this is naturally the task of the rewriter, which efficiently completes
proofs even when they involve large terms of the kind that show up in code
proofs. Accordingly, we look for a method to phrase the separation properties in
a way that is palatable to the rewriter, after the fashion of Myreen and Kauf-
mann’s work on code proofs [22] demonstrating a logical workaround for the
difficulties of separation logic proofs in the presence of existential quantifiers.
The recursive predicate separate served to take the place of the conventional
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old⤇ P/a ∗ new⤇ P
′/b ∗ αP

↦ a[C] ∗ βP
′

↦ b[C ′]
rename old new

α
P
↦ φ ∗ βP

′

↦ b[C ′ + a[C]]

Fig. 4: An axiom that means different things in the HiFAT and LoFAT contexts

separating conjunction operator, which by definition introduces the unwanted
existential quantifiers. In proofs, the separate predicate under the action of cer-
tain rewriting tactics was shown to create those case splits which were necessary
to resolve the subgoals and complete the proof. Our formulation of separate is
similar, and helps us avoid existential quantifiers.

In the general setting where zero or more abstract variables exist at body
addresses within the frame frame, and each corresponds to an abstract heap cell
in the heap, we can recursively define the predicate separate, in Haskell notation:

separate [] = True

separate ((α, entryα) ∶ frame) = (disjoint frame entryα) ∧ (separate frame)

This predicate has an analogous effect to Myreen’s predicate in the flat mem-
ory model, creating case splits which help resolve the subgoals of the proof. This
holds true even though the filesystem model is more complex with the abstract
variables needing to be maintained in a well-formed state in the sense of col-
lapsibility. Collapsibility, which needs to be maintained as an invariant through
various file operations, is necessarily a global property; separate facilitates rea-
soning about it locally and generally minimizes the need for non-local lemmas.

A choice, here, is whether separate and abstract allocation/deallocation should
be implemented at the LoFAT level, or the HiFAT level. At a first glance, it seems
useful to reason about clusterchains in LoFAT and declare them disjoint through
the separate predicate; however, these disjointness properties are adequately ad-
dressed by the definition of lofat-to-hifat, a function which transforms a LoFAT
instance to a HiFAT instance and returns an error for ill-formed LoFAT instances,
including those with any overlap between clusterchains. The choice is ultimately
determined by a FAT32-specific consideration: a subdirectory is not completely
independent of its parent directory, because it needs to have an explicit .. di-
rectory entry pointing to its parent. Thus, a naïve implementation over LoFAT
would cause inconsistencies; one such inconsistency arises in one of the axioms
for the system call rename (Fig. 4), which addresses the moving of a subdirec-
tory. This axiom implies that the contents of the subdirectory b are unchanged,
which is untrue for LoFAT since the .. directory entry is updated from P to P ′/b.
This axiom holds true for HiFAT though, which has no . or .. entries since it’s
a directory tree model and doesn’t need them. Thus, we opt to implement this
logic at the HiFAT level, avoiding inconsistencies such as the above in AbsFAT
and generally benefitting from HiFAT’s ease of use for reasoning.

AbsFAT deals with filesystems, instrumented with body addresses and ac-
companied by heaps which bind each abstract variable in some body address to
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a partial directory, i.e. a fragment of a directory, with none, some, or all of that
directory’s contents. AbsFAT refers to such entities as frames, assisting the intu-
ition that a frame contains some immediately useful information and some less
immediately useful information, which the frame rule of separation logic helps
in managing.

The well-formedness of such a frame is determined by Gardner et. al’s [8]
definition of the one-step collapse relation ↓, which describes a single context
application folding an abstract heap cell into the incomplete directory tree hold-
ing the corresponding body address, and its transitive closure ↓∗. A frame is
well-formed if it is related by ↓∗ to some frame consisting of only the root vari-
able, τ , bound to a complete directory tree which contains no body addresses.
This definition is, self-evidently, existentially quantified over all frames that the
given frame could be related to, and is therefore a difficult definition to work
with in ACL2 which has limited support for quantified predicates.

