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On the existence of optimal shapes in architecture

Michael Hinz∗ Frédéric Magoulès† Anna Rozanova-Pierrat‡

Marina Rynkovskaya§ Alexander Teplyaev¶

Abstract

We consider shape optimization problems for elasticity systems in architecture. A typi-
cal objective in this context is to identify a structure of maximal stability that is close to
an initially proposed one. For structures without external forces on varying parts, clas-
sical methods allow proving the existence of optimal shapes within well-known classes
of bounded uniformly Lipschitz domains. We discuss this for maximally stable roof
structures. We then introduce a more general framework that includes external forces
on varying parts (for instance, caused by loads of snow on roofs) and prove the exis-
tence of optimal shapes, now in a subclass of bounded uniformly Lipschitz domains,
endowed with generalized surface measures on their boundaries. These optimal shapes
realize the infimum of the corresponding energy of the system. Generalizing further to
yet another, very new framework, now involving classes of bounded uniform domains
with fractal measures on their boundaries, we finally prove the existence of optimal
architectural shapes that actually realize the minimum of the energy. As a by-product
we establish the well-posedness of the elasticity system on such domains. In an auxil-
iary result we show the convergence of energy functionals along a sequence of suitably
converging domains. This result is helpful for an efficient approximation of an optimal
shape by shapes that can be constructed in practice.

Keywords: Elasticity system; shape optimization; trace and extension; fractals; Mosco
convergence; stable roof structures under snow loads

1 Introduction

The identification of a maximally stable (or most lightweight etc.) structure is a natural task
in shape optimization. The main idea is to vary a shape within a chosen class of domains,
all satisfying certain industrial constraints (such as the quantity of material, spatial and
dimensional restrictions, or some similarity to a fixed form), and to search for an optimal
shape that minimizes a given target (energy) functional. The found optimal shape must
also belong to the chosen class of domains. There is a huge body of literature on differ-
ent numerical methods [4, 14, 20, 34, 45, 46] and on implemented packages [44] suitable for
simulations.

From the numerical point of view, finite-dimensional shape optimization problems are
always solvable: In a finite-dimensional model, a discretized domain is determined by a
finite mesh, so there are only finitely many possible changes of its boundary which respect
all given constraints, and one can find at least one optimal shape. Non-existence results
and other counterexamples usually come from the passage to the limit as the mesh becomes
finer and finer. If one abandons the discretized perspective and adopts a more theoretical
point of view, where the domains are subsets of Rn and the target functional is defined on
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infinite-dimensional space, the existence of an optimal shape is no longer trivial at all. There
are different classical examples of shape optimization problems for which no optimal shape
exists [22, Section 4.2].

We study a linear elasticity system (system (2) below) whose solution models the dis-
placement of an architectural structure such as a roof or a bridge. The domain is subject to
two types of boundary conditions: a Neumann (or ’stress’) boundary condition that models
external forces (tractions, effects of loads, etc.) affecting a part of the boundary of the struc-
ture, and a homogeneous Dirichlet boundary condition on another part of the boundary that
is clamped and therefore cannot be displaced. The problem to find an optimal shape that
minimizes the elastic energy of the system (cf. Remark 4) had been introduced in [14] under
the additional assumption that the Neumann boundary condition is homogeneous on those
parts of the boundary that can vary in the shape optimization. From a modeling perspective,
homogeneous Neumann conditions on the varying parts are adequate if there is no signifi-
cant external force acting on the structure’s surface’s corresponding parts. The existence of
an optimal shape for this problem had so far remained open. Here our first contribution is
proof of the existence of optimal shapes for this problem; we formulate this for the concrete
example of maximally stable roofs, Theorem 3. (We emphasize that roofs are considered
only as an illustrative example. The same method could be applied to other structures.) To
provide the existence proof, we invoke classical results on shape optimization for bounded
Lipschitz domains, mainly due to Chenais [11]. We refer to [22] for more details and further
references and to [12] for a survey on related well-posedness results for elasticity systems on
bounded Lipschitz domains. The assumption of homogeneous Neumann conditions on the
varying part of the boundary is essential for the classical methods [11] to work.

In practice, the ’varying’ parts of the surface may be subject to significant forces that
should be taken into account when searching for an optimal shape. For instance, in the case
of a roof, the upper surface could be subject to the weight of a heavy load of snow. Such
external forces correspond to inhomogeneous Neumann conditions on the varying parts of
the boundary. If such conditions are imposed, care is needed because boundary integrals
with respect to surface measures appear in the variational formulation (5) of the problem.
Varying the shape, the natural notion of convergence for these measures is weak convergence.
Mathematically this is delicate in the sense that the weak limit of a sequence of codimension
one Hausdorff measures (which are the ’natural’ surface measures on the boundary of a
Lipschitz domain) is not necessarily a Hausdorff measure itself [28]. This fact motivates us
to impose an additional condition on the Hausdorff measures on the boundaries (see (20)).
This condition ensures that the limit measure, even if it may not be Hausdorff, is still diffuse
enough to allow a variational analysis. Since we cannot guarantee that it is Hausdorff, an
optimal shape may not be an element of the domains’ initial class. Therefore it can realize
only the infimum of energies over this class, but not their minimum. This approach is based
on the methods recently introduced in the article [28], where the reader can find a detailed
discussion in the framework of linear acoustics. Here we apply it to the linear elasticity
system (2) and prove the existence of an optimal shape that realizes the infimum of the
target (energy) functional, Theorem 4.

It is desirable to know that there are optimal shapes realizing the minimum of the energy,
not just the infimum. As just discussed, this cannot be achieved in the context of bounded
(uniformly) Lipschitz domains with natural Hausdorff measures on their boundaries. We,
therefore, describe yet another framework. It is based on results in [23] and allows classes
of shapes that are (generally non-Lipschitz) bounded uniform domains with measures on
their boundaries that may have fractal features. The boundaries may have different parts of
different Hausdorff dimensions. In general, the measures we consider on these boundaries are
very different from Hausdorff measures, see [23] for a detailed discussion. For classes of such
general domains, we can prove the existence of optimal shapes that realize the minimum of
the energy, Theorem 5. In the particular case of roof shape optimization, this means that
if such general designs are permitted, maximally stable roof shapes can always be seen to
exist, Corollary 1. It may hardly be possible to construct such geometrically complicated
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structures. However, numerical experiments conducted for other problems suggest that
optimal shapes can have a multiscale nature, see for instance [29, Section 5] (and also [39])
for shape optimization in the absorption of the acoustical energy for the Helmholtz equation
[23, 28]. (It was even observed that, in order to absorb an infinite range of frequencies
’almost optimally’ [39, Section 3.4.1], the shape has to have obstacles at infinitely many
different scales.) These experiments indicate that non-classical shapes capture the physical
reality better than classical (smooth or Lipschitz) shapes in certain situations. Therefore,
it seems reasonable to allow such shapes, even if the reasons for their appearance may
not be so obvious. An irregular non-classical optimal shape can then be approximated by
simpler shapes that can actually be constructed but still retain unusual scaling properties.
(This is similar to the approximation of self-similar fractal boundaries by Lipschitz pre-
fractals [13, 26].) Theorem 6 ensures that if this approximation is performed in suitable
topologies for domains, the energy, as a function of a domain, behaves continuously and
follows this approximation. Shapes that are approximately fractal have practical applications
in civil engineering [1]. A discussion of multiscale features in architecture can be found in [37].
Our research is connected to several types of theoretical analysis in fractal domains, such
as [7, 8, 10, 27, 35, 41, and references therein].

