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ABSTRACT
This paper deals with the exponential input-to-state stabilizationwith respect to boundary disturbances
of a class of diagonal infinite-dimensional systems via delay boundary control. The considered input
delays are uncertain and time-varying. The proposed control strategy consists in a constant-delay
predictor feedback controller designed on a truncated finite-dimensional model capturing the unstable
modes of the original infinite-dimensional system. We show that the resulting closed-loop system is
exponential input-to-state stable with fading memory of both additive boundary input perturbations
and disturbances in the computation of the predictor feedback.

1. Introduction
Feedback stabilization of finite-dimensional systems in

the presence of input delays has been a very active research
topic during the past decades [1, 27]. Motivated by the delay
boundary control of Partial Differential Equations (PDEs),
the opportunity of extending this topic to infinite-dimensional
systems has recently attracted much attention [9, 29]. One of
the early contributions on input delayed unstable PDEs, re-
ported in [17], deals with a reaction-diffusion equation with
a controller designed by resorting to the backstepping tech-
nique. More recently, the opportunity to use a predictor feed-
back for the stabilization of a reaction-diffusion equationwas
reported in [26]. The proposed control strategy, inspired by
the early works [6, 7, 28] dealing with delay-free boundary
feedback control, goes as follows. First, a finite-dimensional
truncatedmodel capturing the unstablemodes of the infinite-
dimensional system is obtained via spectral reduction. Then,
using the Artstein transformation for handling the input de-
lay, a predictor feedback is designed to stabilize the trun-
catedmodel. Finally, the stability of the closed-loop infinite-
dimensional system is assessed via a Lyapunov-based argu-
ment. This strategy was reused in [10] for the delay bound-
ary feedback stabilization of a linear Kuramoto-Sivashinsky
equation. This was then generalized to the boundary feed-
back stabilization of a class of diagonal infinite-dimensional
systemswith delay boundary control for either a constant [18,
22] or a time-varying [19] input delay.

In this paper, we investigate the exponential input-to-
state stabilization with respect to boundary disturbances of
a class of diagonal infinite-dimensional systems via delay
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boundary control. In this setting, the considered input de-
lay is uncertain and time-varying. The main motivation in
achieving an input-to-state stabilization of the closed-loop
system relies in the fact that the Input-to-State Stability (ISS)
property, originally introduced by Sontag in [31], is one of
the main tools for assessing the robustness of a system with
respect to boundary disturbances. This property also plays a
key role in the establishment of small gain conditions for the
stability of interconnected systems [16]. Although the study
of ISS properties of finite-dimensional systems has been in-
tensively studied during the last three decades, its extension
to infinite-dimensional systems, and in particular with re-
spect to boundary disturbances, is more recent [4, 11, 12,
14, 15, 16, 20, 21, 23, 24, 25, 32, 33]. Moreover, most of
these results deal with the establishment of ISS properties for
open-loop stable distributed parameter systems. The litera-
ture regarding the input-to-state stabilization of open-loop
unstable infinite-dimensional systems is less developed.

The present paper extends the results reported in [18,
19] regarding the use of a constant-delay predictor feedback
for the delayed boundary stabilization of a class of diagonal
infinite-dimensional systems. The validity of such an ap-
proach was first assessed in [18] for a constant and known in-
put delay and then in [19] for an unknown and time-varying
input delay via Lyapunov-based arguments. While such an
approach allows the derivation of an ISS estimate with re-
spect to distributed disturbances [18], it fails in the estab-
lishement of an ISS estimate, in strict form1, with respect
to boundary disturbances. In this paper, under the assump-
tion of a sectorial condition on the eigenvalues correspond-
ing to the modes which are not captured by the truncated
model used for the design of the predictor feedback, we show
that the resulting infinite-dimensional closed-loop system is
exponential ISS with fading memory [16] of the boundary

1More precisely, this approach only allows the derivation of an ISS
estimate with respect to both the boundary perturbation and its time deriva-
tive, but not an ISS estimate in strict form, i.e., with respect to the only
magnitude of the boundary perturbation.
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disturbances for small variations of the time-varying delay
around its nominal value. The adopted approach relies first
on the extension of a small gain argument reported in [13] in
order to establish the ISS property of the closed-loop trun-
cated model, and then on the method reported in [21] for
the establishment of ISS estimates with respect to boundary
disturbances for diagonal infinite-dimensional systems.

