
HAL Id: hal-02956728
https://hal.science/hal-02956728

Submitted on 14 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graph Rewriting Rules for RDF Database Evolution
Management

Jacques Chabin, Cédric Eichler, Mirian Halfeld Ferrari, Nicolas Hiot

To cite this version:
Jacques Chabin, Cédric Eichler, Mirian Halfeld Ferrari, Nicolas Hiot. Graph Rewriting Rules for
RDF Database Evolution Management. International Conference on Information Integration and
Web-based Applications & Services, 2020, Chiang Mai (On line), Thailand. �hal-02956728�

https://hal.science/hal-02956728
https://hal.archives-ouvertes.fr

Graph Rewriting Rules for RDF Database Evolution
Management

Jacques Chabin
jchabin@univ-orleans.fr

Université d’Orléans, INSA CVL, LIFO EA
Orléans, France

Cédric Eichler
cedric.eichler@insa-cvl.fr

INSA CVL, Université d’Orléans, LIFO EA
Bourges, France

Mirian Halfeld-Ferrari
mirian@univ-orleans.fr

Université d’Orléans, INSA CVL, LIFO EA
Orléans, France

Nicolas Hiot
nicolas.hiot@univ-orleans.fr

Université d’Orléans, INSA CVL, LIFO EA
Orléans, France

ABSTRACT

This paper introduces SetUp, a theoretical and applied framework
for the management of RDF/S database evolution on the basis of
graph rewriting rules. Rewriting rules formalize instance or schema
changes, ensuring graph’s consistency with respect to given con-
straints. Constraints considered in this paper are a well known
variant of RDF/S semantic, but the approach can be adapted to
user-defined constraints. Furthermore, SetUp manages updates by
ensuring rule applicability through the generation of side-effects:
new updates which guarantee that rule application conditions hold.
We provide herein formal validation and experimental evaluation
of SetUp.

CCS CONCEPTS

• Information systems → Graph-based database models; •
Theory of computation → Rewrite systems.

KEYWORDS

Graph rewriting, Database Management, Update, Constraints

ACM Reference Format:

Jacques Chabin, Cédric Eichler, Mirian Halfeld-Ferrari, and Nicolas Hiot.
2020. Graph Rewriting Rules for RDF Database Evolution Management. In
Proceedings of iiWAS ’20: International Conference on Information Integration
and Web-based Applications & Services (iiWAS ’20). ACM, New York, NY,
USA, 10 pages. https://doi.org/XXX

1 INTRODUCTION

Graph rewriting concerns the technique of transforming a graph.
It is thus natural to conceive its application in the evolution of
graph databases. This paper shows the utility of this formal tool
into a practical and useful application, by proposing a framework

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
iiWAS ’20, November 30– December 02, 2020, Chiang Mai, Thailand
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXX

which ensures the consistent evolution of RDF (Resource Descrip-
tion Framework) databases. Indeed, being a graph database, RDF
management inspires the use of graph oriented tools.

Initially just a part of the semantic web stack, RDF is currently
largely used for representing high-quality connected data. “Repre-
senting data in RDF, in an integrated way, allows information to be
identified, disambiguated and interconnected by software agents
and various systems to read, analyze and act upon” [1]. Data should
above all else be usable and therefore satisfy the various semantics
and constraints requirement applications may have.

In the last decade, ontology-based systems have addressed knowl-
edge representation by following the Open World Assumption
(OWA) semantics where a statement cannot be inferred as false on
the basis of failures to prove it. In this paper, we consider databases
satisfying integrity constraints (IC) and the Closed World Assump-
tion (CWA) semantics. Indeed, the OWA is not adapted to data-
centric applications needing complete and valid knowledge [36]. A
database where we want to ensure that every drug is associated to
a molecule should be considered inconsistent if the drug d has not
its associated molecule. Currently working in the pharmacology
domain, the following example illustrates our motivation.

Example 1.1 (Motivating Example.). Fig. 1 shows a complete RDF/S
graph database consistent w.r.t. to the RDF/S constraints. We are
concerned by the problem of updating this database, keeping it
consistent. Firstly, suppose an instance update: the insertion of ASA
(acide amino-salicylique) as a class instance of Molecule. How can
we guarantee that ASA will be also an instance of all the super-
classes of Molecule? Then, consider a schema evolution: the inser-
tion of provokeReaction as sub-property of HasConsequence. How
can we perform this change ensuring that provokeReactionwill have
its domain and range as sub-classes of those of HasConsequence? □

This paper proposes SetUp (Schema Evolution ThroughUPdates),
a maintenance tool based on graph rewriting rules for RDF data
graph enriched with integrity constraints. Consistency is estab-
lished according to the CWA semantics and ensures data quality
for querying systems requiring reliable information. Constraints
considered in this paper are those defining RDF/S semantics, but
the approach adapts to other constraints, in particular user-defined
ones. SetUp ensures sustainability since it offers the capability
of dealing with evolution of data instance and structure without
violating the semantics of the RDF model.

https://doi.org/XXX
https://doi.org/XXX

iiWAS ’20, November 30– December 02, 2020, Chiang Mai, Thailand Chabin, Eichler, Halfeld-Ferrari, Hiot.

SetUp summarized in two main steps

(1) Firstly we formalize updates as graph rewriting rules encompass-
ing integrity constraints. An Update is a general term and can be
classified through two different aspects: on one hand, as insertions
or deletions and, on the other hand as instance or schema changes.
Each update is formalized by a graph rewriting rule whose appli-
cation necessarily preserves the databases validity. To perform an
update, the applicability conditions of the corresponding rule are
automatically checked. When all conditions of a rule hold, the rule
is activated to produce a new graph which takes into account the
required update and is necessarily valid if the graph was valid prior
to the update. Graph rewriting rules ensure consistency preserva-
tion in design time – no further verification is needed in runtime.
(2) Secondly, if the applicability condition of a rule does not hold,
the update is rejected. SetUp provides the possibility to force its
(valid) application by performing side-effects. Indeed, in our method,
side-effects are new updates that should be performed to allow the
satisfaction of a rule’s condition. Side-effects are implemented by
procedures associated to an update type, and thus, to some rewrit-
ing rules. When an evolution is mandatory, we enforce database
evolution by performing side-effects (i.e., triggering other updates or
schema modifications which will render possible rule application).
SetUp’s main characteristics.

• SetUp main goal is to ensure validity when dealing with the
evolution of an RDF/S data graph which represents a set of RDF
(the instance) and RDFS (the schema) triples respecting semantic
constraints as defined in [9].
• SetUp deals with complete instances, i.e., constraint satisfaction
is obtained only when the required data is effectively stored in the
database.
• SetUp implements deterministic rules. Arbitrary choices have
been made when non-deterministic options are available.
• SetUp takes into account the user level. Only database adminis-
trators may require updates provoking schema changes.
Paper Organization. After some related work in Section 2, Section 3
sets up work context. Section 4 formalizes updates by rewriting
rules, Section 5 deals with side-effects and Section 6 shows our
experiments. Conclusions and perspectives are drawn in Section 7.

