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Spectral Computed Tomography (CT) can perform “color” x-ray detection; for example, photon-
counting detectors can discriminate the energy of individual x-ray photons and divide them into
several predefined energy bins, thereby providing a spectral analysis of the transmitted x-ray beam.
By measuring the x-ray attenuation in two or more distinct energy bins, one can gain information
about the elemental composition of an object, making it possible via material decomposition to
distinguish between different materials, such as contrast agents and different types of tissues, in a
single CT scan. This concept of spectral CT is based on the x-ray attenuation differences of various
materials when simultaneously exposed by a spectrum of x-ray photons (which are emitted in a
wide spectral range by a standard x-ray tube). Attenuation differences reflect the differences in
material interactions with low- and high-energy photons, mainly Compton scatter and photoelectric
effects in the diagnostic energy range. Interaction of x-rays with matter is described by the linear
attenuation coefficient µ of an object, which depends on the three-dimensional (3D) position x in
space and the one-dimensional (1D) energy ε of incident photons. The photon fluence Φ after the
object of a monoenergetic pencil beam is described by the Beer-Lambert law

Φ = Φ0 exp

(
−
∫
L
µ(x, ε) d`

)
(1)

with ε the beam energy, Φ0 the initial beam fluence, and L the line corresponding to the beam.
Conventional CT scanners acquire a single sinogram, mixing all photons regardless of their

energy. Reconstruction algorithms for single-energy CT either neglect the energy dependency of
the incident beam or use corrections for multi-energy effects known as beam hardening [8], for
example by assuming that a single material composes the object in the field-of-view [7]. Spectral
CT scanners employ a variety of strategies to acquire multiple sinograms representative of different
energy segments of the incoming spectra [38]. The purpose of this chapter is to present specific
algorithmic solutions required to utilize this additional energy dimension in combination with
conventional and advanced tomographic reconstruction algorithms.

The central goal of spectral processing steps is to reconstruct not only a 3D µ map at a
given (effective) energy, but a four-dimensional (4D) µ for the energy range measured with two to
five energy discrimination measurements provided by a spectral CT scanner. A simplified model
becomes necessary and many contributions (also presented in this chapter) are based on a model
proposed by Alvarez and Macovski [4]. This paradigm describes µ as a linear combination of a few
energy-independent and space-independent functions, which they note

µ(x, ε) ≈
M∑

m=1

am(x)fm(ε) (2)

with x the 3D position in the object, M the number of basis functions, am the 3D space-dependent
(but energy-independent) functions, and fm the energy-dependent (but space-independent) func-
tions. Two approaches have been proposed for the fm functions and am volumes in human tissue.
Both methods only require M = 2 basis functions. One is to assume that the object attenuates
x-rays as if it was composed of two materials, e.g. water and bone [23]. The function fm is then the
mass-attenuation coefficient of material m, which solely depends on the energy, and the volume
am is a map of the concentration of material m. The other approach proposes that image contrast
is based on an x-ray particle model describing the physical interaction of photoelectric absorp-
tion and Compton scattering. The function fm then approximates the energy dependence of the
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phenomenon m, and the volume am is a map of the cross-section for that type of interaction. In
addition to the two functions to represent human materials, there can be additional components in
the basis to represent non-human elements (M > 2), e.g. contrast materials having a K-absorption
edge in the diagnostic energy range [57, 82]. Without loss of generality, we will refer to fm as
material specific CT maps in the following sections.

The x-ray source of a CT scanner is polychromatic and characterized by an energy spectrum.
Similarly, the signal measured by the detector is a function of the energies of impinging photons.
The impinging spectrum is not equivalent to the measured one because the measurements can be
distorted while the signal is picked up from the detector and processed by complex electronics. The
ratio of the spectrum collected with a detector over the impinging spectrum is called a detector
response function or pulse height distribution. These two energy functions can be merged into
an effective spectrum which is the product of the source spectrum and the detector response
function. The concept of an effective spectrum can describe any spectral system, whether several
effective spectra are acquired by using different source spectra, e.g. with different source voltages,
by using two detectors with different responses, e.g. with different sensitive materials, or by using
different energy thresholds for photon counting detectors. Figure 1 illustrates the effective spectra
of different systems.
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Figure 1: Examples of source spectra (left), detector responses (middle) and effective spectra
(right), for a fast-switching x-ray source with an energy-integrating detector with a CsI scintillator
(top, data from system #2 in [81]) and a photon-counting system with four energy bins (bottom,
data from [16]).