In Theorem 2 we provide the well-posedness result for the elasticity system on uniform
bounded domains with fractal boundary measures. It is needed for the shape optimization
results mentioned above and relies on fairly general boundary trace and extension results
from [2,5, 9, 25, 43] and on Korn’s inequality for uniform domains [16].

The complexity of the considered shape optimization problem for the elasticity system is
caused by exotic measures on the boundaries. This may be viewed as a geometric complica-
tion. In other specific results on elasticity difficulties may arise for different reasons. Often
the system itself is of high complexity, see for instance [30–32] for studies of di- and microp-
olar thermoelastic porous materials and [42] for elasticity results for multibody systems at
high velocities and under high loads.

In Section 2 we collect some notation. In Section 3 we introduce the elasticity system,
discuss trace and extension methods, Theorem 1, and verify the validity of a norm equiva-
lence with uniform constants, Lemma 1. We then define weak solutions (5) and obtain the
well-posedness result, Theorem 2. Shape optimization problems for the simple case of ho-
mogeneous Neumann boundary conditions on varying parts are discussed in Section 4 using
the well-known results from [11] and [22]. As a practical example, we address the existence
question for optimal shapes of a roof, Theorem 3, and we comment on a related problem
formulated in [14]. In Section 5, we follow the method of [28] to study a less simple gen-
eralization with possibly inhomogeneous Neumann boundary conditions on varying parts.
Section 6 addresses the uniform domain setup and states the existence of energy, minimizing
optimal shapes. In A we provide generalized Green’s formulas that justify our definition of
weak solution. In B we briefly comment on a technical detail in the proof of Lemma 1. C
contains an auxiliary result, namely the Mosco convergence of energy functionals for Robin
type problems along a sequence of suitably converging uniform domains.
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2 Some notation

For the Euclidean scalar product of two vectors ξ, η ∈ R
N we write ξ · η. By MN we denote

the vector space of N × N -matrices with real entries, and by A : B we denote the full
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contraction

A : B = tr AtB =

N∑

i,j=1

aijbij (1)

of two matrices A = (aij)1≤i,j≤N and B = (bij)1≤i,j≤N from MN . Note that the full
contraction (1) provides a natural inner product on MN . Let Ms

N be the subspace of MN

consisting of symmetric matrices and given α > 0 and β > 0 let Ms
N (α, β) denote the

subspace of all invertible M ∈ Ms
N such that Mξ · ξ ≥ α|ξ|2 and M−1ξ · ξ ≥ β|ξ|2 for all

ξ ∈ R
N .

Given a domain Ω ⊂ R
N and a vector field v ∈ W 1,2(Ω)N we denote the symmetric part

of its gradient by

e(v) =
1

2

(
∇v + (∇v)t

)
.

The assumption on v implies that e(v) ∈ L2(Ω,Ms
N ). Here W 1,2(Ω) is the classical

Sobolev space, and product norms on W 1,2(Ω)N are defined in the natural way. For an
element T = (Tij)1≤i,j≤N of W 1,2(Ω)N×N we define div T ∈ L2(Ω)N as the vector field
(
∑N

j=1 ∂xj
T1j , . . . ,

∑N
j=1 ∂xj

TNj) .
By B(x, r) we denote the Euclidean open ball centered in x of the radius r > 0. We

use the symbol λN for the N -dimensional Lebesgue measure and the symbol HN for the
N -dimensional Hausdorff measure.

3 Variational formulation and well-posedness

We assume N ≥ 2. Let Ω ⊂ R
N be a bounded domain and let ΓDir and ΓNeu be subsets of

its boundary ∂Ω. We assume that they are ’almost disjoint’ (in the sense that their overlap
has zero measure), this will be made precise below. Let A ∈ L∞(Ω,Ms

N (α, β)) and write
σ(v) = Ae(v), v ∈ W 1,2(Ω)N . We are interested in solutions u ∈ W 1,2(Ω)N to problems of
type 




−div σ(u) = f in Ω,

u = 0 on ΓDir,

σ(u) · n = g on ΓNeu.

(2)

Here n denotes the outward unit normal. The domain Ω is ’clamped’ at ΓDir. The part
of ΓNeu on which g is not zero is subjected to traction represented by the force field g. The
vector field f represents a force field experienced inside Ω. The prospective solution u is the
(unknown) displacement vector field, e(u) is the strain tensor, and σ(u) is the stress tensor,
determined by the given coefficient A, which is minus the elasticity tensor in Hooke’s law.

Remark 1

(i) A more common choice for σ within the linear elasticity theory for isotropic materials
is σ(v) = λ(tr e(v))I +2µe(v), where µ > 0 and λ > −2µ/N are the Lamé coefficients
of the material. See for instance [12, Section 6.2]. With insubstantial modifications
our results also apply to this case.

(ii) Note that from (2) one can recover the system considered in [14, Subsection 3.1,
formula (1)] if ΓNeu is split into a part where g is nonzero and one where it is zero.

We will give a rigorous meaning to (2) in terms of a variational formulation. This works
well if the boundary ∂Ω is the support of a suitable measure so that Sobolev functions,
fields, or tensors on Ω have well-defined traces on ∂Ω.

Recall that given d > 0, a Borel measure µF on R
N with F = suppµF is said to be upper

d-regular if there is a constant cd > 0 such that

µF (B(x, r)) ≤ cdr
d, x ∈ F, 0 < r ≤ 1. (3)
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This property is well-known and widely used, we refer to [2] and [19]. Recall also that
a domain Ω ⊂ R

N is said to be an W 1,2-extension domain if there is a bounded linear
extension operator E : W 1,2(Ω) → W 1,2(RN ), [24, 38]. We state a trace result that follows
from a special case of [23, Theorem 5.1] and the finiteness of the measure on ∂Ω. The result
is based on [9, Corollaries 7.3 and 7.4], which in turn use [2, Theorems 7.2.2 and 7.3.2].

