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ABSTRACT
Regularization of the classical Laplacian matrices was empirically
shown to improve spectral clustering in sparse networks. It was ob-
served that small regularizations are preferable, but this point was
left as a heuristic argument. In this paper we formally determine a
proper regularization which is intimately related to alternative state-
of-the-art spectral techniques for sparse graphs.

Index Terms— Regularized Laplacian, Bethe-Hessian, spectral
clustering, sparse networks, community detection

1. INTRODUCTION

Community detection [1] is one of the central unsupervised learn-
ing tasks on graphs. Given a graph G(V, E), where V is the set of
nodes (|V| = n) and E the set of the edges, it consists in finding a
label assignment – ˆ̀

i – for each node i, in order to reconstruct the
underlying community structure of the network. The community de-
tection problem has vast applications in different fields of science [2]
and can be seen as the simplest form of clustering, i.e. the problem
of dividing objects into similarity classes. We focus on unweighted
and undirected graphs that can be represented by their adjacency ma-
trices A ∈ {0, 1}n×n, defined as Ai,j = 1(ij)∈E , where 1x = 1 if
the condition x is verified and is zero otherwise.

A satisfactory label partition ˆ̀ can be formulated as the solu-
tion of an optimization problem over various cost functions, such as
Min-Cut or Ratio-Cut [3]. These optimization problems are NP-hard
and a common way to find an approximate – but fast – solution, is
by allowing a continuous relaxation of these problems. Defining
the degree matrix D ∈ Nn×n as D = diag(A1) = diag(d), the
eigenvectors associated to the smallest eigenvalues of the combina-
torial Laplacian matrix L = D−A and to the largest eigenvalues of
the matrix D−1A (that we refer to as Lrw) provide an approximate
solution to the Ratio-Cut and the Min-Cut problems, respectively
(Section 5 of [3]). Retrieving communities from matrix eigenvectors
is the core of spectral clustering [4, 5].

Although spectral algorithms are well understood in the dense
regime in which |E| grows faster than n (e.g. [6, 7]), much less
is known in the much more challenging sparse regime, in which
|E| = O(n). This regime is particularly interesting from a practi-
cal point of view, since most real networks are very sparse, and the
degrees di of each node i scales as di = (A1)i � n. Rigorous
mathematical tools are still being developed, but some important re-
sults have already tackled the problem of community detection in
sparse graphs.

We focus here on how regularization helps spectral clustering
in sparse networks. In the dense regime (Figure 1A), for a graph G
with k communities, the k largest eigenvalues of Lrw are isolated

and the respective eigenvectors carry the information of the low rank
structure of the graph. In the sparse regime instead, (Figure 1.B)
the isolated informative eigenvalues are lost in the bulk of uninfor-
mative eigenvalues. Regularization avoids the spreading of the un-
informative bulk and enables the recovery of the low rank structure
of the matrix, as depicted in Figure 1.C. Among the many contribu-
tions proposing different types of regularization [8, 9, 10, 11, 12],
we focus on the likely most promising one proposed by [8] that
recovers communities from the eigenvectors corresponding to the
largest eigenvalues of the matrix Lsym

τ = D
−1/2
τ AD

−1/2
τ , where

Dτ = D + τIn. The authors build a line of argument under the
assumption that the graph is generated from the degree-corrected
stochastic block model [13] (DC-SBM). In the literature, the char-
acterization of the parameter τ was never properly addressed and its
assignment was left to a heuristic choice. More specifically, both in
[8] and [10] the results provided by the authors seem to suggest a
large value of τ , but it is observed experimentally that smaller val-
ues of τ give better partitions. In the end, the authors in [8] settle on
the choice of τ = 1

n
1TD1, i.e., the average degree.

A fundamental aspect of community detection on sparse graphs
generated from the DC-SBM, defined in Equation (1), is the exis-
tence of an information-theoretic threshold for community recovery
[14, 15, 16, 17]: if the parameters of the generative model do not
meet certain conditions, then no algorithm can assign the labels
better than random guess.