2 RELATEDWORK

Consistent database updating has been considered in different con-
texts, always with two main goals: database evolution (by allowing
changes) and constraint satisfaction (by keeping consistency w.r.t.
the given rules). In this context, two aspects of our work can be
considered as particularly original: (i) the use of graph rewriting
techniques and (ii) the adoption of CWA with RDF data. Concern-
ing the first aspect, to generalize and abstract consistent updating
methods, different works have used formalisms such as tree au-
tomata or grammars for XML ([28, 37] as surveys) or first order
logic for relational (such as [38]) and, currently, graph databases
(e.g., [7, 9, 15]).

In spite of the importance of graphs in RDF and ontology repre-
sentation, the use of formal graph rewriting techniques to model
RDF evolutions is still mildly studied in this context. Formal graph
rewriting techniques are usually based on category theory, an ab-
stract way to deal with different algebraic mathematical structures

(here, the graphs) and the relationships between them. Algebraic ap-
proaches of graph rewriting allow a formal yet visual specification
of rule-based systems characterizing both the effect of transfor-
mations and the contexts in which they may be applied. Studying
the use of graph rewriting techniques to deal with graph models
is the kernel of our motivation. Few approaches relying on graph
rewriting to formalize ontology evolutions have already been pro-
pose [8, 25, 31]. They usually focus on formalization but do not
provide an implementation. To the best of our knowledge, only [24]
proposes an implementation of an approach where graph rewriting
is used to model ontology updates. Its objective is to tackle the evo-
lution, alignment, and merging of OWL ontologies (see also [25])
with OWA under some consistency constraints. Nested and general
application conditions are not considered in [24], thus, constraints
relative to transitive properties are not tackled; their proposal can-
not offer guarantees we can (e.g., the absence of cycles in subclass
relationships).

Concerning the second aspect, since RDF data, in the web se-
mantic world, is usually associated to the OWA, having CWA as
the basis of our RDF database maintenance may be seen as atypical.
In this paper, the goal is to use RDF to represent connected data in
a data-centered application. We intend to present a general method
which apply to any graph databases where consistency has to be
preserved. Thus, here, RDF is one possible graph data model. In
this context it is worth mentioning, that work such as [4, 33, 36]
brings back IC and CWA to the OWL world (sometimes through a
hybrid approach), stressing the importance of our proposal.

Now, to position our work in regards to other updating ap-
proaches, the following points deserve attention. Differences be-
tween update and revision are usually considered (we refer to [17]
for an overview). These differences are the consequence of different
views of the problem and influence the semantic of changes of each
particular proposal. As in [7, 15], we consider updates as changes in
the world rather than as a revision in our knowledge of the world
([17, 18]). In such update context, the chase procedure is usually as-
sociated to the generation of side-effects imposing extra insertions
or deletions (w.r.t. those required by the user) to preserve consis-
tency. Clearly, constraints are expected not only to be inherently
consistent (e.g., a set of constraints generating contradictory side
effects for the same update u is not acceptable) but also to avoid
contradicting the original intention of the user’s update. The theory
of consistency enforcement in databases has been the subject of,
for instance, [21, 22]. In this paper, we only deal RDF/S constraints
whose consistency is ensured; but our approach could be extended
to deal with user-defined constraints.

Several recent works focus on consistent graph databases. The
approach in [26] differs from ours, by proposing a semantic mea-
sure based on the difference between original and updated RDF
sub-graph. Both [7, 10] consider RDF updating methods, but the for-
mer goes deeper in the study of null values. A parallel can be done
between saturation in [10], the chase in [7, 9, 15] and SetUp. Authors
in [7, 9, 10, 15] offer home-made procedures to implement their
methods: [10] deals only with the RDF instance constraints (Fig. 2);
in [7, 9], constraints are user’s tuple-generating-dependencies. In-
complete information and updates are the focus of [7, 15]. Schema
evolution is mentioned in [9, 10]. More expressive constraints rep-
resent a barrier to the update determinism: guarantee in [16] due

Graph Rewriting Rules for RDF Database Evolution Management iiWAS ’20, November 30– December 02, 2020, Chiang Mai, Thailand

Figure 1: RDF schema and instance.

to simple rules and in [9] due to a total ordering (which may be
considered similar to the priority method in this paper).

Our RDF update strategy is different from proposals such as [3,
12] where constraints are just inference rules in OWA. Although
some RDF technologies such as ShEx [34], SPIN [19], and SHACL [20]
already take constraints into account, the originality of SetUp is
in relying on well-studied graph rewriting techniques to ensure
database consistent evolution, providing a useful and modern appli-
cation for these formal tools. SetUp represents a test-bed for new
database applications on the basis of graph rewriting.

3 RDF DATABASES AND UPDATES

A collection of RDF statements intrinsically represents a typed
attributed directed multi-graph, making the RDF model suited to
certain kinds of knowledge representation [2]. Constraints on RDF
facts can be expressed in RDFS (Resource Description Framework
Schema), the schema language of RDF.

In [9] we find a set of logical rules expressing the semantics of
RDF/S (rules concerning RDF or RDFS) models. Let AC and AV be
disjoint countably infinite sets of constants and variables, respec-
tively. A term is a constant or a variable. Predicates are classified
into two sets: (i) SchPred = {CL, Pr ,CSub, Psub,Dom,Rnд}, used
to define the database schema, standing respectively for classes,
properties, sub-classes, sub-properties, property domain and range,
and (ii) InstPred = {CI , PI , Ind}, used to define the database in-
stance, standing respectively for class and property instances and
individuals. An atom has the form P(u), where P is a predicate, and
u is a list of terms. When all the terms of an atom are in AC , we
have a fact.

Definition 3.1 (Database). An RDF database D is a set of facts
composed by two subsets: the database instanceD I (facts with pred-
icates in InstPred) and the database schema DS (facts with predi-
cates in SchPred). We note G = (V,E) the typed graph that repre-
sents the same database.V are nodes with type in {CL, Pr , Ind,Lit}

and E are edges having type in {Dom,Rnд, PSub,CSub,CI , PI }. The
notation D/G designates these two formats of a database. □

Fig. 1 shows an RDF instance and schema as a typed graph whose
specifications are available in [6]1. The schema specifies that Has
Consequence is a property having class Drug as its domain and
the class Effect as its range. Property Produces is a sub-property
of Has Consequence while PosEffect is a sub-class of Effect. Class
“rdfs:Resource" symbolizes the root of an RDF class hierarchy. The
instance is represented by individuals which are elements of a class
(e.g., APAP is an instance of class Mollecule) and their relationships
(e.g., the property instance Produces, between APAP and Fever−).