Theorem 1 Let Ω ⊂ R
N be a bounded W 1,2-extension domain. Suppose that µ∂Ω is a Borel

measure with suppµ∂Ω = ∂Ω and such that (3) holds with some N − 2 < d ≤ N .

(i) There are a compact linear operator Tr : W 1,2(Ω) → L2(∂Ω, µ∂Ω) and a constant
cTr > 0, depending only on N , ε, d and cd, such that

‖Tr f‖L2(∂Ω,µ∂Ω) ≤ cTr ‖f‖W 1,2(Ω) , f ∈ W 1,2(Ω).

Endowed with the norm

‖ϕ‖Tr(W 1,2(Ω)) := inf{‖g‖W 1,2(Ω) | ϕ = Tr g},

the image Tr(W 1,2(Ω)) becomes a Hilbert space. The embedding

Tr(W 1,2(Ω)) ⊂ L2(∂Ω, µ∂Ω)

is compact.

(ii) There is a linear operator H∂Ω : Tr(W 1,2(Ω)) → W 1,2(Ω) of norm one such that
Tr(H∂Ωϕ) = ϕ for all ϕ ∈ Tr(W 1,2(Ω)).

The trace of vector fields or tensors is understood in the component-wise sense.

Remark 2

(i) The trace operator is defined by Tr f := g̃, where

g̃(x) = lim
r→0

1

λN (B(x, r))

∫

B(x,r)

g(y)dy (4)

is the pointwise redefinition of an extension g ∈ W 1,2(RN ) of f . By the Lebesgue
differentiation theorem this limit exists outside a λN -null set, but due to the Sobolev
regularity of g it exists outside a much smaller set, as can be made precise using
capacities, [2, 33]. Since µ∂Ω satisfies (3) with d as stated, the set of points of ∂Ω
where this limit exists is of full µ∂Ω-measure, [2, Section 7]. The independence of the
chosen extension is proved in [9, Theorem 6.1], another proof is given in [43, Theorem
1].

(ii) The extension operator H∂Ω is defined as the 1-harmonic extension: Given ϕ ∈
Tr(W 1,2(Ω)), H∂Ωϕ is the (unique) element w of W 1,2(Ω) such that Trw = ϕ and
∆w = w in Ω in the weak sense. Details can be found in [23, Section 5].

(iii) Clearly the Hausdorff dimension of ∂Ω is at least N − 1. If the maximal possible
exponent d in (3) is less than N − 1 then µ∂Ω is singular with respect to the (N − 1)-
dimensional Hausdorff measure HN−1 and assigns positive mass also to some parts of
∂Ω that have Hausdorff dimension less than N − 1.

Let Ω and µ∂Ω be as in Theorem 1. For a fixed Borel subset ΓDir of ∂Ω we also consider
the closed subspace

V (Ω,ΓDir) = {v ∈ W 1,2(Ω)| Tr v = 0 µ∂Ω-a.e. on ΓDir}

of W 1,2(Ω).
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Now suppose that ΓDir and ΓNeu are two Borel subsets of ∂Ω such that ∂Ω = ΓDir∪ΓNeu

and µ∂Ω(ΓDir∩ΓNeu) = 0. Then a rigorous meaning can be given to the system (2) in terms
of the following variational formulation. We say that a vector field u ∈ V (Ω,ΓDir)

N is a
weak solution to (2) with data f ∈ L2(Ω)N and g ∈ L2(ΓNeu)

N if

∫

Ω

σ(u) : e(θ)dx =

∫

Ω

f · θdx +

∫

ΓNeu

g · Tr θ dµ∂Ω, θ ∈ V (Ω,ΓDir)
N . (5)

A generalized Green formula guarantees that in cases when Ω, A, f and g are smooth and
classical solutions exist, these are also weak solutions, see formula (26) of Proposition 2 in
A.

We establish the existence of weak solutions for a specific class of W 1,2-extension domains.
Recall that a domain Ω of R

N is an (ε,∞)-domain, ε > 0, if for any x, y ∈ Ω there is a
rectifiable arc γ ⊂ Ω with length ℓ(γ) joining x to y and satisfying

1. ℓ(γ) ≤ |x−y|
ε and

2. d(z, ∂Ω) ≥ ε|x− z| |y−z|
|x−y| for z ∈ γ.

By [24, Theorem 1] any (ε,∞)-domain is a W 1,2-extension domain.
We quote the following special case of the Korn inequality proved in [16, Theorem 2.1]. A

more standard version for bounded Lipschitz domains can be found in [12, Theorem 6.3-3].

Proposition 1 Let Ω ⊂ R
n be a bounded (ε,∞)-domain. There is a constant CK(ε,N, diam(Ω)) >

0 depending only on ε, N and diam(Ω) such that

‖u‖W 1,2(Ω)N ≤ CK(ε,N, diam(Ω))
(
‖u‖L2(Ω)N + ‖e(u)‖L2(Ω)N×N

)
(6)

for all u ∈ W 1,2(Ω)N . The norm u →
(
‖u‖2L2(Ω)N + ‖e(u)‖2L2(Ω)N×N

) 1
2

is equivalent to

‖ · ‖W 1,2(Ω)N on W 1,2(Ω)N .

If Ω is a bounded (ε,∞)-domain then the embedding W 1,2(Ω) → L2(Ω) is compact. (This
is actually true for all bounded W 1,2-extension domains [6,40].) Combining the compactness
of this embedding and (6) one obtains the following equivalence of the norms on V (Ω,ΓDir)

N .

Lemma 1

(i) Let Ω ⊂ R
N be a bounded (ε,∞)-domain and µ∂Ω a Borel measure with suppµ∂Ω = ∂Ω

and such that (3) holds with some N − 2 < d ≤ N . Suppose that ΓDir is a Borel subset
of ∂Ω and µ∂Ω(ΓDir) > 0. Then there is a constant cK(Ω, µ∂Ω,ΓDir) > 0 such that

cK(Ω, µ∂Ω,ΓDir) ‖u‖W 1,2(Ω)N ≤ ‖e(u)‖L2(Ω)N×N ≤ ‖u‖W 1,2(Ω)N (7)

for all u ∈ V (Ω,ΓDir)
N .