In this article we study the problem of community detection on a
network generated from the sparse DC-SBM and show why a small
value of τ is preferable, drawing a connection to other existing al-
gorithms based on the Bethe-Hessian matrix [18, 19], coming from
statistical physics intuitions. We further show for which value of τ
the leading eigenvectors of Lrw

τ = D−1
τ A (and equivalently Lsym

τ )
allow for non-trivial community reconstruction as soon as theoret-
ically possible, addressing a question not answered in [8, 9, 11].
The correct parametrization of τ depends on the hardness of the
detection problem and, for our proposed choice of τ , the matrix Lrw

τ

has an eigenvector, corresponding to an isolated eigenvalue whose
entry i only depends on the class label of node i and can be used to
retrieve the community labels.

The remainder of the article is organized as follows: in Section
2 we present the generative model of the graph and the theoretical
results about the detectability transition; in Section 3 we give the
main result together with its algorithmic implementation; Section 4
closes the article.

Notations. Matrices are indicated with capital (M ), vectors with
bold (vp), scalar and vector elements with standard (vp,i) letters.
We denote by s↑i (M) the i-th smallest eigenvalue of a Hermitian



matrix M and by s↓i (M) the i-th largest. si(M) indicates a generic
eigenvalue of M . The notation Mx ≈ 0 indicates that, for all large
n with high probability, x is an approximate eigenvector of M with
eigenvalue on(1).

2. MODEL

Consider a graph G(V, E) with |V| = n� 1. We consider the DC-
SBM [13] as a generative model for the k-class graph G. Letting
` ∈ {1, · · · , k}n be the vector of the true labels of a k-class network,
the DC-SBM generates edges independently according to

P(Aij = 1|`i, `j , θi, θj) = θiθj
C`i,`j
n

. (1)

The vector θ allows for any degree distribution on the graph and sat-
isfies 1

n

∑
i∈V θi = 1 and 1

n

∑
i∈V θ

2
i = Φ = On(1). The matrix

C ∈ Rk×k is the class affinity matrix. Letting Π = diag(π) ∈
Rk×k, where πp is the fraction of nodes having label p, we as-
sume that CΠ1 = c1, where it is straightforward to check that
c = E[ 1

n
1TD1] = On(1) is the expected average degree, while,

denoting with di = Dii the degree of node i, E[di] = cθi. This is
a standard assumption [14, 20, 21, 22] that means that the expected
degree of each node does not depend on its community, hence that
the degree distribution does not contain any class information.

Considering the model of Equation (1) for k = 2 and π ∝ 12,
we denote C`i,`j = cin if `i = `j and C`i,`j = cout otherwise.
As shown in [14, 15, 16], non-trivial community reconstruction is
theoretically feasible if and only if

α ≡ cin − cout√
c

>
2√
Φ
≡ αc. (2)

The parameter α regulates the hardness of the detection problem: for
large α we have easy recovery, for α ≤ αc the problem has asymp-
totically no solution. When k > 2 we distinguish two transitions:
one from impossible to hard detection (the solution can be obtained
in exponential time) and one from hard to easy detection (the solu-
tion can be obtained in polynomial time) [14].

3. MAIN RESULT

In this section we study the relation between the matrix Lrw
τ =

D−1
τ A and the Bethe-Hessian matrix [18], defined as

Hr = (r2 − 1)In +D − rA, r ∈ R. (3)

We exploit some important results concerning the spectrum ofHr to
better understand why regularization helps in sparse networks.

3.1. Relation between Lrw
τ and the Bethe-Hessian matrix

In [18] it was shown that the Bethe-Hessian matrix can be efficiently
used to reconstruct communities in sparse graphs. This matrix comes
from the strong connection existing between the problem of commu-
nity detection and statistical physics. The authors of [18] originally
proposed to perform spectral clustering with the k smallest eigen-
vectors of Hr for r =

√
cΦ. For this choice of r, if the problem is

in the easy (polynomial) detectable regime, then only the k small-
est eigenvalues of Hr are negative, while s↑k+1(Hr) ≈ 0. In [23]
we refined this approach in a two-class setting, showing that there
exists a parametrization – depending on the clustering difficulty –
that leads to better partitions under a generic degree distribution and,

Fig. 1. In all three figures r = ζ2 = cin+cout
cin−cout

, n = 5000, θi ∼
[U(3, 7)]3, k = 2. A: Spectrum of rD−1A in the dense regime
(cin/n = 0.08, cout/n = 0.02). B: Spectrum of rD−1A in the
sparse regime (cin = 8, cout = 2). C: Spectrum of rD−1

r2−1
A in the

sparse regime (cin = 8, cout = 2).

at the same time, provides non-trivial clustering as soon as theoreti-
cally possible. In [19] we extended our reasoning for more than two
classes and studied the shape of the informative eigenvectors. We
here recall our main findings.