The logical representation of this database is a set of facts. For
instance facts such as CL(Drug) or CSub(Drug, rdfs:Resource) are
for the schema description and Ind(Saccharose) or CI(Saccharose,
Excipient) are for the instance description. Constraints presented
in [9] are those in Fig. 2 which is borrowed from [16]. We recall
from [9] that these constraints capture the RDF/S semantics and
the restrictions imposed by [30] whose model’s goal is to provide
sound and complete algorithm for RDF/S query containment and
minimization. That model imposes a semantics having character-
istics such as: role distinction between types (classes, properties
and individuals), unique domains and ranges for properties and
no cycles in subsumptions. These constraints (that we denote by
C) are the basis of our RDF semantics. For instance, the schema
constraint (20) establishes transitivity between sub-properties and
the instance constraint (27) ensures this transitivity on instances
of a property (if z is a sub-property ofw , all z’s instances are prop-
erty instances ofw). We are interested in database that satisfy all
constraints in C .

Definition 3.2 (Consistent database (D ,C)). A database D is con-
sistent if it satisfies all constraints in C (i.e., in this paper, those in
Fig. 2). □

As already mentioned, this paper adopts the closed world as-
sumption (CWA) where constraints are not just inferences - they
impose data restrictions.

Definition 3.3 (Update). Let D/G be a database. An update U on
D is either (i) the insertion of a fact F in D (an insertion is denoted
by F) or (ii) the removal of a fact F from D (a deletion is denoted
by ¬F). To each update U corresponds a graph rewriting rule r .
An update F is intrinsically inconsistent if ∄D , F ∈ D ∧ (D ,C). An
update is consistent if it is not intrinsically inconsistent. □

Updates can be classified according to the predicate of F , i.e., the
insertion (or the deletion) of a class, a class instance, a property, etc.
For each update type, a rewriting rule r describes when and how
to transform a graph database. This paper aims at proposing a set
of graph rewriting rules, denoted by R, which ensures consistent
transformations on G due to any atomic update U . The set R is
defined on the basis of C as illustrated in Fig. 3: on the logical
level, (D ,C) expresses consistent databases; on the data graph level,
(G,R) expresses graph evolution with rules in R encompassing
constraints from C . The idea is: given D/G for (D ,C) and update

1Roughly, nodes and edges are typed (represented with a unique combination of shape
and color, e.g., an individual node is a blue oval) and attributed to indicate a name or
value when relevant.

iiWAS ’20, November 30– December 02, 2020, Chiang Mai, Thailand Chabin, Eichler, Halfeld-Ferrari, Hiot.

• Typing Constraints:

CL(x) ⇒ URI (x) (1) Pr (x) ⇒ URI (x) (2) Ind (x) ⇒ URI (x) (3)
(CL(x) ∧ Pr (x)) ⇒ ⊥ (4) (CL(x) ∧ Ind (x)) ⇒ ⊥ (5) (Pr (x) ∧ Ind (x)) ⇒ ⊥ (6)

CSub(x, y) ⇒ CL(x) ∧CL(y) (7) PSub(x, y) ⇒ Pr (x) ∧ Pr (y) (8) Dom(x, y) ⇒ Pr (x) ∧CL(y) (9)
Rnд(x, y) ⇒ Pr (x) ∧CL(y) (10) CI (x, y) ⇒ Ind (x) ∧CL(y) (11) CL(x) ⇒ CSub(x, rdfs:Resource) (12)
Ind (x) ⇒ CI (x, rdfs:Resource) (13) P I (x, y, z) ⇒ Ind (x) ∧ Ind (y) ∧ Pr (z) (14)

• Schema Constraints:

Pr (x) ⇒ (∃y, z)(Dom(x, y) ∧ Rnд(x, y)) (15) ((y , z) ∧ Dom(x, y) ∧ Dom(x, z)) ⇒ ⊥ (16) ((y , z) ∧ Rnд(x, y) ∧ Rnд(x, z)) ⇒ ⊥ (17)
CSub(x, y) ∧CSub(y, z) ⇒ CSub(x, z) (18) CSub(x, y) ∧CSub(y, x) ⇒ ⊥ (19) PSub(x, y) ∧ PSub(y, z) ⇒ PSub(x, z) (20)

Psub(x, y) ∧ Dom(x, z) ∧ Dom(y, w) ∧ (z , w) ⇒ CSub(z, w) (21) PSub(x, y) ∧ PSub(y, x) ⇒ ⊥ (22)
Psub(x, y) ∧ Rnд(x, z) ∧ Rnд(y, w) ∧ (z , w) ⇒ CSub(z, w) (23)

• Instance Constraints:

Dom(z, w) ⇒ (P I (x, y, z) ⇒ CI (x, w)) (24) Rnд(z, w) ⇒ (P I (x, y, z) ⇒ CI (x, w)) (25)
CSub(y, z) ⇒ (CI (x, y) ⇒ CI (x, z)) (26) PSub(z, w) ⇒ (P I (x, y, z) ⇒ P I (x, y, w)) (27)

Figure 2: Simplified and compacted form of RDF/S constraints

D satisfy constraints C
⇕ ↾⇂
G evolution constrained by R

Figure 3: Rewriting rules R and constraints C .

U corresponding to rule r ∈ R; if G’ is the result of applying r on
G then our goal is to have (D ′,C) for D ′/G′.

4 GRAPH REWRITING FOR CONSISTENCY

MAINTENANCE

In our proposal, rewriting rules formalize both graph transforma-
tions and the context in which they may be applied. These rules
may be fully specified graphically, enabling an easy-to-understand
yet formal graphical view of the graph transformation. To prevent
the introduction of inconsistencies during updates, we 1) formally
specify rules of R formalizing atomic G evolution and 2) prove that
every rule in R ensures the preservation of every constraints in C .

In our approach each type of atomic update corresponds to one
of the 18 rules in R. The kernel of R’s construction lies on the de-
tection of constraints in C impacted by an update: an insertion F
(respectively, a deletion ¬F) impacts constraints having the predi-
cate of F in their left-hand side (respectively, in their right-hand
side). Consider for instance constraint (11): ifCI (A,B) is in D , then
D should also contain a class B and an individual A. Hence, the
graph rewriting rule formalizing the insertion of CI (A,B) is de-
signed so that it is applicable only in a database respecting these
conditions.

Clearly, in this paper, it is not possible to present each rule. All
rules and proofs are available in [6]. The following presents the
background on graph rewriting illustrated by a single rule of R. We
adopt the Single Push Out (SPO) formalism [23] to specify rewriting
rule as well as several of its extensions to specify additional applica-
tion conditions and restrict rule applicability: Negative Application
Conditions (NACs) [13], Positive Application Conditions (PACs), and
General Application Conditions (GACs) [27].