(ii) Let Ω ⊂ D ⊂ R
N be bounded (ε,∞)-domains and µ∂D, µ∂Ω Borel measures with

suppµ∂D = ∂D and suppµ∂Ω = ∂Ω and such that for both (3) holds with some
N − 2 < d ≤ N . Suppose that ΓDir is a Borel subset of ∂D ∩ ∂Ω with µ∂D(ΓDir) > 0
and µ∂Ω|ΓDir

= µ∂D|ΓDir
. Then the constant cK(Ω, µ∂Ω,ΓDir) in (7) can be replaced

by another constant cK(ε,N,D, µ∂D,ΓDir) > 0 depending only on ε, N , D, µ∂D and
ΓDir. Moreover, the Poincaré inequality

∫

Ω

u · u dx ≤ CP (ε,N,D, µ∂D,ΓDir)

∫

Ω

∇u : ∇u dx (8)

holds for all u ∈ V (Ω,ΓDir)
N , where CP (ε,N,D, µ∂D,ΓDir) > 0 is a constant depend-

ing only on ε, N , D, µ∂D and ΓDir.
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Proof : Statement (i) can be proved by the same arguments as used in [12, Theorem 6.3-4,
step (iii) in the proof]. To see (ii) recall that according to [24, Theorem 2] there exists an
extension operator EΩ taking u into a locally integrable function EΩu on R

N with gradient
in L2(RN )N×N such that

‖∇EΩu‖L2(D)N×N ≤ ‖∇EΩu‖L2(RN )N×N ≤ CExt(ε,N) ‖∇u‖L2(Ω)N×N , (9)

where CExt(ε,N) is a constant depending only on ε and N . By adding two inequalities we
can see the same holds with e(u) in place of ∇u. The pointwise redefinition ẼΩu of EΩu in
the sense of (4) satisfies

ẼΩu = 0 µ∂D-a.e. on ΓDir, (10)

see B for details of the brief argument. Using (10) and the boundedness of D one can then
follow a standard pattern, see [17, Proposition 7.1] or [18], to obtain the Poincaré inequality

∫

D

ExtΩ u · ExtΩ u dx ≤ CP (ε,N,D, µ∂D,ΓDir)

∫

D

∇ExtΩ u : ∇ExtΩ u dx (11)

for all u ∈ V (Ω,ΓDir)
N . An application of (i) to D yields

cK(D,µ∂D,ΓDir) ‖∇ExtΩ u‖L2(D)N×N ≤ ‖e(ExtΩ u)‖L2(D)N×N

≤ CExt(ε,N) ‖e(u)‖L2(Ω)N×N ,

and combining with (11), we arrive at

‖u‖L2(Ω)N ≤
CP (D,µ∂D,ΓDir)

1/2CExt(ε,N)

cK(D,µ∂D,ΓDir)
‖e(u)‖L2(Ω)N×N .

Plugging this into (6), we obtain the first claim in (ii). Slight modifications of the preceding
arguments also give (8). See also ( [15, Theorem 10]) for a similar scalar result. �

We obtain the following well-posedness result:

Theorem 2 Let Ω ⊂ R
N be a bounded (ε,∞)-extension domain. Suppose that µ∂Ω is

a Borel measure with suppµ∂Ω = ∂Ω and such that (3) holds with some N − 2 < d ≤
N . Suppose that ΓDir and ΓNeu are Borel subsets of ∂Ω such that ∂Ω = ΓDir ∪ ΓNeu,
µ∂Ω(ΓDir ∩ ΓNeu) = 0 and µ∂Ω(ΓDir) > 0.

Then for all g ∈ [Tr(W 1,2(Ω))]N and f ∈ L2(Ω)N there is a unique weak solution u ∈
V (Ω,ΓDir)

N of (5). Moreover, there is a constant C > 0 such that

‖u‖W 1,2(Ω)N ≤ C
(
‖f‖L2(Ω)N + ‖g‖[Tr(W 1,2(Ω))]N

)
. (12)

Proof : Theorem 2 is a direct consequence of the Lax-Milgram Lemma. Indeed, by the
definition of σ(u) and (7),

∫

Ω

σ(v) : e(v)dx ≥ α

∫

Ω

e(v) : e(v)dx ≥ αc−1‖v‖2W 1,2(Ω)N , v ∈ V (Ω,ΓDir)
N .

Also the continuity of the bilinear form is seen easily. The continuity of the linear functional
θ 7→

∫
Ω
f ·θdx+

∫
ΓNeu

g ·Tr θdµ∂Ω on V (Ω,ΓDir)
N follows using Theorem 1, and by the same

theorem we obtain estimate (12). �

Remark 3 If Ω in Theorem 2 satisfies the hypotheses of Lemma 1 (ii) then (12) holds with
a constant C > 0 depending only on ε, N , D, µ∂D and ΓDir.
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4 Lipschitz optimal shapes for homogeneous Neumann

conditions

We proceed to the existence of optimal shapes for the elasticity system (2). In this section, we
prove it for a practical example within a well-known setup involving Lipschitz domains and
explain possible generalizations and the difficulties involved. This may be seen as motivation
for our new existence results in Sections 5 and 6.

For A as in (2), and Ω, µ∂Ω, ΓDir, ΓNeu as in Theorem 2 we can define the functional

J(Ω, µ∂Ω,v) := c1

∫

Ω

|v|2dx+ c2

∫

Ω

Ae(v) : e(v)dx, v ∈ V (Ω,ΓDir)
N , (13)

where c1 and c2 are fixed nonnegative constants. Suppose that f and g are fixed data, that
we can find a class of domains within which Ω can vary but ΓDir is kept fixed and that for
each Ω from that class Theorem 2 yields a unique weak solution u(Ω, µ∂Ω) to (2) with the
same data f and g. Then we may interpret

Ω 7→ J(Ω, µ∂Ω,u(Ω, µ∂Ω)) (14)

as a functional on this class of domains, and we may attempt to minimize it.

Remark 4

(i) For c1 = 0 and c2 = 1 the value J(Ω, µ∂Ω,u(Ω, µ∂Ω)) is the elastic energy stored
in Ω (the compliance of Ω), [14, Subsection 3.1]. For c1 = 1 and c2 = 0 the value
J(Ω, µ∂Ω,u(Ω, µ∂Ω)) is the square of the L2-norm of the displacement field, and the
minimization of this norm may be viewed as a mathematically tractable substitute for
the (intractable) minimization of the L∞-norm.

(ii) For a mixed boundary value problem for the Helmholtz equation functionals similar to
(14), but with an additional boundary term, are studied in [23, Section 7].

We discuss a practical application. Suppose that we are searching for the most stable
(strongest) roof for a building and model it by a domain Ω ⊂ R

3. We assume that the
moving part ΓNeu of the boundary ∂Ω is the union of two disjoint parts Γupper and Γlower

which model the upper and the lower side of the roof. The set ΓDir models vertical boundary
parts of the roof at which it is fixed by a structural connection to other parts of the building.
See Fig. 1. We impose the condition that the volume cv > 0 of the roof itself remains fixed
and that Γupper and Γlower are always parallel with a vertical distance

hz(Ω) =
cv

µ(Γlower)
. (15)

Since cv is kept constant, hz(Ω) will typically change when Γupper and Γlower move. We
assume that g = 0 and set

f = ρ0hz(Ω)ez , (16)

where ρ0 > 0 is a constant (mass) density and ez = (0, 0, 1). The field f(Ω) represents the
weight of the roof Ω.