Result 1 (from [19]). Let p be an integer between 1 and k. The
equation s↑p(Hr) ≈ 0 is verified for

r = ζp =
c

s↓p(CΠ)
∈ (1,

√
cΦ). (4)

For p = k + 1, the solution is r =
√
cΦ. The eigenvector solution

to Hζpxp ≈ 0 has a non-trivial alignment to the community label
vector and E[xp,i] = vp,i, where CΠvp = s↓p(CΠ)vp.

This result implies that, for r = ζp, the p-th smallest eigen-
value of Hζp is close to zero and the corresponding eigenvector
xp is a noisy version of the corresponding eigenvector vp ∈ Rk
related to the p-th largest eigenvalue of CΠ. Importantly, E[xp,i]
does not depend on di, hence it is suited to reconstruct communi-
ties regardless of the degree distribution. Since the eigenvectors of
CΠ constitute a sufficient basis to identify the classes, the vectors
xp, for 1 ≤ p ≤ k, can be exploited to recover the community
labels by stacking them in the columns of a matrix X ∈ Rn×k and
running the k-means algorithm on the rows of X .

Remark 1. Having eigenvectors whose entries are, in expectation,
independent of the degree distribution is of fundamental importance
in the k-means step. If this were not the case, then the class infor-
mation would be affected by the uninformative degree distribution,
compromising the performance of the algorithm, as shown in [19].

3.2. Improved regularization for the regularized random walk
Laplacian Lrw

τ

We here work on the strong connection between the Bethe-Hessian
matrix for r = ζp and the regularized random walk Laplacian. The



following equivalent identities indeed hold:

[(ζ2
p − 1)In +D − ζpA]xp ≈ 0

D−1
ζ2p−1Axp ≈

1

ζp
xp,

where Dζ2p−1 = D + (ζ2
p − 1)In. This notably suggests that, for

τ = ζ2
p − 1, the matrix Lrw

τ has an eigenvector whose entries are
not affected by the degree distribution, but depend only on the class
labels, as depicted in Figure 2. With Figure 2, consistently with Re-
mark 1, we further underline that for the k-means step it is fundamen-
tal to obtain two well separated density clouds in the k-dimensional
space spanned by the rows of X , instead of a continuum of points,
as evidenced by the histograms. Since there is a unique value of r
that allows the matrix Hr to have a ”clean” eigenvector [19], also
the choice of τ is unique, as depicted in Figure 3. An ”informa-
tive” eigenvector however does not imply that such eigenvector cor-
responds to a dominant isolated eigenvalue. This is of fundamen-
tal importance because, if the informative eigenvector corresponds
to a non-isolated eigenvalue, then i) it is algorithmically challeng-
ing to locate it and ii) the information is likely to spread out on the
neighboring eigenvectors. This is however not the case thanks to the
following two propositions:

Proposition 1. Consider the graph G(V, E) built on a sparse DC-
SBM as per Equation (1) with k communities. Further let ζp, be
defined as in Equation (4), satisfying ζp ≤

√
cΦ.

Then, for all large nwith high probability, ζ−1
p is the p-th largest

eigenvalue of Lrw
ζ2p−1 and it is isolated.

Proposition 2. The p largest eigenvalues of Lrw
τ are isolated, for

ζ2
p − 1 ≤ τ ≤ cΦ− 1 with high probability for all large n.

Proposition 1 guarantees that, for the proposed parametrization,
the informative eigenvector is isolated and can be found in the p-th
largest position. Thanks to Proposition 2 instead, we know that for
τ = cΦ − 1 ≥ ζ2

k − 1, all the k informative eigenvalues will be
isolated.

We now give a sketch of proof of Proposition 1 and 2.

Sketch of Proof of Proposition 1. Consider the eigenvector equation
of Lrw

τ , for 0 ≤ τ ≤ cΦ− 1,

Lrw
τ xp = sp(L

rw
τ )xp.

We define r by τ = r2 − 1, so that 1 ≤ r ≤
√
cΦ. The earlier

equation can be rewritten in the following form:

rLrw
r2−1xp = sp(rL

rw
r2−1)xp.