Example 4.1. Consider the graph database of Fig. 1 and assume
node Allergy exists in G but is only connected to node rdf:ressource
and not to nodes such as Effect. In this context, consider the inser-
tion of CI (Allerдy, E f f ect), i.e., we want to update G by inserting
Allergy as an instance of class Effect. As the update is the insertion
of a class instance, the rule to be considered is rCI (Fig. 4). □

Figure 4: SPO rule: insertion of a class instance

L R

G G’

m

m̃

Figure 5: Push-Out, application of SPO rules

The SPO approach is an algebraic approach based on category
theory. A rule is defined by two graphs – the Left and Right Hand
Side of the rule, denoted by L and R – and a partial morphismm
from L to R (i.e., an edge-preserving morphismm from an induced
subgraph of L to R). 2

Fig. 4 formalizes the SPO core of rCI rule: L has one class-typed
node with an attribute URI whose value is B and one individual-
typed node with URI A, while R has the same two nodes and an
edge from Ind(A) to CL(B). By convention, an attribute value within
quotation mark (e.g. “NegEffect") is a fixed constant, while a value
noted without quotation mark (e.g. A) is a variable whose value
may be given as an input or assigned according to the context. The
partial morphism from L to R is specified in the figure by tagging
graph elements - nodes or edges - in its domain and range with a
numerical value. An element with value i in L is part of the domain
ofm and its image bym is the graph element in R with the same
value i . For instance, in Fig. 4, the notation 1: for the individuals on
L and R indicates that they are mapped throughm.

A graph rewriting rule r = (L,R,m) is applicable to a graphG iff
there exists a total morphism m̃ from L to G. The two morphisms
m : L → R and m̃ : L → G are shown in black in the diagram of
Fig. 5. The object of its push-out, G ′, depicted in red, is the result
of the application of r to G with regard to m̃.

Informally, the application of r to G with regard to m̃ consists
in modifying G by (1) removing the image by m̃ of all elements of
L that are not in the domain ofm (i.e., removing m̃(L\Dom(m)));
(2) removing all dangling edges (i.e., deleting all edges that were
2To avoid multiplying notation, we use notation L and R for every rule, even those in
the logical formalism, sometimes with an index indicating the rule name.

Graph Rewriting Rules for RDF Database Evolution Management iiWAS ’20, November 30– December 02, 2020, Chiang Mai, Thailand

(a) (b)

Figure 6: NAC and GAC for the SPO rule in Fig 4.

incident to a node that has been suppressed in step (1)); (3) adding
an isomorphic copy of all elements of R that are not in the domain
ofm.

Example 4.2. In Fig. 4, the rule is applicable to any graph contain-
ing a class node with a URI B and an individual node with an URI
A. Its application consists in adding a class instance edge from the
individual to the class. Assuming that A and B are given as input,
this rule is thus a first way of formalizing the addition of a class
instance relation. It is therefore the basis for including Allergy as
an instance of Effects. However, this a naive rule: for instance, the
node could already exist as an instance for the same class, creating
a duplicate. To avoid this kind of situations, the rule applicability
must be further restricted. □

NACs and PACs are well-studied extensions that restrict rule ap-
plication by, respectively, forbidding or requiring certain patterns
in the graph. A NAC or a PAC for a rule r is defined as a constraint
graph which is a super-graph of Lr . An SPO rule r = (L,R,m)

with NACs and PACs is applicable to a graph iff: (i) there exists a
total morphism m̃ : L → G (this is the classical SPO application
condition); (ii) for all PACs P (resp. NACs N) associated with r ,
there exists a total morphism (resp. there exists no total morphism)
m̄ : P → G whose restriction to L is m̃. By convention, since NACs
and PACs are super-graphs of L unnecessary parts of L are not
depicted when illustrating a NAC or a PAC. Graph elements that
are common to L and the depicted part of the NAC are identified by
a numerical value similarly to elements mapped by the morphism
between L and R .

Example 4.3. Fig. 6a specifies a NAC for the rule in Fig. 4. It
forbids the application of the rule if CI (A,B) already exists in the
database but, it does not guarantee the satisfaction of propagation
of class instances to super-classes. □

GACs. The more classical application conditions, be it NACs or
PACs, are defined as a constraint graph C and an injective partial
morphism (in that case, the identity function) fromC to L. From this
observation, nested application conditions [11, 14] are introduced
allowing the definition of conditions on the constraint graphs. A
condition over a graph G is of the form true or ∃(a, c) where a :
G → C is a graph morphism fromG to a condition graphC , and c is
a condition over C . Now, a PAC P over a rule (L,R,m) can be seen
as a condition (a, true), with a being the identity morphism from
L to P while a NAC N can be seen as a condition ¬(a, true) with
a similar definition of a. GACs [27] are a combination of nested
application condition allowing the definition of complex application
conditions for SPO rules. A GAC of a rule (L,R,m) is a condition
over L that may be quantified by ∀ and combined using ∧ and ∨.

The rule (L,R,m) with GAC ∃(a, c) is applicable to a graph G with
regard to a morphism m̃ if there is an injective graph morphism
m̄ : G → C such that m̄ ◦ a = m̃ and m̄ satisfies c .

Example 4.4. Fig. 6b specifies a GAC of form ∀(a, c) for rCI . The
morphism a from L to GacTransCI is depicted on the right part of
Fig. 6b. GacTransCI contains L plus a subclass edge from the class
node of L to a new class node n. The condition c is ∃(b, true), with
b the morphism from GacTransCI to NestCond (left part of Fig. 6b):
NestCond is itself a super-graph of GacTransCI and comports one
more CI edge from the individual node to n. Due to this GAC, the
rule is applicable to a graphG with regard to a morphism m̃ only if
for all morphism m̄ fromGacTransCI toG whose restriction to L is
m̃, there also exists at least a morphism from NestCond toG which
restriction toGacTransCI ism̄. In other word, this GAC ensures that
if the rule is applicable, then ∀C,CL(C) ∧ CSub(B,C) ⇒ CI (A,C).
Indeed, if there is a mapping from L to the database graph, the rule
is applicable only if, for each matching of GacTransCI (i.e., for all
class C that is a super-class of B) there is a matching of NestCond
(i.e., there must be an edge of type CI from Ind(A) to CL(C)). □

To prove that rule rCI , defined by the SPO core of Fig. 4 and
application conditions of Fig. 6, preserves consistency, we consider
the impacted constraints in C , namely: 11 and 26 in Fig 2 (having
atoms with CI on their L). The SPO part of rCI ensures that the
insertion of a class instance is performed only when the individual
and its type already exist in the database (constraint 11). According
to rCI ’s GAC, rCI is applicable only if A is an instance of all super-
classes of C (ensuring constraint 26). The correctness of all other
rewriting rules is proved in a similar way (available in [6]). Based
on that work we can also prove the following lemma.