It is intuitive, however, and a fact we prove in ACL2, that if a given frame
is related via ↓∗ to two complete directory trees then these two trees must have
the same directory structure and contain the same files modulo rearrangement of
files within subdirectories. Thus, AbsFAT opts for an alternative formulation of
transitive collapse, iterating over all abstract heap cells until all are folded into
the root variable (or until no variable can be folded, which shows the frame to
be ill-formed). This iterative formulation simplifies the task of maintaining well-
formedness as an invariant across file operations from a reasoning perspective,
and also makes the invariant intuitive: the property being preserved is the ability
of the frame to be properly collapsed.

An instrumented filesystem consists of a root directory and an association
list mapping each numbered variable to:

– a partial directory, possibly containing body addresses itself;
– a path promise; and
– a source pointer to an abstract variable (possibly the root itself) containing

a body address for the given variable.

The well-formedness of such an instrumented filesystem becomes the proposition
of whether it can be collapsed without errors; i.e. whether every abstract cell
corresponds to a body address in some variable, matching its path promise. As a
basic property of our formulation, we prove that a successful collapse as described
above yields a HiFAT instance with no duplicate filenames in any directory, under
the hypotheses of separation between the different variables in the separate sense
and the absence of “dangling” body addresses which lack corresponding abstract
cells.

The α values are chosen to be natural numbers to simplify the bookkeep-
ing involved in the implementation; and disjointness requires all of them to be
distinct from each other. Each entryα value is a partial directory. These entries
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match Gardner et al.’s definition of an unrooted tree2, given by the grammar:

ud ∶∶= φ ∣ a ∶ s ∣ a[ud] ∣ ud + ud ∣ x

In this grammar, φ is the empty tree, a ∶ s is a regular file with name a and
contents s, a[ud] is a directory named a and containing unrooted tree ud, ud+ud
is composition, and x is a variable. This definition allows for multiple variables
in a directory, as does our code, but in practice we find it useful while reasoning
about file operations to avoid having more than one variable in a directory. When
this property holds, it becomes possible to check the existence of a file at a given
path by examining the contents of at most one abstract variable.

It remains to address one point: how are abstract allocations to be done in
a proof? In the proof tree in Fig. 3 for instance, the r Ù 0 case assumes the
existence of variable αP with the appropriate path promise and the appropriate
contents; in a proof search the variable needs to be allocated procedurally. A
naïve answer would be to collapse the entire frame into a single root variable
and then allocate a new variable with the desired path promise, creating the cor-
responding body address in the root. This is undesirable, limiting if not entirely
curtailing the local reasoning we hope for by bringing all variables together.

AbsFAT solves this question by implementing a transformation on the frame
of abstract variables, called partial collapse. For a given path, this operation
iteratively deallocates every abstract variable with a path promise prefixed by
this path, leaving the frame in a state where the contents of the directory at that
path are to be found, without holes, in one variable. All other variables are left
as is. This is essential to the specification of almost every one of the system calls
we consider, since they require some directory to be brought into a variable for
examination, the way αP in the mkdir(path) specification brings in the contents
of basename(path). For instance:

– In the specification of mkdir(path), partially collapsing the frame on dirname(path)
allows the contents of the parent directory to be seen, which determines
whether the system call will succeed (when no file exists at path) or fail
(when a regular or directory file does exist at path.)

– Similarly, in the specification of stat(path), partially collapsing dirname(path)
reveals the contents of the parent directory which determines whether the
system call will succeed (when a regular or directory file does exist at path)
or fail.

Using partial collapse necessitates a somewhat complex proof to show that
a partially collapsed frame collapses to the same filesystem as it would have
before the partial collapse, modulo rearrangement of files within directories.
The payoff for this proof is in the form of clean specifications of system calls,
deterministically evaluating the state of the filesystem just like the system call
specifications in HiFAT and LoFAT. The specifications capture the read-over-
write properties of the implementations of HiFAT and LoFAT, while avoiding
2 We replace inodes in the original grammar with strings. In FAT32, with no hardlinks,
it is easier to just represent the contents of regular files as strings.
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{
r := mkdir("/tmp/docs")
s := mkdir("/tmp/docs/pdf-docs")
r Ù 0 ∗ s Ù − ∗ t Ù −
t := stat("/tmp/docs")
r Ù 0 ∗ t Ù 0
}

Fig. 5: Reasoning about longer sequences of system calls

one of the key problems, namely, the general difficulty of getting read-over-write
theorems to apply because of various simplifications in the course of a rewriting
proof that keep the left-hand side of the rewrite rule from being unifiable with
the target.