Plugging the model of the linear attenuation coefficient (Equation 2) into the Beer-Lambert law
(Equation 1) and accounting for the polychromatism of the effective spectra leads to the forward
model of the inverse problem studied in this chapter

ŷib =

∫
R+

sb(ε) exp

(
−
∫
Li

M∑
m=1

am(x)fm(ε) d`

)
dε (3)

with ŷib the expectation of the measures for the i-th detector pixel and the b-th effective spectrum
sb (b stands for energy bin in photon counting systems). The goal of this inverse problem is
to estimate the unknown material images a from measures y. The effective spectra s can be
estimated independently, before using the algorithms presented in this chapter [40, 17, 67]. The
energy functions f are chosen based on the model in Equation 2. This forward model only accounts
for the attenuation of primary rays and neglects scatter, pile-up, charge sharing and other complex
effects, unless those can be taken into account in the effective spectrum.

The following three sections introduce the main classes of spectral CT reconstruction algorithms
(see Figure 2): image-based and projection-based, which perform decomposition into materials
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and tomographic reconstruction separately, and are therefore referred to as “two-step” methods,
and one-step inversion, which merges both decomposition and reconstruction into a single inverse
problem. The final sections describe possible regularizers for these ill-posed inverse problems and
potential image quality issues specific to spectral CT decomposition and reconstruction.

Measured
sinograms

ŷ
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sinograms
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Material
volumes
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Single-energy
volumes

µ

Decomposition Reconstruction

One-step inversion

Reconstruction Decomposition

Figure 2: The three classes of inversion methods described in this chapter are image-based decom-
position (bottom row, section 1), projection-based decomposition (top row, section 2) and one-step
inversion (section 3).

1 Image-based decomposition
Image-based decomposition was initially developed for exploiting two (or more) CT acquisitions
obtained at different tube-voltages on a conventional CT scanner [6]. With distinct spectra at
different voltages, the resulting CT slices display energy dependent differences. Image-based de-
composition assumes that the b-th single-energy CT represents the attenuation coefficient at a given
(effective) energy eb, which is true with mono-energetic CT acquisitions at a synchrotron [79], by
reconstructing from the log-transformed projections ln(sb(eb)/yib), or with the use of an efficient
beam hardening correction. Under this assumption, the CT image µ( · , eb) of the b-th effective
spectrum is, according to Equation 2, a linear combination of the sought space-dependent functions
am and the energy-dependent functions fm. Combining the measurements, one obtains at each
spatial position x a small linear system of equations with as many equations as CT images:

µ(x) = Fa(x) (4)

with

µ(x) =


µ(x, e1)
µ(x, e2)

...
µ(x, eB))

 , F =


f1(e1) f2(e1) . . . fM(e1)
f1(e2) f2(e2) . . . fM(e2)

...
...

. . .
...

f1(eB) f2(eB) . . . fM(eB)

 and a(x) =


a1(x)
a2(x)

...
aM(x)

 . (5)

Given its small size, this system can easily be solved, e.g. with the Moore-Penrose pseudo-inverse
(which is the inverse of F if F is invertible). Moreover, since there is no spatial dependence
of F , this (pseudo-)inverse can be computed once for all voxels if the effective energy of the
input CT images is known. Otherwise, it can be directly calibrated using materials with known
linear attenuation properties. Image-based decomposition can be combined with regularization to
e.g. reduce noise [14, 15, 49, 76]. A simulated example using monochromatic spectra is provided
in Figure 3.