Lemma 4.5 (Correctness of rewriting rules). Let U be a
consistent update, F the fact being inserted (resp. deleted) and r ∈ R
the corresponding rewriting rule. Let G/D be a consistent database,
G’ be the result of the application of r on G (we write G′ = r (G)),
and D ′ the database defined by G’/D ’. Then (1) G′ is consistent, i.e.,
(D ’,C) and (2) F ∈ D ′ (resp. F < D ′). □

5 SIDE-EFFECTS AND CONSISTENT

DATABASE EVOLUTION

Traditionally, whenever a database is updated, if constraint viola-
tions are detected, either the update is refused or compensation
actions, which we call side-effects, must be executed in order to
guarantee their satisfaction. In our approach, each update U is for-
malized by a rewriting rule rU ∈ R. If applicability conditions of
rU are not respected, our algorithm generates new updates capable
of changing G into a new graph Gn on which rU can be applied to
produce G′. These new updates are called side-effects ofU .

Example 5.1. Let D/G be the database as the one in Fig. 1, but
without NegEffect and its incident edges. In this context, consider
that U is the insertion of class instance CI (Allerдy,
NeдE f f ect) and rCI ∈ R the corresponding rule (Fig. 4). The rule
cannot be applied on G since it requires the existence of both the
class and the individual which we want to “link together”. Thus,
two side-effects are generated: (U 1) the insertion of an individual
Allergy and (U 2) the insertion of class NegEffect. The corresponding
rules are triggered, adding the individual and class and connecting

iiWAS ’20, November 30– December 02, 2020, Chiang Mai, Thailand Chabin, Eichler, Halfeld-Ferrari, Hiot.

Update Type Conditions

CI(Xi,XC) Indiv (Xi); CL (XC) ∨ (XC = Ressource);
∀ YC CSub (XC, YC) then CI(Xi, YC)

CL(A) ¬Pr(A); ¬Indiv(A);
CSub(A, Resource); Uri(A)

¬ Pr(P) ∀ Xsp PSub(Xsp, P) then ¬ PSub(Xsp, P)
∀ XP PSub(P, XP) then ¬ PSub(P, XP)
∀ XD Dom (P, XD) then ¬ Dom (P, XD)
∀ XR Rng (P, XR) then ¬ Rng (P, XR)
∀ Xi, Yi PI (Xi, Yi, P) then ¬ PI (Xi, Yi, P)

Figure 7: Extract of UpdCond table.

them to class rdfs:Resource. Rule rCI is then applied, giving the
graph of Fig. 1, except for a missing subclass edge between Effect
and NegEffect and a missing CI edge from Allergy to Effect. □

Roughly, SetUp is an algorithm allowing the interaction between
a graph rewriter and a side-effect generator. The latter, producing
new updates to be treated by the former, can follow different politics
in ordering and in authorizing the treatment of these new updates.
In our approach, different levels of users are considered: those
authorized to trigger side-effects or provoke schema changes and
those for whom only instance updates respecting R are allowed.
Algorithm 1 summarizes our approach for authorized users.

Given a database D/G and an updateU , Algorithm 1 transforms
G following rules in R. Denote by rU ∈ R the rewriting rule as-
sociated toU . When rU cannot be applied on G, SetUp computes,
recursively, all updates necessary to change G so that rU is appli-
cable. Here, it is worth noting the design flexibility imposed by the
update scenario: either imposed by the intrinsic non-determinism
of consistency maintenance or by side-effect ordering.

Indeed, on line 1 of Algorithm 1, each condition c , necessary for
applying rU on G, is added to PreConditions. Function FindPred-
Cond2ApplyUpd works on table UpdCond [6] indexed by the update
type. Fig. 7 shows an extract of UpdCond (e.g., from the first row,
we know that the insertion of CI (A,B), depends on the existence
of A as an individual, B as an class and the respect of hierarchical
constraints). Roughly, to design UpdCond for an insertion P , we
consider all constraints c ∈ C (Fig. 2) having atoms with the predi-
cate of P in Lc (its body) and we build updates corresponding to the
atoms in Rc (its head). Deletions are treated in a reciprocal way: we
look from the predicate of P on the heads of constraints and define
the new updates based on the atoms in their bodies. Unfortunately,
a deletion may engender non-deterministic side-effects. Consider
for instance the deletion of a class instance CI (A,B). Constraint 26
in C (Fig. 2) indicates two possible side-effects in this case: deleting
A as a class instance of all super-classes of B or breaking the class
hierarchy. In this paper, we deal with non-determinism in an arbi-
trary way: when a choice is needed, the priority is given to updates
on the instance, leaving the schema unchanged. Thus, in the above
example, side-effect updates are: ¬CI (A,yc), for each yc which is a
super-class of B. When non-determinism is over two side-effects
implying changes on the schema, the priority is to break the highest
hierarchical link.

Then, on line 2 of Algorithm 1, each condition c is considered.
The order in which each c is treated impacts the order in which
new updates are applied to the database and gives rise to different
approaches. PreConditions can be seen as a set (updates treated on

any order) or as a list ordered according to a particular method. Our
prototype uses an arbitrarily pre-defined order. Arbitrary choices
are seldom the best solution: we are currently working on a cost
function to guide our choices both for update ordering and non-
deterministic choices.

Algorithm 1: SetUp (G,R,U)

Input: Graph database G, set of rewriting rules R, updateU
Output: New graph database G
1: PreConditons := FindPredCond2ApplyUpd(G, R, U)

2: for all condition c in PreConditons do

3: if c is not satisfied in G then

4: U ′ :=Planner2FitGraphInCond (G, c)
5: for all update u′ inU ′

do

6: G := SetUp (G, R, u′)

7: G := GraphRewriter(G, R, U)

8: return G

Once a condition c is chosen, Planner2FitGraphInCond (line 4)
generates a new update set U ′ (i.e., side-effects for U). Recursive
calls (line 6) ensure that each side-effect u ′ ∈ U ′ is treated in the
same way. When conditions for a rewriting rule ru′ hold, function
GraphRewriter applies ru′ and the graph evolves. Eventually, ifU
is not intrinsically inconsistent, we obtain a new graph on which
rU is applicable. Indeed, some updatesU related to a fact F may be
intrinsically inconsistent as illustrated in the following example.

Example 5.2. Trying to perform SetUp (G,R,
CI (Sweetener , Sweetener)), an inconsistent update, Algorithm 1,
line 1, produces two pre-conditions c1 : Ind(Sweetener) and c2 :
CL(Sweetener).
- c1 is not satisfied in G, line 4 produces side-effect
Ind(Sweetener), which is inserted in the graph by line 6 with no
more side-effect.
- c2 is not satisfied in G line 4 produces side-effect
CL(Sweetener), line 6 deletes Ind(Sweetener) before applying the
rule rCL and insert CL(Sweetener)in G.
Conditions c1 and c2 having been handled, rCI is invoked but it can-
not be applied: there is no individual node Sweetener ; the algorithm
stops. □

The current version of SetUp is simple and avoids loops in the
treatment of intrinsically inconsistent updates. It performs updates
according to a pre-established order without any backtracking.
Therefore, once a rule is activated for side-effect e1 of update u1 it
will not be activated again for the same update u1. The resulting
graph, in this case, does not change, but stays consistent.