To introduce suitable classes of domains let us recall the following from [3, 11]. Given
ε > 0, a domain Ω ⊂ R

N is said to have the ε-cone property if for all x ∈ ∂Ω there exists
ξx ∈ R

N with ‖ξx‖ = 1 such that for all y ∈ Ω ∩B(x, ε)

C(y, ξx, ε) = {z ∈ R
N |(z − y, ξx) ≥ cos(ε)‖z − y‖ and 0 < ‖z − y‖ < ε} ⊂ Ω.

It is well-known that a domain Ω with bounded boundary ∂Ω has the ε-cone property for
some ε > 0 if and only if it is a Lipschitz domain, [22, Theorem 2.4.7]. Now let D ⊂ R

3 be
a bounded Lipschitz domain and ε > 0. Somewhat similarly to [22, Section 2.4] we write

O(D, ε) := {Ω ⊂ D | Ω is a domain satisfying the ε-cone property}. (17)
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Ω

G

D

Γupper

Γlower

hz
ΓDir ΓDir

Figure 1: The boundary parts Γupper and Γlower remain parallel to each other with distance
hz as defined in (16). The lower part Γlower is supposed to stay within the closure of a fixed
open set G. We assume that all possible shapes Ω (and therefore also the set G) are subsets
of a fixed open set D.

Let G be a nonempty open proper subset of D, ΓDir a compact subset of ∂D with H2(ΓDir) >
0, let ε > 0, cv > 0 and 0 < ℓ0 < ℓ1. We define a class of admissible shapes by

Uad(D,G, ε, cv, ℓ0, ℓ1,ΓDir) = {Ω ∈ O(D, ε) | λ3(Ω) = cν , ℓ0 ≤ H2(∂Ω) ≤ ℓ1,

∂Ω = ΓDir ∪ ΓNeu, H2(ΓDir ∩ ΓNeu) = 0, ΓDir = ∂Ω ∩ ∂D,

ΓNeu = Γlower ∪ Γupper, Γlower ⊂ G, Γupper = Γlower + hzez}. (18)

In this case the existence of an optimal shape realizing the minimum of the functional
on Uad(D,G, ε, cv, ℓ0, ℓ1,ΓDir) follows from the results of Chenais [11]. By [22, Theorem
2.4.10] the collection O(D, ε) of domains having the ε-cone property and contained in D
is compact with respect to the convergence in the sense of characteristic functions, the
convergence in the Hausdorff sense and the convergence in the sense of compacts. For
any sequence Ωn → Ω of sets in this class coverging in all three senses, their boundaries
∂Ωn → ∂Ω and also their closures Ωn → Ω converge in the Hausdorff sense. The set of
domains Uad(D,G, ε, cv, ℓ0, ℓ1,ΓDir) defined in (18) is a closed subset of the class O(D, ε)
and therefore compact. Note also that each Ω ∈ Uad(D,G, ε, cv, ℓ0, ℓ1,ΓDir), together with
µ∂Ω = H2|∂Ω, satisfies the hypotheses of Theorem 2. Proceeding as in [22, Theorem 4.3.1]
we obtain the following result for the case of zero Neumann data.

Theorem 3 Let Uad(D,G, ε, cv, ℓ0, ℓ1,ΓDir) be as in (18), ρ0 > 0, c1 ≥ 0 and c2 ≥ 0. For
each Ω ∈ Uad(D,G, ε, cv, ℓ0, ℓ1,ΓDir) let u(Ω,H2) denote the unique weak solution to (2) on
Ω with g ≡ 0 and f ≡ f(Ω) defined as in (16). Let J be the energy functional defined in (13).

Then there is an optimal shape Ωopt ∈ Uad(D,G, ε, cv, ℓ0, ℓ1,ΓDir) realizing the minimum
of (14) over Uad(D,G, ε, cv, ℓ0, ℓ1,ΓDir).

Remark 5

(i) A similar example of a shape optimization problem is studied in [14]. There the authors
propose to minimize (14) with c1 = 0 and c2 = 1 in (13) in a setup where ΓDir and a
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part ΓNeu,fix of ΓNeu are fixed and only Γ := ΓNeu \ ΓNeu,fix, on which g is assumed to
be zero, can move. On the fixed part ΓNeu,fix the function g can be nonzero. They keep
the volume of Ω constant and introduce a penalization term in the functional which
restricts the area of the possible changes of Γ. This term is based on the (signed)
distance to an initially given shape Γ0.

(ii) The idea to restrict the possible shapes to a neigborhood of a given shape is equivalent
to fixing a compact set G within which the moving boundary part is required to stay,
Γ ⊂ G. In [28], the latter condition is shown to be necessary to ensure the existence
of an optimal shape. A comparable condition is also used in [23], where the domains
Ω are required to contain another fixed open set D0.

The sketched roof shape optimization problem can easily be generalized in the sense that
(14) could be minimized over

Uad(D,G, ε, cv,ΓDir,ΓNeu,fix) = {Ω ∈ O(D, ε) | λN (Ω) = cv,

∂Ω = ΓDir ∪ ΓNeu, HN−1(ΓDir ∩ ΓNeu) = 0, ΓDir = ∂Ω ∩ ∂D,

ΓNeu,fix ⊂ ΓNeu, ΓNeu \ ΓNeu,fix ⊂ G}, (19)

where D, G, ε, cv, ΓDir are similarly as before. In this setup ΓNeu,fix ⊂ ΓNeu is kept fixed
and only Γ = ΓNeu \ΓNeu,fix can move, as in [14]. If g can be nonzero only on the fixed part
ΓNeu,fix (but not on the moving part Γ) then one can still prove the existence of an optimal
shape by the method of [22, Theorem 4.3.1].

As mentioned in the introduction, it may be desirable to allow nonzero Neumann data
g also on the moving part Γ of the boundary (for instance, if we wish to include an external
force on the roof surface caused by the weight of snow). In the case of nonzero Neumann
data we need to follow our recent studies [23, 28] to obtain results on compactness and the
existence of optimal shapes. The main additional difficulty consists in the fact that nonzero
Neumann data on the moving part Γ requires correct handling of the ’area measure’ µ∂Ω|Γ
on this part, because the variational formulation (5) involves integrals with respect to it.
A sequence of domains from (19) converges to a domain in that class in the three senses
discussed above. However, the natural type of convergence of measures on the boundaries
is their weak convergence, and the weak limit of Hausdorff measures is not necessarily a
Hausdorff measure, [28, Section 3].