This paper is organized as follows. The investigated con-
trol problem, the proposed control strategy, and the main re-
sult of this paper are introduced in Section 2. In Section 3 is
reported the stability analysis of the finite-dimensional trun-
cated model. Then, the proof of the main result of this paper,
namely the ISS property of the resulting closed-loop infinite-
dimensional system, is presented in Section 4. The relax-
ation of the assumed regularity assumptions for the bound-
ary disturbances is discussed in Section 5. Finally, conclud-
ing remarks are formulated in Section 6.

2. Problem setting and main result
The sets of non-negative integers, positive integers, real,

non-negative real, positive real, and complex numbers are
denoted by ℕ, ℕ∗, ℝ, ℝ+, ℝ∗+, and ℂ, respectively. All the
finite-dimensional spacesℝp are endowed with the usual eu-
clidean inner product ⟨x, y⟩ = x⊤y and the associated 2-
norm ‖x‖ =

√

⟨x, x⟩ =
√

x⊤x. For any matrixM ∈ ℝp×q ,
‖M‖ stands for the induced norm ofM associated with the
above 2-norms. For any t0 > 0, we say that ' ∈ 0(ℝ;ℝ)
is a transition signal over [0, t0] if 0 ≤ ' ≤ 1, '|(−∞,0] = 0,and '|[t0,+∞) = 1.
2.1. Preliminary definitions

Throughout the paper, (, ⟨⋅, ⋅⟩) denotes a separable
Hilbert space over the field K which is either ℝ or ℂ.
Definition 1 (Boundary control system [8]). Consider the
abstract system taking the form:
⎧

⎪

⎨

⎪

⎩

dX
dt
(t) = X(t), t ≥ 0

X(t) = v(t), t ≥ 0
X(0) = X0

(1)

with  ∶ D() ⊂  →  an (unbounded) operator,
 ∶ D() ⊂  → Km with D() ⊂ D() the bound-
ary operator, and v ∶ ℝ+ → Km a boundary input. We say
that (,) is a boundary control system if

1. the disturbance-free operator 0, defined on the do-
main D(0) ≜ D() ∩ ker() by 0 ≜ |D(0), isthe generator of a C0-semigroup S on ;

2. there exists a bounded operatorB ∈ (Km,), called
a lifting operator, such that R(B) ⊂ D(), B ∈
(Km,), and B = IKm .

Definition 2 (Riesz spectral operator [8]). Let a linear and
closed operator 0 ∶ D(0) ⊂  →  with simple eigen-
values �n and corresponding eigenvectors �n ∈ D(0), n ∈
ℕ∗. 0 is a Riesz-spectral operator if

1. {�n, n ∈ ℕ∗
} is a Riesz basis [5]:

(a) {

�n, n ∈ ℕ∗
} is maximal, i.e., spanK

n∈ℕ∗
�n = ;

(b) there exist constants mR,MR ∈ ℝ∗+ such that,
for allN ∈ ℕ∗ and all �1,… , �N ∈ K,

mR
N
∑

n=1
|�n|

2 ≤
‖

‖

‖

‖

‖

‖

N
∑

n=1
�n�n

‖

‖

‖

‖

‖

‖

2



≤MR

N
∑

n=1
|�n|

2; (2)

2. the closure of {�n, n ∈ ℕ∗} is totally disconnected,
i.e. for any distinct a, b ∈ {�n, n ∈ ℕ∗}, [a, b] ⊄
{�n, n ∈ ℕ∗}.