The simplicity of image-based decomposition makes it an attractive solution. It is also exten-
sively used in applications where access to raw data / sinograms is not available, as demonstrated
in radiotherapy applications [80]. Another advantage compared to projection-based inversions is
that there is no need to have projections acquired with the same geometry (source and detector
positions and orientations) for all effective spectra, as is, for example, the case when two different
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Figure 3: Left: noiseless simulated dual-energy log-transformed sinograms using monochromatic
irradiations at 40 keV (top) and 80 keV (bottom). Middle: corresponding single-energy volumes gb.
Right: decomposed volumes am. The object is made of a liquid water component (top right) and
cortical bone (bottom right). The linear attenuation coefficients used for the simulation are those
of ICRP retrieved from x-ray lib [64], i.e., µwater(40 keV) = 0.27 cm−1, µwater(80 keV) = 0.18 cm−1,
µwater(40 keV) = 1.19 cm−1 and µbone(80 keV) = 0.41 cm−1.
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x-ray sources are used for the acquisition of different spectra. The input CT images must still
be perfectly registered, and this is true for all algorithms presented here. Even if two (or more)
CT acquisitions could easily be acquired on any clinical CT scanner with different voltages, pa-
tient motion, e.g. through breathing, reduces significantly the quality of spectral results. Another
significant drawback of image-based decomposition is the impact of beam hardening when using
conventional x-ray sources. Inaccuracies of beam hardening correction will have a direct influence
on the result [71]. Advanced beam hardening correction algorithms require the knowledge of the
linear attenuation coefficients of the materials in the field-of-view, e.g. by relying on the same
model as Equation 2 [8]. Image-based decomposition is therefore simple because it forwards the
complexity of Equation 3 from the decomposition to the beam hardening correction. The difficulty
therefore lies in the latter and has lead to the development of algorithms which correct for beam
hardening in the image domain while decomposing by using a different model than Equation 2 [34].
Another approach, intermediate with one-step inversion (section 3), projects the current estimate
to iteratively correct for beam hardening [35].

2 Projection-based decomposition
Projection-based methods perform first the decomposition in projection space before reconstructing
material specific CT maps (Figure 2).

2.1 Decomposition into material projections
Decomposition into material specific projections aims to determine, for each pixel of the multi-
energy sinogram, the corresponding line integral through the spatial maps am. For example, if the
object consists of two materials as in Figure 3 and the basis functions fm are the corresponding
linear attenuation coefficients of the materials, the aimed decomposed data will be the sinogram of
each material, as illustrated in Figure 4. Formally, Equation 3 is modified by inverting the order
of the integral over the line Li and the discrete sum over the M basis functions. Projection-based
decomposition then utilizes the forward model

ŷib =

∫
R+

sb(ε) exp

(
−

M∑
m=1

Aimfm(ε)

)
dε (6)

with the unknowns Aim =
∫
Li
am(x) d` corresponding to the i-th line integral through am. This

decomposition yields a set A of M sinograms (one per basis function), which can each be recon-
structed to obtain one volume per material. Similarly to the image-based problem, decomposing
the acquired sinograms y into material specific sinograms A is a small problem when processed
pixel-by-pixel, with M unknowns to find from B measurements. However, the exponential func-
tion causes the problem to be non-linear and the (weighted) least squares data fidelity term is
non-convex [1].

In their seminal paper [4], Alvarez and Macovski proposed to approximate the logarithm of the
expectation of the measures ŷ by a P-th order polynomial of the Aim:

ln ŷib '
∑

p1+p2+···+pM≤P

αp1p2...pMA
p1

i1A
p2

i2 . . . A
pM

iM (7)

with {p1, . . . , pM} the exponents and αp0p1...pM the coefficients of the polynomial. Another solution
is to directly approximate the inversion by a polynomial [28]:

Aim '
∑

q1+q2+···+qB≤P

βq1q2...qB (ln ŷi1)
q1 (ln ŷi2)

q2 . . . (ln ŷiB)
qB (8)

with {q1, . . . , qB} the exponents and βq0q1...qB the coefficients of this other polynomial. Both
methods are very efficient solutions, probably best suited to dual-energy decomposition with two
basis functions (B = M = 2). In any case, they are only approximations of Equation 6 or its
inverse. The accuracy of this approximation can be improved by increasing the polynomial order
P, but it also degrades the stability of the decomposition. Already in [4], the authors did not
use all nine possible monomials and later studies suggested a rationale for adequately selecting a
subset of monomials [29]. If the effective spectra s are known, the coefficients of the polynomials
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Figure 4: Left: noiseless simulated dual-energy sinograms of the object in Figure 3 using the 80 kV
(top) and 120 kV (bottom) spectra and the detector response shown on top of Figure 1. Middle:
decomposed sinograms Am using projection-based decomposition with µwater and µbone as basis
functions fm. Right: decomposed volumes am. The object is the same as in Figure 3.

can be computed to best approximate the forward model, as F in image-based decomposition
(Equation 4). Otherwise, one can directly calibrate the polynomial coefficients without estimating s
by taking projections through multiple combinations of basis material layers with known thicknesses
as, e.g. in the calibration phantom of [2].