Define r̄p such that sp(r̄pLr̄2p−1) = 1 (we assume the existence of
such an r̄p). Then, necessarily,

Hr̄pxp = 0.

From the properties of the Bethe-Hessian matrix, r̄p can assume only
k+1 discrete values: r̄p ≈ ζp for 1 ≤ p ≤ k and r̄p ≈

√
cΦ for p =

k + 1. Letting ε → 0, then sp
(

(r̄p + ε)L(r̄p+ε)2−1

)
6= 1, ∀ 1 ≤

p ≤ n, meaning that there is no other eigenvalue in the neighbor-
hood of sp(r̄pLrw

r̄2p−1) and hence we conclude it is isolated. As a
consequence, the eigenvalues belonging to the bulk of rLrw

r2−1 are
necessarily smaller than 1 in modulus.

Fig. 2. Eigenvector of second largest eigenvalue of Lrw
ζ22−1 (top) and

Lrw
c (bottom) with histogram of the densities of the entries of the

eigenvector (right). For this simulation, n = 15000, k = 2, θi ∼
[U(3, 15)]5, cout = 3, cin = 17. Only nodes i with di > 0 are
considered.

Intuitively, looking at the symmetry of the spectrum ofLrw
τ (Fig-

ure 1), the isolated eigenvalues are in largest positions. Formally, ex-
ploiting the Courant-Fischer theorem one can prove that 1 is indeed
the p-th largest eigenvalue of ζpLrw

ζ2p−1. We can write:

s↓q(rL
rw
r2−1) < 1, for q ≥ k + 1, r <

√
cΦ (5a)

s↓p(ζpL
rw
ζ2p−1) = 1, for p ≤ k. (5b)

Equation (5b) states that the informative eigenvector has an eigen-
value equal to 1, while Equation (5a) imposes that all the uninfor-
mative eigenvalues belonging to the bulk are smaller than 1, hence
of the informative eigenvalue, so the result.
Sketch of Proof of Proposition 2. This proposition is a direct conse-
quence of s↑p(D − rA) being isolated for ζp ≤ r ≤

√
cΦ [19].

Define r̃ such that, s↑p(D − rA) = s↑p+1(D − r̃A) = −τ . By
construction, the matrix Lrw

τ thus has two eigenvalues that are equal
to r−1 and r̃−1. As a consequence of s↑p(D − rA) being isolated,
r−1 is away from r̃−1.

The change of variable τ = −s↑p(D − rA) provides a one-to-
one mapping between the smallest isolated eigenvalues of Hr and
the largest isolated eigenvalues of Lrw

τ . It follows that, for ζ2
p − 1 ≤

τ ≤ cΦ− 1, the top p eigenvalues of Lrw
τ are isolated.

3.3. Comments on the result and algorithm.

Figure 3 compares the performance of reconstruction in terms of the
overlap

Ov =

(
1

n

∑
i

δ(ˆ̀
i, `i)−

1

k

)
1

1− 1
k

(6)

and evidences that i) small regularizations produce better node par-
titions, ii) the proposed, α-dependent, regularization surpasses all
fixed values of τ , iii) for τ < ζ2

2 − 1 good partitions are achieved on
easy problems, but the information does not correspond to isolated
eigenvectors for hard detection problems, and iv) the performance
using Hζ2 and Lrw

ζ22−1 are the same, since they are using the same
informative eigenvectors.

We next list important messages of Proposition 1 and 2.



1. Lsym
τ vs. Lrw

τ : as opposed to [8], we studied the matrix Lrw
τ

instead of Lsym
τ . These two matrices have the same eigenvalues,

but not the same eigenvectors. Our line of argument suggests –
in good agreement with the observation of [3] – that it is more
convenient to use the eigenvectors of the matrix Lrw

τ in order to
obtain eigenvectors whose entries are not affected by the degree
distribution.