Remark 1. Let{ n, n ∈ ℕ∗
} be the biorthogonal sequence

associatedwith{�n, n ∈ ℕ∗
}, i.e., ⟨�n,  m⟩ = �n,m. Then

 n is an eigenvector of the adjoiont operator ∗
0 associated

with �n. Moreover, the following series expansion holds:
∀z ∈ , z =

∑

n≥1
⟨z,  n⟩ �n. (3)

2.2. Problem and proposed control strategy
Let D0 > 0 and � ∈ (0, D0) be given. We consider the

abstract boundary control system (1) for which the boundary
input v takes the form:
v(t) = u(t −D(t)) + d1(t) (4)
for all t ≥ 0 with d1 ∶ ℝ+ → Km a boundary distur-
bance, u ∶ [−D0 − �,+∞) → Km the boundary control
with u|[−D0−�,0] = 0, and D ∶ ℝ+ → [D0 − �,D0 + �] atime-varying delay.
Assumption 1. The disturbance-free operator0 is a Riesz
spectral operator.

Then, the C0-semigroup generated by 0 is given by
∀z ∈ , ∀t ≥ 0, S(t)z =

∑

n≥1
e�nt ⟨z,  n⟩ �n. (5)

Assumption 2. There existN0 ∈ ℕ∗ and � ∈ ℝ∗+ such that

1. Re �n ≤ −� for all n ≥ N0 + 1 ;

2. � ≜ sup
n≥N0+1

|

|

|

|

�n
Re �n

|

|

|

|

< ∞.

Remark 2. If the first point of Assumption 2 holds, the sec-
ond point � < ∞ is equivalent to the existence of a constant
� > 0 such that | Im �n| ≤ �|Re �n| for all n ≥ N0 + 1.

The boundary feedback stabilization problem of the con-
sidered system was solved in [19] in the disturbance-free
case by designing a constant-delay predictor feedback on a
finite dimensional truncated model capturing the unstable
modes of the infinite-dimensional system. In this paper, we
go beyond the result reported in [19] by considering the im-
pact of boundary disturbances while relaxing the assumed
regularity properties and compatibility conditions. Specif-
ically, assuming that the control input2 u, the time-varying

2The construction of the control law must ensure this property.
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delay D, and the boundary disturbance d1 are of class 1,
then, for any given initial condition X0 ∈ , we can intro-
duce X ∈ 0(ℝ+;) defined for all t ≥ 0 by
X(t) = S(t){X0 − Bv(0)} + Bv(t) (6)

+ ∫

t

0
S(t − s){Bv(s) − Bv̇(s)} ds

as the unique mild solution of (1), with control input v given
by (4), associated with (D,X0, d1). We introduce the series
expansion X(t) = ∑

n≥1 cn(t)�n with cn(t) ≜ ⟨X(t),  n⟩the coefficient of projection of the system trajectoryX(t) into
the Riesz basis {�n, n ∈ ℕ∗

}. The use of (6), combined
with (3) and (5), and an integration by parts, show that cnstatisfies
cn(t) = e�ntcn(0) (7)

+ ∫

t

0
e�n(t−�)

{

⟨Bv(�),  n⟩ − �n ⟨Bv(�),  n⟩
}

d�

for all t ≥ 0. Thus cn ∈ 1(ℝ+;K) and satisfies for all t ≥ 0the following ODE (see also [21]):
ċn(t) = �ncn(t) − �n ⟨Bv(t),  n⟩ + ⟨Bv(t),  n⟩ . (8)
Let  = (e1, e2,… , em) be the canonical basis of Km. Then,introducing3 bn,k ≜ −�n ⟨Bek,  n⟩ + ⟨Bek,  n⟩ , weobtain that
Ẏ (t) = AN0Y (t) + BN0v(t)

= AN0Y (t) + BN0{u(t −D(t)) + d1(t)} (9)
with
Y (t) =

[

c1(t) … cN0 (t)
]⊤ ∈ KN0 , (10)

and the matrices AN0 = diag(�1,… , �N0 ) ∈ KN0×N0 and
BN0 = (bn,k)1≤n≤N0,1≤k≤m ∈ KN0×m.
Assumption 3. (AN0 , BN0 ) is stabilizable.