In 2008, in order to deal with three materials and four energy bins, Roessl et al. proposed to
solve the problem in the maximum likelihood sense [57, 62], i.e., to determine which are the most
likely Aim given the measured yib. To maximize the log-likelihood, they used the Nelder-Mead
downhill simplex method [47], which is a zero order optimization algorithm for convex problems,
i.e., which does not need the gradient of the cost function with respect to the optimized variables.
Under standard clinical x-ray exposure, the statistical noise on yib results in very noisy decomposed
sinograms, which must be filtered to become usable, as illustrated in Figure 5.

Brendel et al. [5] proposed to improve Roessl’s optimization using the iterative coordinate
descent. They also introduced spatial regularization in their minimization problem to limit noise
in decomposed sinograms: in addition to being in agreement with the measured photon counts,
the decomposed material line integrals in a pixel i must be similar to those in the neighboring
pixels. However, regularizing in the projection domain is unusual and it can negatively impact the
reconstructed images if it is inadequately chosen or weighted. Similar approaches based on solving
an inverse problem include the work of Ducros et al. [16] and Abascal et al. [1] solving a weighted
least-squares problems using a Gauss-Newton algorithm and an iterative Bregman scheme. The
latter authors also used the Kullbac-Leibler divergence [21], which is more adapted to Poisson noise
distributions and should lead to a result similar to the maximum likelihood approach of [57, 62].

Intermediate solutions between the polynomial models (Equation 7 and Equation 8) and the
full non-linear model (Equation 6) have been tailored for the case of more measurements than basis
functions [2, 3, 26, 27, 41, 94]. Another approach is to use machine learning to solve this complex
but small problem, e.g. by using a neural network [93].

A significant advantage of projection-based decomposition over image-based decomposition
(section 1) is that it does not suffer from beam hardening because the material maps f are energy-
independent. However, it can only be applied if the measurements for different spectra are acquired
with the same geometry, which is the case for dual-layer detectors and spectral photon counting
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Median
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FBP
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Figure 5: Sinogram of the bone (top) and its reconstruction (bottom) for the same object as
Figure 4 with an additional solution of 1 mg/ml gadolinium filling the left hole of the water
component. Data simulated using the 5-bin spectral model of the Philips small animal prototype
in Lyon [65] corrupted with Poisson noise. The projection-based decomposition is the algorithm
of Roessl et al [57, 62] with the three-material basis f = {µWater, µBone, µGadolinium}. Images
reconstructed with a filtered backprojection reconstruction. The right sinogram resulted from a
median filter to remove outliers. Outliers are in the low count area, for rays that traverse both the
bone and the gadolinium (see other reconstructions in Figure 6).
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detectors but not for dual-source systems or fast-switching x-ray sources. For dual-source or
fast-switching systems, one solution is to interpolate the sinograms to have corresponding mea-
surements, but this step could limit the accuracy. Performing several successive acquisitions with
different spectra on a standard CT is in theory feasible, but just like with image-based methods,
patient motion is then a concern.

2.2 Tomographic reconstruction
None of the methods presented in subsection 2.1 makes any assumption on how the material sino-
grams are reconstructed once they have been decomposed. In fact, any tomographic reconstruction
method can be used, including filtered backprojection algorithms. However, the decomposition is
sensitive to noise and it is natural to account for this noise in an iterative reconstruction algorithm.
A first solution is to use an estimate of the variance of the decomposed sinograms in a weighted
least squares algorithm [61]. The material decomposition process also induces anti-correlated noise
between the different materials [22], which suggests the use of reconstruction techniques which also
account for covariances [60]. Variances and co-variances can be estimated using the Cramér-Rao
lower bound [56]. Sawatzky et al. [59] and Mory et al. [43] proposed such an approach. The core
idea of these methods is that minimizing the usual least-squares data-attachment term yields the
Best Linear Unbiased Estimator (BLUE) only when all data samples are uncorrelated and have
equal variance. In all other cases, the BLUE is obtained by minimizing a Generalized Least Squares
(GLS) term, which involves the inverse of the covariance matrix of the noise. Although GLS is
formally simple, it is computationally much more demanding since all material specific CT maps
fm must be reconstructed simultaneously. It is not clear yet whether the improvement in image
quality is worth the increased computational complexity [43].