This leads to another example (Fig. 5), which is worked out in ACL2 along
the same lines as demonstrated here. This exemplifies the kinds of properties
we need to prove across sequences of operations, when sometimes we need to
logically disregard the effect of one system call such as the second mkdir in this
case.

This example also shows one interesting approach to verifying filesystem
properties, in which the precondition for one system call to do the desired thing
may be excessively verbose to write out in full, but can be more concisely ex-
pressed in terms of the return value of a previous system call.

3.3 LoFAT-HiFAT correspondence

Many of the system calls in LoFAT are implemented through three primitive
operations: lofat-find-file, lofat-remove-file, and lofat-place-file. For instance, the
system call mkdir is implemented as a call of lofat-place-file with an empty di-
rectory as an argument. Thus, the proofs of specifications for these system calls
reduce to proofs about these three primitives.

More precisely, we prove the HiFAT versions of these system calls, respectively
hifat-find-file, hifat-remove-file, and hifat-place-file, to have properties as required
by the specifications for the system calls. These turn out to be read-over-write
properties, adapted as the case may be for “writes” to the filesystem which are
file creations, file updates and file deletions. In a general form, these properties
state:

1. A read from the filesystem following a write at the same location yields that
which was written.

2. A read from the filesystem following a write at a different place yields the
same result as a read before the write.

Then, by proving the refinement relationship for each of these three primitives
in LoFAT, we are able to much more easily prove that LoFAT meets specifica-
tions. LoFAT is a linearly addressed data structure, since it emulates the layout
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of an actual FAT32 disk image; thus, any proofs regarding operations on LoFAT
by necessity involve separation properties between different files. The executable
function lofat-to-hifat, which transforms a LoFAT instance to a HiFAT instance,
checks whether the clusterchains across all the different files in a filesystem are
disjoint from each other. This disjointness is a necessary property for a well-
formed FAT32 disk image, and therefore a necessary property of a well-formed
LoFAT instance. However, such checks on the disjointness of sets of clusterchains
can get expensive in a large filesystem instance, which is why we deem it inadvis-
able to continue with the earlier implementation of LoFAT which effects one or
more transformations between HiFAT and LoFAT for each system call. Therefore,
we develop more efficient implementations of the LoFAT primitives lofat-find-file
and lofat-remove-file; verify that each refines the respective HiFAT primitive; and
adapt the system calls in LoFAT to use the new primitives.

We provide specifications for the system calls in LoFAT, through which pro-
grams making use of the filesystem can be reasoned about. LoFAT functions at
one level of remove from the disk image, since it is a single-threaded object;
however, it replicates the structure of the disk in memory and each system call
it offers is an analogue of the system call of the same name, adapted for the use
of programs written in the applicative ACL2 language. Some of the system calls
implemented in LoFAT involve file descriptors; as a result file descriptor tables
and file tables are implemented as part of LoFAT. This means that, viewing
the disk image as a linearly addressable entity and disregarding details about
caching, each execution of a program using FAT32’s POSIX interface is mirrored
by an execution of an ACL2 program using LoFAT with the same program logic
but making use of LoFAT’s system calls; and any proofs carried out on the lat-
ter also apply to the former. This correspondence underlies the focus on binary
compatibility and efficient execution in the present work.

A significant part of the implementation has been the reworking of the LoFAT
primitives lofat-find-file and lofat-remove-file. The latter now guarantees that files
not in the path of a file operation will remain unchanged in their placement in
the data region, in contrast to the earlier implementation which transformed
to HiFAT, performed the removal, and transformed back to HiFAT, effectively
reallocating space in the data region for every file in the filesystem. For proving
that these functions refine their HiFAT equivalents, respectively hifat-place-file
and hifat-remove-file, we opted to simplify the specifications of these functions
to make them no-change losers3: functions which operate on a data structure
making sure to return it unchanged if returning an error code indicating failure.
This yielded rewrite rules with fewer hypotheses, which made it simpler to prove
the lemmas necessary to support our filesystem call specifications.