Under Assumption 3, one can design a predictor feed-
back achieving the stabilization of the truncated model (9).
Then, following [19], such a predictor feedback can be suc-
cessfully applied to the original infinite-dimensional system.
Specifically, let t0, D0 > 0 and � ∈ (0, D0) be given. We
consider a given transition signal4 ' ∈ 1(ℝ;ℝ) over [0, t0].We assume that D ∈ 1(ℝ+;ℝ) with |D − D0| ≤ �. The
closed-loop system dynamics takes the following form:
dX
dt
(t) = X(t), (11a)

X(t) = v(t) = u(t −D(t)) + d1(t), (11b)

u(t) = '(t)

{

KY (t) + d2(t) (11c)

3Note that the quantity bn,k is independent of the specifically selected
lifting operator B associated with (,), see [18].

4See the notation section at the beginning of Section 2.

+K ∫

t

max(t−D0,0)
e(t−s−D0)AN0BN0u(s) ds

}

,

X(0) = X0 (11d)
for any t ≥ 0. Function Y is defined by (10). The feed-
back gain K ∈ Km×N0 is selected such that Acl ≜ AN0 +
e−D0AN0BN0K is Hurwitz. Functions d1, d2 ∶ ℝ+ → Km
represent boundary disturbances.
Remark 3. While disturbance d1 represents an additive dis-turbance in the application of the delayed boundary control
u, disturbance d2 gathers uncertainties of either/both the out-put measurement Y or/and the computation of the control
law u that is solution of a "fixed point implicit equality" in-
volving an integral term [3].
2.3. Well-posedness in terms of mild solutions

In the first part of this paper, we consider the following
concept of mild solutions for the closed-loop system dynam-
ics.
Definition 3. Let (,) be an abstract boundary control sys-
tem such that Assumption 1 holds. Let t0, D0 > 0, � ∈
(0, D0), a transition signal ' ∈ 1(ℝ;ℝ) over [0, t0], and
K ∈ Km×N0 be arbitrary. For a time-varying delay D ∈
1(ℝ+;ℝ) with |D −D0| ≤ �, an initial condition X0 ∈ ,
and boundary perturbations d1, d2 ∈ 1(ℝ+;Km), we say
that (X, u) ∈ 0(ℝ+;)×1([−D0− �,+∞);Km) is a mild
solution of (11a-11d) associated with (D,X0, d1, d2) if 1) (6)holds for all t ≥ 0 with v given by (4); 2) u satisfies (11c) for
all t ≥ −D0 − � with Y defined by (10).

The following lemma, whose proof is placed in appendix,
assesses the well-posedness of the closed-loop system (11a-
11d) in terms of mild solutions.
Lemma 1. For any D ∈ 1(ℝ+;ℝ) with |D − D0| ≤ �,
X0 ∈ , and d1, d2 ∈ 1(ℝ+;Km), the closed-loop system
(11a-11d) admits a uniquemild solution (X, u) ∈ 0(ℝ+;)×
1([−D0 − �,+∞);Km) associated with (D,X0, d1, d2).

Remark 4. If we assume the stronger regularity assump-
tions ' ∈ 2(ℝ;ℝ), D ∈ 2(ℝ+;ℝ), d1, d2 ∈ 2(ℝ+;Km),and X0 ∈ D() such that X0 = d1(0), it can be shown
that the mild solution is actually a classical solution.
2.4. Main stability result

The stability of the closed-loop system (11a-11d) in the
disturbance free case (i.e., for d1 = d2 = 0) was assessed
in [18, 22] for a constant delay D(t) = D0 and in [19] for anuncertain and time-varying delayD(t). The objective of this
paper is to study the impact of the boundary disturbances d1and d2 on the system trajectories. More precisely, we derive
the following result.
Theorem 2. Let (,) be an abstract boundary control sys-
tem such that Assumptions 1, 2, and 3 hold. Let' ∈ 1(ℝ;ℝ)
be a transition signal over [0, t0] for some t0 > 0. LetD0 > 0
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and K ∈ Km×N0 be such that Acl = AN0 + e
−D0AN0BN0K

is Hurwitz. Let � ∈ (0, D0) be such that5

M�‖BN0K‖

[

e‖Acl‖� − e−��
]