3 One-step inversion
One-step methods generate material maps a straight from recorded photon counts y. Similar to
projection-based decomposition (section 2), these methods can rely for example on the forward
model in Equation 3, but with the advantage of not requiring matching projections (similar to
image-based decomposition section 1). It also circumvents the fundamental drawback of all two-
step approaches: the first step may introduce errors, which cannot be compensated for in the
second step. An excellent illustration of this latter problem is the presence of outliers in sino-
grams decomposed with non-regularized projection-based methods [57, 62]: as the decomposition
process is non-linear, it may strongly amplify the statistical noise on the photon counts, resulting
in some pixels with entirely incorrect values for the line integral. Reconstructing without first
removing these outliers yields material specific CT maps dominated by powerful streak artifacts
(see Figure 5).

3.1 Forward problem and cost function
Most one-step reconstruction methods apply an identical forward model, which is the equivalent to
Equation 3 except that the two integrals (over the energies ε and the line positions `) are discretized.
Note, there is no analytical solution to this problem. Discretizing the line integral is the basis of
most iterative single-energy CT reconstruction algorithms and despite being posed as a linear
inverse problem, single-energy iterative CT is computationally expensive, which partly explains
why manufacturers have only recently started implementing it in commercial CT scanners [50].
One-step spectral CT is even more computationally expensive: with the same number of pixels
and voxels, the number of measurements is multiplied by the number B of effective spectra (second
index of y) and the number of unknowns is multiplied by the number M of basis energy functions
(second index of a), plus the inverse problem is non-linear.

In the literature, the cost functions are constructed from different terms to solve this problem.
For the data-attachment, the most widespread approach is to maximize the likelihood of observing
the measurements y, given the material specific CT volumes a under the assumption that the
measurements are corrupted by Poisson noise [18, 33, 40, 75, 83]. Other methods minimize a
weighted-least squares data-attachment term, computed either on the photon counts [77] or on
the ratio between photon counts and photon counts if there had been no attenuation [9, 12]. For
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the regularization, various conventional options have been considered: positivity [12, 33], total-
variation [9, 18], or a similar measure based on the spatial gradient [33, 40, 77, 83].

3.2 Minimization
Given the size and non-linearity of the one-step inversion problem, the primary challenge is to
minimize the cost function. Almost every method uses a different algorithm to solve its cost
function and the landscape of solutions strongly resembles that of single-energy CT.

Several works attempt to adapt methods developed for single-energy CT which assume a linear
problem. Zhao et al. [92] linearize the cost function and use an Algebraic Reconstruction Technique
(ART) [19]. Li et al. [30] do the same using filtered backprojection reconstruction. Cai et al. [9]
used a non-linear conjugate gradient. Chen et al. [12] used a heuristic non-convex adaptation of
ASD-POCS [66]. Rodesch et al. [54] adapted the maximum likelihood polychromatic algorithm of
De Man et al. [36].

Several works [33, 40, 83] used separable quadratic surrogates (SQS). The surrogate is a tool
for optimization transfer [25] which aims at accelerating the minimization of the cost function.
Formally, the function Φx0

: RN → R is a surrogate of the cost function Ψ : RN → R at x0 ∈ RN

if and only if Φx0
is above Ψ on RN , and tangent to Ψ at x0, i.e., Φx0(x) ≥ Ψ(x) ∀x ∈ RN ,

Φx0
(x0) = Ψ(x0) and

Φ′x0
(x0) = Ψ′(x0).

(9)

It is separable if the contribution to Φ of one or a few unknowns can be separated from the ones of
the other unknowns. The advantage is that the minimization can be split into many sub-problems,
each with one or a few unknowns, which can be solved in one iteration of Newton’s algorithm if
these sub-problems are quadratic. For spectral CT reconstruction, the existing SQS allows solving
a sub-problem with M unknowns per pixel [33, 40, 83]. Two SQS have been derived in the literature
for one step reconstruction [33, 83], but the inequality in Equation 9 is only demonstrated for the
one in [33]. Since the problem is non-convex, SQS minimization would retrieve a local minimum if
the initialization is not adequately chosen [33].