4 Evaluation

In evaluating this system, we account for the ease of writing and verifying pro-
grams using LoFAT. To demonstrate that realistic programs can indeed be writ-
3 This is a term from ACL2 lore, and often used in the ACL2 source code.
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cp, ls, mkdir, mv, rm, rmdir, stat, truncate, wc

Fig. 6: Coreutils programs in the co-simulation test suite

ten, we develop a test suite of programs which emulate existing programs from
the Coreutils. Building upon the tests already developed our earlier work on
HiFAT and LoFAT, we add support for the system calls readdir, opendir, closedir
and truncate; following this, we are able to write a program emulating the Core-
utils program truncate. Each of the programs in our test suite is compared in
terms of output and filesystem state to the program it emulated in one or more
co-simulation tests; programs which write to standard output are tested for
character-by-character correspondence to the canonical programs, and programs
which change the state of the filesystem are compared for file-by-file correspon-
dence to the state after running the canonical program with the same arguments
Fig. 6 summarizes the programs which are tested in the co-simulation test suite.

The proof development for supporting the filesystem proofs demonstrated in
this paper is necessarily complex, since AbsFAT needs to abstract HiFAT and
in turn LoFAT without loss of information. Examining the code supporting the
basic frame operations collapse and partial collapse, the different system calls,
the proofs that these system calls abstract the corresponding system calls in
HiFAT and the proofs of the examples developed in this paper, we count 33,106
lines of code across 79 function definitions and 1143 lemmas. It remains of interest
to check if ACL2’s features for automatically generating lemmas [1], already used
in LoFAT, could be brought to bear on some of these.

5 Related work

Much of the prior work has developed new verified filesystems, making crash
consistency a priority. Yggdrasil [28], a verification toolkit, employing SMT solv-
ing in Z3 [21] but eschewing explicit separation reasoning, delivers the Yxv6
filesystem which has verified crash consistency properties. COGENT [2], a ver-
ifying compiler, provides a domain specific language and generates executable
filesystem code from a specifications in that language, accompanied by proofs
of correctness in Isabelle/HOL [23]. FSCQ [6], which introduces Crash Hoare
Logic, is the first in a family of related filesystems verified in Coq [3] which also
includes DFSCQ [5], a filesystem providing and adhering to a formal specifica-
tion for the fdatasync system call, and SFSCQ [12], a filesystem with verified
security properties. While separation logic is part of the development of Crash
Hoare Logic in FSCQ, that effort does not include reasoning at the file operation
level.

The work of Gardner et al. on specifying preconditions and postconditions
of POSIX filesystem calls [8] has been extended into a theory of concurrent
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operation of filesystems [24]. This work, however, has not attempted to deliver
an executable filesystem upon which programs could be run.

Two tangentially related systems with similar aims to AbsFAT are the work
of Koh et al. [16] towards verifying the operating system components involved
in a networked server, and the work of Chajed et al. [4] on Argosy, a verified
system for stacking storage layers. While these systems are executable, they
do not offer the sort of support for constructing and simplifying proofs about
filesystem clients that AbsFAT does.

6 Conclusion

This paper describes AbsFAT, a separation logic model which formally describes
the different system calls in LoFAT, a faithful executable model of FAT32. Ab-
sFAT’s formal descriptions of these system calls support proofs of correctness
for programs which interact with the filesystem. The examples in the paper
demonstrate the kinds of Hoare triples that arise in this verification context and
how ACL2 completes these proofs by rewriting guided by AbsFAT’s separation
logic formulation. This application of abstract separation logic to an executable
filesystem model is novel and shows several general principles which are applica-
ble to the verification of filesystems other than FAT32 and the programs which
make use of them.

An informal survey of filesystem-related bug reports yielded the interesting
examples of Shareaza, a file sharing application [27]. A bug in Shareaza caused an
infinite loop when files larger than 4 GB were to be saved to a FAT32-formatted
partition. Such an operation is disallowed by the published FAT32 specification in
the interests of keeping clusterchains to a manageable length and the error code
EFBIG is designated for filesystem implementations to indicate an error of this
nature. This sort of bug, which could be mitigated by attention to return values
and error codes, is our motivation for building the precise filesystem models this
paper discusses.

Availability

The proofs and the cosimulation tests discussed in the paper can be found in the
books/projects/filesystem subdirectory of the ACL2 distribution, which is avail-
able at https://github.com/acl2/acl2/. Instructions for certifying the books in
ACL2 are provided in README.md in that subdirectory.
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