2. The value of τ at the transition: consider k = 2, then ζ2 =
(cin+cout)/(cin−cout). Whenα = αc (Equation (2)), ζ2 =

√
cΦ

and therefore τ = cΦ − 1 ≈ c. This observation allows us to un-
derstand why, in practice, the regularization τ = c appears to be
a good choice. When τ = cΦ − 1 then certainly – regardless the
hardness of the problem, as long as α > αc – the second largest
eigenvalue of Lrw

τ is isolated. As c is in the order of magnitude of
cΦ − 1 in sparse graphs, τ = c will lead – in most cases – to a
”satisfying” spectrum, in the sense that the informative eigenval-
ues are isolated. When k > 2, ζp =

√
cΦ represents the transition

from easy to hard detection and the argument can be generalized.
3. The regularization is a function of the hardness of the detection

problem: once again consider k = 2. For easy detection prob-
lems (cout → 0), we have ζ2 = (cin + cout)/(cin − cout) → 1,
while, as already mentioned in point 2, ζ2 increases up to

√
cΦ

in harder scenarios. This implies that harder problems need a
larger regularization. Note also that, in the trivial case for which
ζp → 1, ∀ p, (when we have k nearly disconnected clusters),
the Bethe-Hessian falls into the combinatorial graph Laplacian
limr→1 Hr = D−A and the regularized random walk Laplacian
into its non-regularized counterpart limτ→0 L

rw
τ = Lrw.

4. Estimating the values of ζp: thanks to Equation (4) the values of
ζp can be obtained by searching for the solution to s↑p(Hr) = 0 on
r ∈ (1,

√
cΦ).

5. Estimating the number of classes: it was shown in [18] that all and
only the informative eigenvalues of Hr at r =

√
cΦ are negative,

allowing an unsupervised method to estimate k. From this result,
also Lrw

τ allows to estimate k as follows:

k̂ =

∣∣∣∣{i : si(L
rw
cΦ−1) >

1√
cΦ
}
∣∣∣∣ (7)

6. Disassortative networks: even though we assumed for simplicity
all the eigenvalues of the matrix CΠ to be positive – hence that
there is a larger probability to get connected to nodes in the same
community (assortativity) – the above results can be easily gener-
alized to the case in which CΠ has negative eigenvalues and so in
which there are disassortative communities.

The results of Section 3.2 naturally unfold in Algorithm 1 for
community detection in sparse graphs.

Algorithm 1 Community Detection with the regularized Laplacian
1: Input : adjacency matrix of undirected graph G
2: Estimate k : k̂ ←

∣∣∣{i, si(D−1
cΦ−1A) > 1√

cΦ

}∣∣∣.
3: for 1 ≤ p ≤ k̂ do
4: ζp ← arg

r

[
s↑p(Hr) = 0

]
5: Xp ← xp : ζpD

−1
ζ2p−1

Axp = xp

6: Estimate community labels ˆ̀ as output of k̂-class k-means on
the rows of X = [X2, . . . , Xk̂].

7: return Estimated number k̂ of communities and label vector ˆ̀.

Fig. 3. Overlap comparison using the eigenvector with second
largest eigenvalue of the matrix Lτ for different values of τ . For
these simulations n = 50.000 separated in two equal-size classes,
cin = 11 → 19, cout = 9 → 1 with c = 10 constant,
θi ∼ [U(3, 15)]5. Averages are taken over 5 realizations. The color
code indicates the values of τ = 1→ c2 also encoded by the size of
the dots (small dots are for small τ ). The orange line with pentagons
is obtained for Lrw

ζ22−1, the line with squares is obtained for Lrw
c . The

orange line with diamonds is for Hζ2 .

4. CONCLUSION

In this article we discussed the regularization parameter τ of the
matrix Lrw

τ = (D + τIn)−1A, used to reconstruct communities
in sparse graphs. We explained why small and, most importantly,
difficulty-adapted regularizations perform better than large (and
difficulty-agnostic) ones.

Our findings notably shed light on the connection between the
two benchmark approaches to community detection in sparse net-
works, provided for one by the statistics community and for the other
by the physics community; these approaches have so far have been
treated independently. We strongly suggest that bridging both sets
of results has the capability to improve state-of-the-art knowledge of
machine learning algorithms in sparse conditions (for which a direct
application of standard algorithms is often inappropriate). Similar
outcomes could arise for instance in KNN-based kernel learning or
for any algorithm involving numerous data which, for computational
reasons, imposes a sparsification of the information matrices.

In this view, we notably intend to generalize the algorithm pro-
posed in this article (i) to richer graph and data clustering problems,
(ii) to the often more realistic semi-supervised setting (where part
of the nodes are known), while in passing (iii) enriching our under-
standing on existing algorithms.
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