Lemma 5.3 (SetUp Correction). Let G be a consistent graph and
R our set of graph rewriting rules. LetU be a consistent update, F the
fact being inserted or deleted. Let D ′/G′ be the database such that
G′ = SetUp(G,R,U). Then, (1) SetUp terminates and (2) if U is an
insertion F ∈ D ′, otherwise, ifU is a deletion F < D ′. □

Proof. (sketch, full proof available in [6]) For each type of up-
date we prove that we have a finite number of side-effects and thus
recursive calls terminate. □

Graph Rewriting Rules for RDF Database Evolution Management iiWAS ’20, November 30– December 02, 2020, Chiang Mai, Thailand

6 EXPERIMENTAL EVALUATION

SetUp is implemented in Java and relies on AGG (The Attributed
Graph Grammar System) [35], one of the most mature and cited
development environment supporting the definition and application
of typed graph rewriting systems [29]. Its current version –available
online [5]– provides a textual interface and offers different updating
modes, according to the user level. This section experimentally
investigates SetUp in various update scenarios, evaluating their
execution time and the number of generated side-effects.

Figure 8: Experimental graph with I = 1 and S = 2

Datasets. The impact of the schema complexity (particularly, the
complexity of the hierarchy set up in a schema) on the performance
of our method is non-negligible. Thus, although there are many
open RDF datasets available, our experiments are conducted on
synthesised RDF/S graphs, allowing us to analyse results according
to changes on the schema hierarchy. A simplified example is pro-
vided in Fig. 8 with the aforementioned graphical representation for
typed edges and nodes. Experimental graphs are composed of: (A)
Schema: (i) a minimal schema with no hierarchy (a property with
two dom/rng classes and a class, illustrated in red and black in the
upper right part of Fig. 8) plus (ii) a simple hierarchy of S classes and
properties (illustrated in the bottom part of the figure). (B) Instances
of all these classes and properties (in blue and yellow in the figure).
Concepts outside or at the bottom of the hierarchy have I instances,
the next has 2 ∗ I instances, etc (so that the top of the hierarchy has
S*I instances). The values of (I , S) used in experiments are (1, 1),
(1, 5), (5, 1), and (5, 5) which correspond to graphs with (|V |, |E |)
equal to (16, 24), (44, 152), (40, 80), and (116, 480), respectively.
Experimental scenarios. Experiments consist in facts insertions
and deletions as summarized in Table 1. They are categorized ac-
cording to the update type and the database configurations, since
the impact of an update is intrinsically related to these two factors.
Every case having a check-mark indicates a scenario taken into
account in our experiments, for the referenced update. As an exam-
ple, consider the insertion of an instance of class C . If C is not yet
in the base but a property P with the same URI is, then P (and all
its instances) are deleted to allow C’s insertion. Different scenarios
are defined according to the position of P in the hierarchy (lines
with ∃P=C and ∃P=CinH).

Experimental results. Figs. 9 and 10 show the results of our ex-
periments for deletions and insertions, respectively. The time is
measured with JMH [32] on 3 forks of 10 warmups and 50 measure
iterations with a mean of 150 op./iteration.

Side-effects tackled by the GraphRewriter are not taken into ac-
count: for instance, the deletion of a class at the top of the hierarchy
is reported with 0 side-effect since deletion of relevantCI andCSub
are handled by the GraphRewriter through the removal of dangling
edges. On the contrary, those generated by SetUp are counted even
if they do not need to be applied due to the database configuration.
For instance the insertion CL(A) has two side-effects (¬Pr (A) and
¬Ind(A)) that are included even if the original database does con-
tain neither such a property nor such an individual. The number
of generated side-effects varies according to the update type and
the scenario. For instance, CL(A) always generates the 2 aforemen-
tioned side-effects. AsCSub andCI relationships are suppressed by
the GraphRewriter, update ¬CL(C) generates 0 side-effects in sce-
narios ¬∃C , ∃C , and ∃CinH . However, in the scenario ¬Dom/Rnд
top, 2, 46, 6, and 226 are generated with (I , S) = (1, 1), (1, 5), (5, 1),
and (5, 5), respectively. The first generated side-effect is ¬Pr (P)
with P the property whose domain or range is suppressed. It it-
self generates S ∗ I ¬PI (one per instance of P) that need to be
enforced beforehand. In turn, each ¬PI triggers the suppression
of instances of P ′s sub-properties with the same owner and value.
Hence, the number of generated side-effects increases linearly with
S and quadratically with I .

Execution time grows with the size of the knowledge graph, as
it impacts the pattern matching and the verification of rule appli-
cability phases. The scale of this impact varies depending on the
complexity of the applied graph rewriting rules.CL(A), for example,
triggers the same number of side-effects by both SetUp and the
GraphRewriter (which isCSub(A, “rd f s : Resource”)) regardless of
I and S . The applicability conditions of the corresponding rule are
quite simple (two NACs) and the impact is thus marginal: it takes
31, 5s and 34, 4s with S = 1, I = 1 and S = 5, I = 5, respectively. This
corresponds to a 9% execution time increase for a graph containing
roughly 7 times more vertices and 20 times more edges. On the
contrary, consider ¬CI (top) whose rule contains complex GACs.
Side-effects depends solely on S and, with S = 5 and 10 side-effects,
the execution time goes up by 79% from I = 1 (368, 5s) to I = 5
(660, 5s). By roughly tripling the size of the graph, each update ¬CI
takes almost 72% more time to be executed.

The second factor impacting time is the number of generated
side-effects, as they triggers calls to the pattern matching and graph
rewriting algorithms. For instance, configuration (I , S) = (1, 5) is
bigger than (5, 1) as it as almost as many nodes but twice as many
edges. Yet, ¬Dom/Rnд (top) is almost three times longer on the sec-
ond configuration (190, 5s and 538s, respectively). This is due to the
number of side-effects going from 6 to 46. Notably, side-effects han-
dled by the GraphRewriter mildly impact execution time. ¬Cl , for
example, has almost the same execution time with configurations
∃C and ∃CinH (10, 0 and 10, 3s respectively with I = S = 5), even
tough the latter implies the suppression of S CSub relationships.

7 CONCLUSIONS AND PERSPECTIVES

SetUp is a theoretical and applied framework for ensuring con-
sistent evolution of RDF graphs. Its originality lies in the use of
a typed graph rewriting system ; each atomic update is formal-
ized using a graph rewriting rule whose application necessarily
preserves constraints. If an update cannot be applied, SetUp may

iiWAS ’20, November 30– December 02, 2020, Chiang Mai, Thailand Chabin, Eichler, Halfeld-Ferrari, Hiot.

Table 1: Experiment scenarios (C is a class, P a property and I an individual.)

