

Dr. Guy André Boy, University Professor

Director, Human-Centered Design Institute, Florida Institute of Technology Chief Scientist, HCD, NASA Kennedy Space Center Senior Research Scientist, Florida Institute for Human and Machine Cognition Fellow of the Air and Space Academy

Loop 1: Trajectory Control Automation

- Single agent
- One parameter at a time

Loop 2: Guidance Automation

- Integrated and digital autopilot and autothrottle
- High level modes (evolution)

Loop 3: Navigation Automation

Glass cockpits

- Integration of guidance and flight management
- From control to management (1st revolution)

Automation / Autonomy Diagram

Safety-Critical System Categories

(from Amalberti, 2001)

Little regulation Risk acceptance let to indvidual au judgement

Adverse drug event

Mountain climbing
Bungee jumping

From unsafe to safe systems

Professional systems In-service experience Safety department Regulations

Performance limited by any combination of Uncertain model of the process Poor safety culture

Poor selection, education

Medical error Fatal event

Road traffic

Chemical industry

Rotary wings

Ultra-safe systems

Safety culture In-service experience

Performance limited by
Overregulation
Political management
Loss of prediction of future accidents

Chartered flight Commercial aviation

Railways industry

Nuclear industry

 10^{-2} 10^{-3} 10^{-4} 10^{-5} 10^{-6}

U.S. and Canadian Operators Accident Rates by Year Fatal Accidents – Worldwide Commercial Jet Fleet – 1959 Through 2012

(C) All Automated vs. All Conventional

Fourth Flight Safety Conference

Hull loss per million departures

Safety Maturity Curves

M: Maturity period

A: Acceptability area

Where is the Difference?

Maturity of Technology

Maturity of Practice

Automation can be Good...

... if it is human-centered:

- Situation awareness and decision-making
- Flexibility → Appropriate function allocation
- Error management support
- Cognitive stability

Number of displays in cockpits

high-clutter

(Doyon-Poulin et al., 2014)

Managing Complexity

Situation awareness Decision-making Risk management

Automation vs. flexibility Linear vs. non-linear Cognitive model

Solutions

Participatory design
Integration
Test, test, test...
Maturity
Training → Familiarity
Change management

Vertical Display

DIVA project (1998-2001)

- Provides superior flight crew awareness with a graphical view of vertical plan
- Trend vector predicts vertical path relative to terrain and waypoint constraints
- Enhancements include display of the vertical navigation profile
- Stabilized approaches through better energy awareness

3D Navigation Display

Measuring SA with Eye Tracking

Distances between the head sensor S and:

- the magnetic field generator 1
- the surrounding metallic surfaces 2, 3, 4

Note: 3 is the HUD box

Distances are given in centimeters

Option 1: Narrow Angle stick

Gaze	Straight	Right	Left
S-1	22	26	35
S-2	30	40	10
S-3	36	33	30
S-4	32	35	32

Option 2: Wide Angle stick

Gaze	Straight	Right	Left
S-1	21	26	31
S-2	26	37	9
S-3	37	35	34
S-4	35	36	31

Measuring SA with Eye Tracking

What did we do so far?

User Interface

Human

Ergonomics Factors + Automation

Engineering

20th century

From Hardware to Software

Incremental Accumulation of Artificial Functions into Structure

• • •

Automation

Loop 4: Automation of the ATM

- Multi-agent integration
- From AT control to AT management (2nd revolution)

Organize Creativity Spaces...

2D to 3D Weather Visualization

Tactical → Strategic

21st century

From Software to Hardware

Modeling
Simulation
Connectivity
Orchestration
3D Printing

• • •

Tangible
Interactive
Systems
(TISs)

From Automation...

... to Tangible Interactive Systems (TISs)

From Automation... ... to Tangible Interactive Systems

Technology-Centered Engineering!

Human-Centered Design?

TISs...

Properties

Structural (hardware and organizational)

Functional (software and organizational)

Cognitive Functions

Role Context Resources

TISs as Socio-Cognitive Organs

TISs in Air Traffic Management...

- Machine cognitive function (TIO)
- Human cognitive function

TISs in Air Traffic Management...

Flying in the early 21st century, in high density traffic, requires new competencies and TISs capable of handling **complexity** of the overall organization.

Discover, model and use

Emergent Properties and Behaviors

TISs in Air Traffic Management...

Air Show vs. Flock of birds

Automation

Manual & Automatic Control

Protection Envelopes

Autonomy

Separation

Alignment

Cohesion

Two main types of TIS

Low Level TIS for low level control

autopilot

collision avoidance and automated recovery

• • •

High Level TIS for high level management

FMS

4D dynamic planning (traffic, weather, ...)

• • •

People

Human Centered Design

Technology

Organizations

Modeling and Simulation (Creativity)

Human-Systems Integration (Participatory Tests)

Complexity Management (Maturity)

Change management (Training)

This presentation was made thanks to

Sébastien Boulnois Jarrett Clark Gopal Jani **Thomas Laurain** Nicholas Kasdaglis Lucas Stephane Wei Tan

Thank You!...