< �, (12)
where � > 0 and M� ≥ 1 are such that ‖eAclt‖ ≤ M�e−�t

for all t ≥ 0. Then, there exist � ∈ (0, �) and C i > 0,
1 ≤ i ≤ 6, such that, for anyD ∈ 1(ℝ+;ℝ)with |D−D0| ≤
�, X0 ∈ , and d1, d2 ∈ 1(ℝ+;Km), the mild solution
(X, u) ∈ 0(ℝ+;)×1([−D0−�,+∞);Km) of the closed-
loop system (11a-11d) associated with (D,X0, d1, d2) satis-
fies

‖X(t)‖ ≤ C1e
−�t

‖X0‖ + C2 sup
�∈[0,t]

e−�(t−�)‖d1(�)‖

(13)
+ C3 sup

�∈[0,max(t−(D0−�),0)]
e−�(t−�)‖d2(�)‖

and

‖u(t)‖ ≤ C4e
−�t

‖X0‖ + C5 sup
�∈[0,t]

e−�(t−�)‖d1(�)‖ (14)

+ C6 sup
�∈[0,t]

e−�(t−�)‖d2(�)‖.

for all t ≥ 0.

The next two sections are devoted to the proof of Theo-
rem 2. The extension of this result to continuous boundary
disturbances d1, d2 is discussed in Section 5.
Remark 5. It is interesting to note that Theorem 2, involv-
ing the assumption � < +∞, does not introduce any con-
straint on the amplitude of variation of the time derivative Ḋ
of the input delay D. This is in contrast with the result re-
ported in [19] for the disturbance-free case (i.e., d1 = d2 =
0), which allows � = +∞ but where the constant of the ex-
ponential stability property is a strictly increasing function,
going to+∞ at+∞, of the supremum of |Ḋ|. The occurence
of a Ḋ term in the proof of the result reported in [19] is due to
the use of a Lyapunov-based argument. As discussed in the
sequel of this paper, the assumption � < +∞ allows a proof
of Theorem 2 that does not rely on such a Lyapunov-based
argument.

3. Exponential ISS of the truncated model
In this section, we study the ISS property of the finite

dimensional truncated model. We refer the reader to [30] for
classical results about the establishment of ISS properties.
3.1. Preliminary lemma

Weneed the following preliminary lemmawhich is a dis-
turbed version of the disturbance-free version (p = 0) re-
ported in [13, Th. 2.5].

5Such a � > 0 always exists by a continuity argument in � = 0.

Lemma 3. LetA ∈ Kn×n be Hurwitz, C ∈ Kn×n, and r > 0.
Let � ∈ (0, r) be such that

M�‖C‖
[

e‖A‖� − e−��
]

< �, (15)
where � > 0 andM� ≥ 1 are such that ‖eAt‖ ≤M�e−�t for
all t ≥ 0. Then, there exist �,N > 0 andM ≥ 1 such that,
for any d ∈ 0(ℝ+;ℝ) with |d| ≤ 1, any p, q ∈ 0(ℝ+;K)
with |q| ≤ 1, and any x0 ∈ 0([−r−�, 0];Kn), the trajectory
of

ẋ(t) = Ax(t) + q(t)C [x(t − r − �d(t)) − x(t − r)] + p(t)
(16a)

x(�) = x0(�), −r − � ≤ � ≤ 0 (16b)
for t ≥ 0 satisfies

‖x(t)‖ ≤Me−�t sup
�∈[−r−�,0]

‖x0(�)‖+N sup
�∈[0,t]

e−�(t−�)‖p(�)‖

(17)
for all t ≥ 0.