Scenario Update type

Notation Explanation ¬
C
I

¬
C
L

¬
C
Su

b

¬
P
I

¬
P
ro
p

¬
P
Su

b

¬
D
om

C
I

C
L

C
Su

b

P
I

P
ro
p

P
Su

b

down Update at the bottom of the hierarchy ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
e.g. CI (Nausea,NeдE f f ect)

top Update at the top of the hierarchy ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
e.g. ¬CL(E f f ect)

down reverse Update on top of the hierarchy’s bottom ✓ ✓
e.g. CSub(NeдE f f ect ,HealthThreat)

top reverse Update on top of hierarchy’s top ✓ ✓
e.g. PSub(HasConsequence,AssociatedW ith)

¬∃C C is absent from the database ✓ ✓ ✓ ✓
∃C C exists outside any hierarchy ✓ ✓
∃CinH C is at the bottom of the hierarchy ✓ ✓

(is at the top for deletion)
∃CasDom C is the domain of some property ✓ ✓
∃CtopDom C is the domain of the property and ✓ ✓

it is at the top of the hierarchy
∃I the individual is already in the database ✓
¬∃I the individual is not in the database ✓
∃P=C there exists P with the URI of C

P is outside an hierarchy ✓
∃P=CinH there exists P with the URI of C

P is at the top of a hierarchy ✓

(a) Time (b) Side-effects

Figure 9: Experimental results for fact suppression.

generate additional consistency preserving updates to ensure its
applicability.

The importance of SetUp is in its originality of using graph
rewriting techniques under the closed world assumption to set an
updating system. Even if it is unfit for on-the-fly automated up-
dates, SetUp is satisfactory for interactive command line updates
and can also be used for offline modifications. Not only can SetUp

be used as a test-bed for updating approaches but also for further
database applications. In particular, we plan to use it on offline
RDF graph anonymization, where a snapshot of a RDF graph is
anonymized and openly published. In this context, a separate entity
triggers updates in SetUp to conform to a privacy model such as
k-anonymity or differential privacy. The advantage of SetUp to con-
duct such operations is threefold. First, even though the produced

Graph Rewriting Rules for RDF Database Evolution Management iiWAS ’20, November 30– December 02, 2020, Chiang Mai, Thailand

(a) Time (b) Side-effects

Figure 10: Experimental results for fact insertion.

graph is ultimately perturbed and not a “real" database, constraint
satisfaction and property preservation is paramount. Indeed, any
inconsistency may give indication to potential attackers and there-
fore jeopardyze privacy. We believe that graph rewriting rules are
appropriate to guarantee constraint and property preservation, as
seen in this paper. Secondly, since requested updates are required
to conform to the chosen anonymity model, it is important to even-
tually guarantee their applications. Hence, refusing an update is
not acceptable in this context, justifying they need of side-effect
management as handled by the proposed framework. Thirdly, even
if most works related to RDF updates adopt the open world as-
sumption, the closed world assumption adopted by SetUp allows a
better understanding and management of the published knowledge,
which is crucial for anonymisation. Note that this is not inconsis-
tent with the primary advantages of linked data; once published,
the database can be subject to inference rules or linked to other
knowledge-bases. Indeed, privacy models (e.g., approaches based
on differential privacy) do not necessarily make hypothesis on the
attackers’ auxiliary knowledge. Rather, they only focus on the re-
leased data and privacy guarantees stand regardless of existing and
accessible data related to the published data base.

Acknowledgement:Work supported by the French National Re-
search Agency, under grant ANR-18-CE23-0010 and developed in
the context of DOING@DIAMS group.

REFERENCES

[1] [n.d.]. https://www.ontotext.com/knowledgehub/fundamentals/what-is-rdf/.
[2] Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset,

and Pierre Senellart. 2011. Web data management. Cambridge University Press.

[3] Albin Ahmeti, Diego Calvanese, and Axel Polleres. 2014. Updating RDFS ABoxes
and TBoxes in SPARQL. CoRR abs/1403.7248 (2014).

[4] Karlis Cerans, Guntis Barzdins, Renars Liepins, Julija Ovcinnikova, Sergejs Rika-
covs, and Arturs Sprogis. 2012. Graphical schema editing for StarDog OWL/RDF
databases using OWLGrEd/S. 849 (01 2012).

[5] Jacques Chabin, Cédric Eichler, Mirian Halfed Ferrari, and Nicolas Hiot.
2019. SetUp: a tool for consistent updates of RDF knowledge graphs.
https://owncloud.insa-cvl.fr/s/4w8eiqO2xDPBDiS.

[6] Jacques Chabin, Cédric Eichler, Mirian Halfed Ferrari, and Nicolas Hiot. 2020.
Graph rewriting system for consistent evolution of RDF databases. Technical
Report. LIFO, Université d’Orléans, INSA Centre Val de Loire. hal.archives-
ouvertes.fr/hal-02560325v3

[7] Jacques Chabin, Mirian Halfeld Ferrari, and Dominique Laurent. 2019. Consistent
Updating of Databases with Marked Nulls. Knowledge and Information Systems
(2019).

[8] Pieter De Leenheer and TomMens. 2008. Using Graph Transformation to Support
Collaborative Ontology Evolution. In Applications of Graph Transformations with
Industrial Relevance, Andy Schürr, Manfred Nagl, and Albert Zündorf (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 44–58.

[9] Giorgos Flouris, George Konstantinidis, Grigoris Antoniou, and Vassilis
Christophides. 2013. Formal foundations for RDF/S KB evolution. Knowl. Inf.
Syst. 35, 1 (2013), 153–191.

[10] François Goasdoué, Ioana Manolescu, and Alexandra Roatiş. 2013. Efficient query
answering against dynamic RDF databases. In Proceedings of the 16th International
Conference on Extending Database Technology. ACM, 299–310.

[11] Ulrike Golas, Enrico Biermann, Hartmut Ehrig, and Claudia Ermel. 2011. A Visual
Interpreter Semantics for Statecharts Based on Amalgamated Graph Transforma-
tion. ECEASST 39 (01 2011).

[12] Claudio Gutierrez, Carlos A. Hurtado, and Alejandro A. Vaisman. 2011. RDFS
Update: From Theory to Practice. In The Semanic Web: Research and Applications -
8th Extended Semantic Web Conference, ESWC, Greece, Proceedings, Part II. 93–107.

[13] Annegret Habel, ReikoHeckel, and Gabriele Taentzer. 1996. GRAPHGRAMMARS
WITH NEGATIVE APPLICATION CONDITIONS. Fundam. Inf. 26, 3,4 (Dec. 1996),
287–313.

[14] Annegret Habel and Karl-heinz Pennemann. 2009. Correctness of High-level
Transformation Systems Relative to Nested Conditions. Mathematical. Structures
in Comp. Sci. 19, 2 (April 2009), 245–296.