In the next two sections, we present two results regarding this issue. The first, Theorem
4, states that for classes of admissible shapes built on O(D, ε) we can find optimal shapes
that realize the infimum of the functional (14). The second, Theorem 5, considers wider
parametrized classes of admissible shapes, namely certain uniform domains whose boundaries
carry measures satisfying (3). It guarantees the existence of optimal shapes which then
indeed realize the minima of (14) over such classes. This may be viewed as a relaxation of
the Lipschitz boundary case.

5 Lipschitz optimal shapes realizing the infimum of the

energy

We follow the method in [28]. Given a bounded Lipschitz domain D ⊂ R
N and ε > 0

we write, similarly as before, O(D, ε) for the collection of all domains Ω ⊂ D that satisfy
the ε-cone property. Now suppose that G is a nonempty open proper subset of D, ΓDir a
compact subset of ∂D with HN−1(ΓDir) > 0 and ε > 0, cv > 0, ĉ > 0 are given constants.
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We define the class

Uad(D,G, ε, cv, ĉ,ΓDir) = {Ω ∈ O(D, ε) | λN (Ω) = cv,

∂Ω = ΓDir ∪ ΓNeu, HN−1(ΓDir ∩ ΓNeu) = 0, ΓDir = ∂Ω ∩ ∂D,ΓNeu ⊂ G

and HN−1(ΓNeu ∩B(x, r)) ≤ ĉrN−1 for any x ∈ ΓNeu and r > 0}. (20)

Remark 6 Since D is bounded there is some ℓ1 > 0, depending on ĉ > 0, such that for
all Ω ∈ Uad(D,G, ε, cv, ĉ,ΓDir) we have HN−1(ΓNeu) ≤ ℓ1, and a smaller ĉ leads to a
smaller bound ℓ1. Clearly there is also some uniform lower bound ℓ0 for HN−1(ΓNeu), and
consequently ĉ must be chosen large enough to ensure the class Ω ∈ Uad(D,G, ε, cv, ĉ,ΓDir)
contains more than one domain.

Now suppose that f ∈ L2(D)N and g ∈ [Tr(W 1,2(D))]N are given. For any domain
Ω and Borel measure µ∂Ω on ∂Ω satisfying the hypotheses of Theorem 2, let u(Ω, µ∂Ω)
denote the unique weak solution for (2) on Ω with µ∂Ω on ∂Ω. Note that in particular each
Ω ∈ Uad(D,G, ε, cv, ĉ,ΓDir) satisfies these hypotheses with µ∂Ω = HN−1|∂Ω, and similarly
as before we write u(Ω,HN−1) for the corresponding weak solution.

We consider the functional (14) with c1 ≥ 0 and c2 ≥ 0 in (13). Ideally we would like to
minimize J(Ω,HN−1,u(Ω,HN−1)) on Uad(D,G, ε, cv, ĉ,ΓDir). However, under the present
hypotheses one can only prove the following.

Theorem 4 Let Uad(D,G, ε, cv, ĉ,ΓDir) be as in (20), c1 ≥ 0, c2 ≥ 0, f ∈ L2(D)N and
g ∈ [Tr(W 1,2(D))]N .

Then there are a domain Ωopt ∈ Uad(D,G, ε, cv, ĉ,ΓDir) and a finite Borel measure µ∂Ωopt

on ∂Ωopt, equivalent to HN−1|∂Ωopt
, such that HN−1(ΓNeu,opt) ≤ µ∂Ωopt

(ΓNeu,opt) and

J(Ωopt, µ∂Ωopt
,u(Ωopt, µ∂Ωopt

))

= inf
Ω∈Uad(D,G,ε,cv,ĉ,ΓDir)

J(Ω,HN−1,u(Ω,HN−1)).

If µ∂Ωopt
= HN−1|∂Ωopt

, then the infimum is actually a minimum.

Proof : Insubstantial modifications of [28, Lemma 3.1] guarantee that for fixed parameters
the class Uad(D,G, ε, cv, ĉ,ΓDir) is compact with respect to the convergence in the sense of
characteristic functions, the Hausdorff sense and the sense of compacts. Moreover, each
sequence (Ωn)n in Uad(D,G, ε, cv, ĉ,ΓDir) has a subsequence (Ωnk

)k converging to a limit
domain Ω∗ in the Hausdorff sense, the sense of characteristic functions and the sense of
compacts and for which the Hausdorff measures µ∂Ωnk

= HN−1|∂Ωnk
converge weakly to a

measure µ∂Ω∗
which is equivalent to HN−1|∂Ω∗

and satisfies

HN−1(ΓNeu,∗) ≤ µ∂Ω∗
(ΓNeu,∗). (21)

Here we write ΓNeu,∗ for the part of ∂Ω∗ that corresponds to ΓNeu in (20), below we will use
a similar notation with analogous meaning.

Now suppose that this sequence (Ωn)n ⊂ Ûad(D,G, ε, ĉ, cv, ℓ1) is a minimizing sequence
of the energy functional (14), this minimizing sequence exists since the functional is nonnega-
tive. We relabel and denote the subsequence (Ωnk

)k above by (Ωk)k. Let uk := u(Ωk,H
N−1)

denote the unique weak solution to (2) on Ωk and let u∗ := u(Ω∗, µ∂Ω∗
) denote that on Ω∗

with measure µ∂Ω∗
on the boundary.

Since all domains Ωk have Lipschitz boundaries of finite Hausdorff measures, there are
extension operators E : W 1,2(Ωk)

N → W 1,2(RN )N and a constant CE > 0 independent of
k such that ‖Euk‖W 1,2(D)N ≤ CE‖uk‖W 1,2(Ωk)N for all k, see [11]. By Lemma 1 (ii) and
Theorem 2 (together with Theorem 1) we can find a constant C > 0, independent of k, such
that

sup
k

‖uk‖W 1,2(Ωk)N ≤ C
(
‖f‖L2(D)N + ‖g‖Tr(W 1,2(D))]N

)
.
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This means that (Euk|D)k is bounded in W 1,2(D)N , and consequently there exists u∗ ∈
W 1,2(D)N such that Euk|D ⇀ u∗ in W 1,2(D)N .

We define linear functionals Fk and F on V (Ω,ΓDir)
N by

Fk[φ] =

∫

Ωk

σ(uk) : e(φ)dx−

∫

Ωk

f · φ−

∫

ΓNeu,k

g · φdHN−1,

φ ∈ V (Ω,ΓDir)
N , and

F [φ] =

∫

Ω

σ(u∗) : e(φ)dx −

∫

Ω∗

f · φ−

∫

ΓNeu,∗

g · φdµ∗.