PROOF. As the case C = 0 is straightforward, we assume
in the sequel that C ≠ 0. The first part of the proof follows
the one in [13] while considering the impact of the disturbing
term p. We define, for all t ≥ 0, v(t) = x(t−r−�d(t))−x(t−
r). Let � ∈ (0, �) be arbitrary, and which will be specified
in the sequel. As in [13], we consider the cases d(t) ≤ 0 and
d(t) ≥ 0 separately. In the case d(t) ≤ 0, we have by direct
integration of (16a) that, for all t ≥ r,
v(t) =

[

e−�Ad(t) − In
]

x(t − r)

+ ∫

t−r−�d(t)

t−r
eA(t−r−�d(t)−�) [q(�)Cv(�) + p(�)] d�

because t−r−�d(t) ≥ t−r ≥ 0. Noting that ‖e−�Ad(t)−In‖ ≤
e‖A‖� − 1,
‖

‖

‖

‖

‖

∫

t−r−�d(t)

t−r
eA(t−r−�d(t)−�)q(�)Cv(�) d�

‖

‖

‖

‖

‖

≤M�‖C‖∫

t−r−�d(t)

t−r
e−�(t−r−�d(t)−�) ‖v(�)‖ d�

≤M�‖C‖e
−�(t−r−�d(t))

∫

t−r−�d(t)

t−r
e(�−�)� × e�� ‖v(�)‖ d�

≤M�‖C‖e
−�(t−r)e��d(t) 1 − e

(�−�)�d(t)

� − �
sup

�∈[t−r,t−r+�]
e��‖v(�)‖

≤M�‖C‖e
−�(t−r) 1 − e−(�−�)�

� − �
sup

�∈[t−r,t−r+�]
e��‖v(�)‖,

where it has been used that −1 ≤ d(t) ≤ 0, and, similarly,
‖

‖

‖

‖

‖

∫

t−r−�d(t)

t−r
eA(t−r−�d(t)−�)p(�) d�

‖

‖

‖

‖

‖

≤M�e
−�(t−r) 1 − e−(�−�)�

� − �
sup

�∈[t−r,t−r+�]
e��‖p(�)‖,
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we obtain that, for all t ≥ r such that d(t) ≤ 0,
e�t‖v(t)‖ ≤

[

e‖A‖� − 1
]

e�r × e�(t−r)‖x(t − r)‖ (18)
+M�‖C‖e

�r 1 − e−(�−�)�
� − �

sup
�∈[t−r,t−r+�]

e��‖v(�)‖

+M�e
�r 1 − e−(�−�)�

� − �
sup

�∈[t−r,t−r+�]
e��‖p(�)‖.

Now, in the case d(t) ≥ 0, we have by direct integration of
(16a) that, for all t ≥ r + �,
v(t) = −

[

e�Ad(t) − In
]

x(t − r − �d(t))

− ∫

t−r

t−r−�d(t)
eA(t−r−�) [q(�)Cv(�) + p(�)] d�

because t − r ≥ t − r − �d(t) ≥ t − r − � ≥ 0. Then, we
deduce that, for all t ≥ r + � such that d(t) ≥ 0,
e�t‖v(t)‖

≤
[

e‖A‖� − 1
]

e�(r+�) × e�(t−r−�d(t))‖x(t − r − �d(t))‖ (19)
+M�‖C‖e

�r 1 − e−(�−�)�
� − �

sup
�∈[t−r−�,t−r]

e��‖v(�)‖

+M�e
�r 1 − e−(�−�)�

� − �
sup

�∈[t−r−�,t−r]
e��‖p(�)‖.

Combining (18-19), we obtain that, for all t ≥ r + �,
sup

�∈[r+�,t]
e��‖v(�)‖

≤
[

e‖A‖� − 1
]

e�(r+�) sup
�∈[0,t−r]

e��‖x(�)‖ (20)

+M�‖C‖e
�r 1 − e−(�−�)�

� − �
sup

�∈[0,t−r+�]
e��‖v(�)‖

+M�e
�r 1 − e−(�−�)�

� − �
sup

�∈[0,t−r+�]
e��‖p(�)‖.

Now, integrating (16a) over [0, t], we obtain for all t ≥ 0,

x(t) = eAtx(0) + ∫

t

0
eA(t−�) [q(�)Cv(�) + p(�)] d�.