Some algorithms address the non-convexity using a primal-dual metric algorithm. Foygel Bar-
ber et al developed the Mirrored Convex/Concave Optimization for Nonconvex Composite Func-
tions (MOCCA) [18, 63], a primal-dual scheme derived from the Chambolle-Pock algorithm [11].
Tairi et al [75] used a variable-metric primal algorithm [13].

Several of these algorithms have been compared in [44] on a simulated test case (three-material
decomposition from a 5-bin photon counting detector). All the algorithms converged to a visually
similar solution, but there were substantial differences in convergence speed. Figure 6 demonstrates
the potential benefit of one-step reconstruction, but it is clear that further research is required
before one-step reconstruction can be routinely applied in a spectral CT scanner.

4 Regularization
The problem of decomposition and reconstruction for spectral CT is an ill-posed inverse problem,
as is tomographic reconstruction alone [46]. Regularization is therefore required to obtain satisfying
results.

In two-step decomposition algorithms, the regularization may be applied to each of the two
steps, as pointed out in section 1 and section 2. Regularizing the first step is probably mandatory
in both cases: this is well-known for tomographic CT reconstruction, the first step of image-based
methods, and it empirically seems to be the case in projection-based decomposition (Figure 5),
although this may depend on the number M of basis functions and the number B of effective
spectra. The choice of the regularization and its strength is sensitive because it will impact the
inputs of the second step. Inverting the decomposition in one step alleviates this difficulty.

There are many options for the regularization of spectral CT. As pointed out in section 2, only
a small number of studies have suggested to regularize the decomposition of projections [1, 5, 16].
In general, the regularization is rather applied to the CT maps, i.e. in the image domain. Any
regularization used in tomographic reconstruction may be applied to each volume independently,
e.g. total variation (TV) [18, 63] or a differentiable approximation of TV [33, 40, 78, 83] (Figure 7),
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Figure 6: Projection-based (top, algorithm of [57, 62] combined with filtered-backprojection re-
construction) and one-step reconstruction (bottom, 500 iterations of the algorithm of [40] without
subsets and without regularization) using the spectral model and the object described in Figure 5.
From left to right: water, bone and gadolinium maps. The gray scale is ±10% around the target
concentration of each material.
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the `1-norm of wavelets coefficients [87] or the `0-norm of dictionaries [91]. Several such regularizers
have been compared for spectral CT in [58].

Figure 7: Effect of regularization on one-step reconstruction [40] from the same data as in Figure 6.
The regularizer is Green’s approximation of TV [20] on each material specfic CT map. The number
of iterations was increased to 1000 to reach (visual) convergence. The regularization weights (one-
per material specific CT map) have been first chosen to be maximum without visible cross-talk
(top) and 100 times larger each (bottom). The grayscale is the same as in Figure 6.

Some authors have suggested to assume that the material specific CT maps share the same
structures and developed regularizations to take advantage of this similarity to improve the results.
Similar strategies have been developed for dual-modality imaging such as anatomical priors from
CT used in positron emission tomography (PET) reconstruction [52]. Total nuclear variation is
a generalization of total variation to multi-channel images, which was proposed for this specific
goal [53]. Like TV, it favors a piecewise constant volume for each material, but it also favors volumes
where edges have the same location and orientation. Several other multi-channel regularizers have
been applied to spectral CT data [24, 48, 86].

A final class of regularization is the use of constraints to overcome a larger number of material
specific CT maps than energy measurements (M > B) [31, 32, 33, 42, 89]. Additional constraints
are added to those in Equation 4 or Equation 6 by assuming some pre-defined properties of the
scanned materials based on volume and/or mass preservation between the sum of each material
specific CT maps and the mixture. These techniques have been applied in all types of inversions,
image-based [32, 42, 31], projection-based [89] and one-step [33].