Following the proof of [28, Theorem 3.2] one can see that F [φ] = limk Fk[φ] = 0 for all
φ ∈ V (D,ΓDir)

N , which implies that F [φ] = 0, φ ∈ V (D,ΓDir)
N . By the uniqueness

established in Theorem 2 we must have u∗|Ω∗
= u∗.

Using (5) it is not difficult to show that

lim
k

‖1Ωk
∇Euk‖L2(D)N×N = ‖1Ω∇Eu∗‖L2(D)N×N .

Since by the Rellich-Kondrachov theorem also limk Euk = u∗ strongly in L2(D)N , it follows
that limk J(Ωk,H

N−1,uk) = J(Ω∗, µ∂Ω∗
,u∗), so that Ωopt := Ω∗ and µΩopt

= µ∂Ω∗
are as

desired. See [28] for more details. �

6 Relaxation and optimal shapes realizing the energy

minimum

Choosing a larger class of admissible shapes, we can ensure the existence of an optimal shape
which actually realizes the minimum of (14). Following [23] we relax the restriction on the
domains Ω to be Lipschitz domains and the restriction on the measures on the boundaries
to be Hausdorff measures.

Let D ⊂ R
N be a bounded Lipschitz domain and ε > 0. By Ô(D, ε) we denote the

collection of all (ε,∞)-domains Ω ⊂ D. We require the measures on the boundary to satisfy
the upper regularity condition (3) and a second, somewhat complementary scaling condition.
Given s > 0 and a Borel measure µF on R

N with F = suppµF we say that µF is lower
s-regular in the closed ball sense if there is a constant cs > 0 such that

µF (B(x, r)) ≥ c̄sr
s, x ∈ F, 0 < r ≤ 1. (22)

Now let D0 be a non-empty Lipschitz domain and a proper subset of D and suppose
that ΓDir ⊂ ∂D ∩ ∂D0 has positive measure HN−1(ΓDir) > 0. Given ε > 0, N − 1 ≤ s < N ,
0 ≤ d ≤ s, c̄s > 0 and cd > 0 let

Uad(D,D0, ε, cv, s, d, c̄s, cd,ΓDir) := {(Ω, µ∂Ω) | Ω ∈ Ô(D, ε), D0 ⊂ Ω,

λN (Ω) = cv, ∂Ω = ΓDir ∪ ΓNeu, ΓDir = ∂Ω ∩ ∂D, µ∂Ω = HN−1|ΓDir
+ µΓNeu

,

µΓNeu
with suppµΓNeu

= ΓNeu satisfies (3) and (22), µ∂Ω(ΓDir ∩ ΓNeu) = 0} (23)

Using [23, Theorem 3] it can be seen that Uad(D,D0, ε, cv, s, d, c̄s, cd,ΓDir) is compact
with respect to the convergence in the Hausdorff sense, the sense of compacts, the sense
of characteristic functions and the sense of weak convergence of the measures µ∂Ω on the
boundaries. By Lemma 1 (ii) and Theorem 2 we have (12) with a uniform constant for all
(Ω, µ∂Ω) ∈ Uad(D,D0, ε, cv, s, d, c̄s, cd,ΓDir). This, together with uniform estimates for the
norms of extension operators, allows to obtain the following result by similar arguments as
in the Lipschitz case.
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Theorem 5 Let Uad(D,D0, ε, cv, s, d, c̄s, cd,ΓDir) be as in (23), c1 ≥ 0 and c2 ≥ 0 in (13).
Let f ∈ L2(D)N and g ∈ [Tr(W 1,2(D))]N .

Then there is (Ωopt, µ∂Ωopt
) ∈ Uad(D,D0, ε, cv, s, d, c̄s, cd,ΓDir) such that

J(Ωopt, µ∂Ωopt
,u(Ω∂Ωopt

, µ∂Ωopt
))

= min
(Ω,µ∂Ω)∈Uad(D,D0,ε,cv,s,d,c̄s,cd,ΓDir)

J(Ω, µ∂Ω,u(Ω, µ∂Ω)).

Slight modifications of Theorems 4 and 5 yield generalizations of Theorem 3 on optimal
roof shapes, such as the following. Let N = 3 and let D ⊂ R

3 be a bounded Lipschitz
domain, G a nonempty open proper subset of D and ΓDir a compact subset of ∂D with
H2(ΓDir) > 0 as in Section 4. Consider the class

Uad(D,G, ε, cv, s, d, c̄s, cd,ΓDir) = {(Ω, µ∂Ω) | Ω ∈ Ô(D, ε), λ3(Ω) = cν ,

∂Ω = ΓDir ∪ ΓNeu, ΓDir = ∂Ω ∩ ∂D, µ∂Ω = HN−1|ΓDir
+ µΓNeu

,

µΓNeu
with suppµΓNeu

= ΓNeu satisfies (3) and (22), µ∂Ω(ΓDir ∩ ΓNeu) = 0,

ΓNeu = Γlower ∪ Γupper, Γlower ⊂ G, Γupper = Γlower + hzez}. (24)

This class is compact with respect to the same four types of convergences as (23). (We
point out that [23, Theorem 3] can be used without problems because the domains Ω are
nonempty by construction.) The following result, which roughly speaking is a corollary of
Theorem 5, generalizes Theorem 3 to the case of possibly nonzero Neumann data g on the
moving parts.

Corollary 1 Let Uad(D,G, ε, cv, s, d, c̄s, cd,ΓDir) be as in (24), ρ0 > 0, c1 ≥ 0 and c2 ≥ 0.
For each (Ω, µ∂Ω) ∈ Uad(D,G, ε, cv, s, d, c̄s, cd,ΓDir) let u(Ω, µ∂Ω) denote the unique weak
solution to (2) with g ∈ [Tr(W 1,2(D))]3 and f ≡ f(Ω) defined as in (16). Let J be the energy
functional defined in (13).

Then there is an optimal shape (Ωopt, µ∂Ωopt
) ∈ Uad(D,G, ε, cv, s, d, c̄s, cd,ΓDir) realizing

the minimum of (14) over Uad(D,G, ε, cv, s, d, c̄s, cd,ΓDir).

7 Conclusions

For the linear elasticity system (2) with homogeneous Neumann conditions on the varying
parts, optimal (energy minimizing) roof shapes always exist in classes (18) based on the
well-known classes (17) of bounded Lipschitz domains, Theorem 3. This result had not
been known before, but it relies on classical methods. Suppose inhomogeneous Neumann
conditions on the varying parts are imposed. In that case, optimal shapes realizing the
infimum of the energy always exist in classes (20) of bounded Lipschitz domains with gener-
alized boundary measures. This result is new, and it was obtained using the novel methods
in [28]. To ensure the existence of optimal shapes that realize the minimum of the energy
under inhomogeneous Neumann conditions, we need to allow fractal boundaries and dis-
cuss measures (not only shapes). If we do so, energy minimizing optimal shapes in classes
(23) of bounded uniform domains always exist, Theorem 5, and in particular, optimal roof
shapes exist, Corollary 1. This result is new, and it is based on the completely novel ap-
proach introduced in [23]. Future work will include more specific numerical experiments and
also theoretical generalizations, for instance, existence results for optimal shapes for Robin
boundary value problems in elasticity.