[15] Mírian Halfeld Ferrari, Carmem S. Hara, and Flavio R. Uber. 2017. RDF Updates
with Constraints. In Knowledge Engineering and Semantic Web - 8th International

https://www.ontotext.com/knowledgehub/fundamentals/what-is-rdf/
hal.archives-ouvertes.fr/hal-02560325v3
hal.archives-ouvertes.fr/hal-02560325v3

iiWAS ’20, November 30– December 02, 2020, Chiang Mai, Thailand Chabin, Eichler, Halfeld-Ferrari, Hiot.

Conference, KESW, Szczecin, Poland, Proceedings. 229–245.
[16] Mirian Halfeld Ferrari and Dominique Laurent. 2017. Updating RDF/S Databases

Under Constraints. In Advances in Databases and Information Systems - 21st
European Conference, ADBIS, Nicosia, Cyprus, Proceedings. 357–371.

[17] Sven Ove Hansson. 2016. Logic of Belief Revision. In The Stanford Encyclopedia
of Philosophy (winter 2016 ed.), Edward N. Zalta (Ed.). Metaphysics Research Lab,
Stanford University.

[18] Hirofumi Katsuno and Alberto O. Mendelzon. 1991. On the Difference between
Updating a Knowledge Base and Revising It. In Proc. of the 2nd Int. Conf. on
Principles of Knowledge Representation and Reasoning (KR’91). Cambridge, MA,
USA, April 22-25. 387–394.

[19] H. Knublauch, J. A. Hendler, and K. Idehen. 2011. SPIN - Overview andMotivation.
W3C Member Submission. http://www.w3.org/Submission/2011/SUBM-spin-
overview-20110222.

[20] H. Knublauch and A. Ryman. 2017. Shapes Constraint Language (SHACL).
W3C First Public Working Draft, W3C. http://www.w3.org/TR/2015/WD-shacl-
20151008/..

[21] Sebastian Link. 2002. Towards a Tailored Theory of Consistency Enforcement in
Databases. In Foundations of Information and Knowledge Systems, Second Interna-
tional Symposium, FoIKS, Germany, Proceedings. 160–177.

[22] Sebastian Link and Klaus-Dieter Schewe. 2002. An Arithmetic Theory of Consis-
tency Enforcement. Acta Cybern. 15, 3 (2002), 379–416.

[23] Michael Löe. 1993. Algebraic approach to single-pushout graph transformation.
Theoretical Computer Science 109, 1âĂŞ2 (1993), 181 – 224.

[24] Mariem Mahfoudh. 2015. Adaptation d’ontologies avec les grammaires de graphes
typés: évolution et fusion. (Ontologies adaptation with typed graph grammars :
evolution and merging). Ph.D. Dissertation. University of Upper Alsace, Mulhouse,
France.

[25] Mariem Mahfoudh, Germain Forestier, Laurent Thiry, and Michel Hassenforder.
2015. Algebraic graph transformations for formalizing ontology changes and
evolving ontologies. Knowledge-Based Systems 73 (2015), 212 – 226.

[26] Pierre Maillot, Thomas Raimbault, David Genest, and Stéphane Loiseau. 2014.
Consistency Evaluation of RDF Data: How Data and Updates are Relevant. In
Tenth International Conference on Signal-Image Technology and Internet-Based
Systems, SITIS 2014, Marrakech, Morocco, November 23-27, 2014. 187–193.

[27] Olga Runge, Claudia Ermel, and Gabriele Taentzer. 2012. AGG 2.0 – New Features
for Specifying and Analyzing Algebraic Graph Transformations. In Applications
of Graph Transformations with Industrial Relevance. Springer Berlin Heidelberg,

Berlin, Heidelberg, 81–88.
[28] Thomas Schwentick. 2007. Automata for XML - A survey. J. Comput. Syst. Sci.

73, 3 (2007), 289–315.
[29] Sergio Segura, David Benavides, Antonio Ruiz-Cortés, and Pablo Trinidad. 2008.

Automated Merging of Feature Models Using Graph Transformations. Springer
Berlin Heidelberg, Berlin, Heidelberg, 489–505.

[30] Giorgos Serfiotis, Ioanna Koffina, Vassilis Christophides, and Val Tannen. 2005.
Containment and Minimization of RDF/S Query Patterns. In The Semantic Web -
ISWC 2005, 4th International Semantic Web Conference, ISWC 2005, Galway, Ireland,
November 6-10, 2005, Proceedings (Lecture Notes in Computer Science, Vol. 3729),
Yolanda Gil, Enrico Motta, V. Richard Benjamins, and Mark A. Musen (Eds.).
Springer, 607–623.

[31] Arash Shaban-Nejad and Volker Haarslev. 2015. Managing changes in distributed
biomedical ontologies using hierarchical distributed graph transformation. Inter-
national Journal of Data Mining and Bioinformatics 11, 1 (2015), 53–83.

[32] Aleksey Shipilev, Sergey Kuksenko, Anders Astrand, Staffan Friberg, and Henrik
Loef. 2007. OpenJDK Code Tools: JMH. https://openjdk.java.net/projects/code-
tools/jmh/

[33] Evren Sirin, Michael Smith, and Evan Wallace. 2008. Opening, Closing Worlds -
On Integrity Constraints. In Proceedings of the Fifth OWLED Workshop on OWL:
Experiences and Directions, collocated with the 7th International Semantic Web
Conference (ISWC-2008) (CEURWorkshop Proceedings, Vol. 432), Catherine Dolbear,
Alan Ruttenberg, and Ulrike Sattler (Eds.). CEUR-WS.org.

[34] H. Solbrig and E. Prudh́ommeaux. 2014. Shape Expressions 1.0 Definition. W3C
Member Submission. http://www.w3.org/Submission/2014/SUBM-shex-defn-
20140602.

[35] Gabriele Taentzer. 2003. AGG: A Graph Transformation Environment for Model-
ing and Validation of Software. In AGTIVE.

[36] Jiao Tao, Evren Sirin, Jie Bao, and Deborah L. McGuinness. 2010. Integrity
Constraints in OWL. In Proceedings of the Twenty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2010, , USA, Maria Fox and David Poole (Eds.). AAAI
Press.

[37] Joe Tekli, Richard Chbeir, Agma J. M. Traina, and Caetano Traina Jr. 2011. XML
document-grammar comparison: related problems and applications. Central Eur.
J. Comput. Sci. 1, 1 (2011), 117–136.

[38] Marianne Winslett. 1990. Updating Logical Databases. Cambridge University
Press, New York, NY, USA.

https://openjdk.java.net/projects/code-tools/jmh/
https://openjdk.java.net/projects/code-tools/jmh/

	Abstract
	1 Introduction
	2 Related work
	3 RDF databases and updates
	4 Graph rewriting for consistency maintenance
	5 Side-effects and Consistent Database Evolution
	6 Experimental evaluation
	7 Conclusions and Perspectives
	References