5 Image quality issues specific to spectral CT
Spectral CT scanners can reconstruct regular CT-like volumes: the photon counts obtained from
a spectral CT acquisition can be either fed to one of the spectral CT reconstruction methods
described above, yielding material specific maps, or merged back together into a single sinogram and
reconstructed, generating a regular-CT volume (e.g. in Hounsfield Units, HU). Although they are
reconstructed from identical input data, it turns out that material specific CT volumes are typically
much noisier than their HU counterpart. The two fundamental reasons for this phenomenon are:
reconstructing several volumes instead of a single one reduces the amount of measured photons
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used per voxel, which results in higher noise (which can be compensated for by increasing the
radiation exposure), and the non-linear decomposition process amplifies the noise.

With the introduction of photon-counting detectors into clinical routine, one can expect to see a
reduction in detector pixel sizes [69, 84]. The increase in spatial resolution will extend the diagnostic
range of CT imaging, for example in the visualization of fine structures in the lung or along coronary
arteries with stents [37, 65, 68]. In those cases, the high-resolution acquisition enables an improved
sampling of high-frequency features and reduces noise aliasing [51]. However, for sections without
fine details, a high-frequency noise will significantly reduce the image quality. In the future, it will
be essential to incorporate these new circumstances into the image reconstruction and to optimize it
through algorithmic solutions still to be developed. On this note, the additional energy dimension
provides an increased amount of information, which can be utilized to de-noise spectral images.
The data can be utilized following strategies like prior image constraints [90] or dictionaries [39, 85]
(section 4).

Additionally, material volumes are subject to decomposition errors, commonly referred to as
"cross-talk": materials can appear in the wrong material specific CT volumes. The severity of
cross-talk depends on how much the materials’ attenuation profiles differ from each other (the more
similar they are, the stronger the cross-talk) and on how much noise is present in the photon counts
(the noisier the data, the stronger the cross-talk). In one-step inversion methods, regularization
can also cause cross-talk: regularizing one material creates discrepancies between the estimated
photon counts and the measured ones, which are compensated by adding or removing some amount
of another material. This effect is particularly intense on the borders of structures when a strong
spatial regularization is applied, as illustrated in Figure 7.

Ring artifacts are a very common artifact in any type of CT imaging and can have a variety
of sources. In conventional CT, if one detector element is out of calibration, the reading of this
element may consistently be incorrect. As a consequence, the later reconstructed CT slice will
be affected by rings. As photon-counting detectors are highly complex and sensitive compared
to conventional detectors, a dedicated calibration needs to be performed. While this spectral
technology, as well as calibration methods, are still under development, rings that may appear
after reconstruction can be removed to a large degree by classical ring removal algorithms [45, 88].
Regarding rings or other artifacts, it is essential to understand that the current hardware does not
represent an ideal detector. Novel sensor material (imperative for photon-counting CT), along the
lines of cadmium telluride and cadmium zinc telluride, come with technical challenges which can
be addressed by hardware as well as software solutions. Pile-up and spectral distortions are two of
the main effects which reduce the quality of spectral data from photon-counting detectors. Several
investigators have developed techniques to model those shortcomings with different software-based
techniques [10, 55, 70, 74, 72, 73]. These achievements represent an ideal opportunity to overcome
some of those hardware shortcomings but they still need to be integrated in the image formation
algorithms described in this chapter.

6 Conclusion
Spectral CT systems, especially systems equipped with a spectral photon-counting detector, are
a promising development for the clinical routine. Many benefits concerning the diagnostic range
have been discussed, which include low-dose, high-resolution, quantitative and K-edge imaging.
First prototype systems [69, 84] have been installed and have demonstrated benefits along the
same lines. At the same time, one has to realize that this development comes with challenges which
translate into non-ideal imaging performances. The harmonization between hardware and software
will significantly aid the process of overcoming those current shortcomings. In this chapter, we
presented algorithmic solutions which address a wide range of possible spectral CT implementations
and the challenges which come along with each of them. In three sections, we introduced the
main classes of spectral CT reconstruction algorithms: image-based and projection-based, which
perform decomposition into materials and tomographic reconstruction separately and are therefore
referred to as "two-step" methods, and one-step inversion, which merges both decomposition and
reconstruction into a single inverse problem. For the coming years, while spectral CT will fully
translate into the clinical routine, further algorithmic developments will be necessary to improve,
for example, the sensitivity, to constantly extend the diagnostic range of CT imaging.
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