A Green’s formulas

We provide versions of Green’s formulas in the context of Theorem 1. They are not used
explicitely in our results, but they provide the correct justification of the variational formu-
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lation (2). Consider the space

H(div,Ω) = {u = (u1, . . . , uN)t : Ω → R
N | u1, . . . uN ∈ L2(Ω), divu ∈ L2(Ω)},

it is a Hilbert space corresponding to the norm

‖u‖div,Ω =
(
‖u‖2L2(Ω)N + ‖divu‖2L2(Ω)

) 1
2

.

Proposition 2 Let Ω ⊂ R
N be a bounded W 1,2-extension domain. Suppose that µ∂Ω is a

Borel measure with suppµ∂Ω = ∂Ω and such that (3) holds with some N − 2 < d ≤ N . For
all u ∈ H(div,Ω) we can define a bounded linear functional u · n ∈ (Tr(W 1,2(Ω)))′ by the
identity

〈u · n,Trw〉(Tr(W 1,2(Ω)))′,Tr(W 1,2(Ω)) =

∫

Ω

u · ∇w dx−

∫

Ω

(div u)w dx, (25)

w ∈ W 1,2(Ω).
For all T ∈ H(div,Ω)N we can define a bounded linear functional T ·n ∈ [(Tr(W 1,2(Ω)))′]N

by

〈T · n,Tr θ〉[(Tr(W 1,2(Ω)))′]N ,[Tr(W 1,2(Ω))]N =

∫

Ω

T : ∇θ dx −

∫

Ω

(div T ) · θ dx, (26)

θ ∈ W 1,2(Ω)N .

For the special case that Ω is a Lipschitz domain and µ∂Ω equals HN−1 a proof of formula
(25) can be found in [21, Theorem 2.5 and formula (2.17)]. The same proof, combined with
Theorem 1, yields (25). (Note also that a particular version of (25) had been proved in [13]
for a specific domain Ω.) Formula (26) is just its matrix form and an immediate consequence
of (25). See [12, p. 69] for a version of this formula for smooth domains and tensors.

B A technical remark

We comment briefly on how to see the claimed identity (10) in the proof of Lemma 1, i.e.,
that ẼΩu = 0 µ∂D-a.e. on ΓDir. One can argue as follows: If ui are the components of
u then the vector fields u(M), M ≥ 1, with components u

(M)
i := (−M) ∨ (ui ∧M) satisfy

limM→∞

∥∥u(M) − u
∥∥
W 1,2(Ω)N

= 0, what by (9) is inherited to their extensions. Therefore

(and by Theorem 1) it suffices to show (10) for u with bounded components. If χ is a
smooth cut-off function with compact support inside an open ball B ⊃ D then we have
(χEΩu)

∼ = ẼΩu on D. Since L∞-functions with finite Dirichlet integral form an algebra
and Poincaré’s inequality holds for B, the product χEΩu is an element of W̊ 1,2(B), and we
can use standard capacity arguments based on this space instead of W 1,2(RN ). In particular,
adequate modifications of [9, Theorems 5.2 and 5.4] now allow to conclude (10) similarly as
in [9, Theorem 6.1].

C On the Mosco convergence of energy functionals

In this auxiliary section we consider energy functionals for Robin problems of type
{

−div e(u) = f in Ω,

e(u) · n+ α1Γu = 0 on ∂Ω,

where α ≥ 0 and Γ is a subset of ∂Ω. We show that if a sequence of domains converges
in a suitable sense then these energy functionals on the domains converge in the sense of
Mosco [36].

Let H be a Hilbert space. Recall from [36, Definition 2.1.1] that a sequence of quadratic
forms an(·, ·) : H × H → (−∞,+∞] is said to M -converge on H to a quadratic form
a(·, ·) : H ×H → (−∞,+∞] if
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1. For every u ∈ H there is a sequence (un)n ⊂ H , convergent to u and such that
limn→∞ an(un, un) ≤ a(u, u).

2. For every sequence (vn)n ⊂ H converging weakly to u ∈ H we have limn→∞ an(vn, vn) ≥
a(u, u).

Let N ≥ 2 and let Ω ⊂ R
N be a bounded domain. Suppose that µΓDir

and µΓ are Borel
measures with suppµΓDir

= ΓDir and suppµΓ = Γ such that ∂Ω = ΓDir ∪ Γ and ΓDir ∩ Γ is
a zero set for both µΓDir

and µΓ. For each n ≥ 1 let Ωn ⊂ R
N a domain and let µΓn

be a
Borel measure with suppµΓn

= Γn such that ∂Ωn = ΓDir ∪ Γn and ΓDir ∩ Γn is a zero set
for both µΓDir

and µΓn
. If all domains are W 1,2-extension domains contained in a bounded

Lipschitz domain D and all µΓDir
, µΓ and µΓn

satisfy (3) with N − 2 < d ≤ N then for any
non-negative real numbers α and αn we can define quadratic forms on L2(D)N by

an(u,u) =
{ ∫

Ωn

e(u) : e(u)dx+
∫
Ωn

|u|2dx+ αn

∫
Γn

|Tru|2dµΓn
, u ∈ V (Ωn,ΓDir)

N ,

+∞, otherwise

and

a(u,u) =
{ ∫

Ω

e(u) : e(u)dx+
∫
Ω

|u|2dx+ α
∫
Γ

|Tru|2dµΓ, u ∈ V (Ω,ΓDir)
N ,

+∞, otherwise.

The following convergence result can be obtained by the same arguments as [23, Theo-
rem 8].

Theorem 6 Let ε > 0, let (Ωn)n be a sequence of (ε,∞)-domains Ωn ⊂ D. Let ΓDir,
Γn and µΓDir

, µΓn
be as above and assume that all µΓn

satisfy (3) with the same exponent
N − 1 < d ≤ N and the same constant cd.

If limn Ωn = Ω in the Hausdorff sense and in the sense of characteristic functions and
limn αnµn = αµ in the sense of weak convergence, then we have

lim
n

an = a

in the sense of M -convergence on L2(D).

Remark 7 For simplicity, and because it is sufficient for many practical purposes, ΓDir is
assumed to be fixed in the above setup. It would be sufficient to keep the set ΓDir ∩ Γn fixed,
see [15, Theorem 10].
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