As x(0) = x0(0), straightforward estimations show that, for
all t ≥ 0,

sup
�∈[0,t]

e��‖x(�)‖ ≤M�‖x0(0)‖ +
M�‖C‖
� − �

sup
�∈[0,t]

e��‖v(�)‖

+
M�
� − �

sup
�∈[0,t]

e��‖p(�)‖. (21)

From (20-21), we deduce that, for all t ≥ r + �,
sup

�∈[r+�,t]
e��‖v(�)‖ ≤M�e

�(r+�) [e‖A‖� − 1
]

‖x0(0)‖

+ � sup
�∈[0,t−r+�]

e��‖v(�)‖

+ �
‖C‖

sup
�∈[0,t−r+�]

e��‖p(�)‖,

where
� ≜

M�‖C‖
� − �

e�r
[

e��(e‖A‖� − 1) + 1 − e−(�−�)�
]

.

From the small gain assumption (15) and a continuity argu-
ment in � = 0, we select � ∈ (0, �) such that � < 1. We
deduce that, for all t ≥ 0,

sup
�∈[0,t]

e��‖v(�)‖ ≤
M�e�(r+�)

[

e‖A‖� − 1
]

1 − �
‖x0(0)‖

+ sup
�∈[0,r+�]

e��‖v(�)‖

+ �
‖C‖(1 − �)

sup
�∈[0,t−r+�]

e��‖p(�)‖.

Using (21), we obtain that, for all t ≥ 0,
sup
�∈[0,t]

e��‖x(�)‖

≤M�

{

1 +
M�‖C‖e�(r+�)

[

e‖A‖� − 1
]

(1 − �)(� − �)

}

‖x0(0)‖ (22)

+
M�‖C‖
� − �

sup
�∈[0,r+�]

e��‖v(�)‖

+
M�

(1 − �)(� − �)
sup
�∈[0,t]

e��‖p(�)‖.

It remains now to evaluate sup
�∈[0,r+�]

e��‖v(�)‖. To do so, we
note from the definition of v that
sup

�∈[0,r+�]
e��‖v(�)‖

≤ 2e�(r+�)
(

sup
�∈[−r−�,0]

‖x0(�)‖ + sup
�∈[0,2�]

‖x(�)‖
)

. (23)

Introducing V (t) = ‖x(t)‖2∕2, the evaluation of V̇ via (16a),
the use of Young’s inequality, and recursive estimations over
time intervals of finite length r−� > 0 show the existence of
constants 
0, 
1 > 0, which only depend on A,C, r, �, such
that
sup

�∈[0,2�]
‖x(�)‖ ≤ 
0 sup

�∈[−r−�,0]
‖x0(�)‖ + 
1 sup

�∈[0,2�]
e��‖p(�)‖.

(24)
Combining (22-24), we deduce the existence of constants
M ≥ 1 andN > 0 such that, for all t ≥ 0,
sup
�∈[0,t]

e��‖x(�)‖

≤M sup
�∈[−r−�,0]

‖x0(�)‖ +N sup
�∈[0,max(t,2�)]

e��‖p(�)‖. (25)

To conclude, it remains to show that sup
�∈[0,max(t,2�)]

e��‖p(�)‖

can be replaced by sup
�∈[0,t]

e��‖p(�)‖ in (25). This is obvi-
ously true for t ≥ 2�, as well as t = 0 becauseM ≥ 1. Thus,
we focus on the case 0 < t < 2�. Let T ∈ (0, 2�) be arbi-
trary. Let �n ∈ 0(ℝ+;ℝ) with 0 ≤ �n ≤ 1, �n||[0,T ] = 1
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and �n||[T+(2�−T )∕n,+∞) = 0 for n ≥ 1. We define pn = �np ∈
0(ℝ+;K) and we denote by xn the solution of (16a-16b) as-sociated with the initial condition x0 and the disturbance pn.As pn(t) = p(t) for all 0 ≤ t ≤ T , we obtain that xn(t) = x(t)for all 0 ≤ t ≤ T . Therefore, we obtain by applying (25) to
xn at time t = T that, for all n ≥ 1,
sup

�∈[0,T ]
e��‖x(�)‖

≤M sup
�∈[−r−�,0]

‖x0(�)‖ +N sup
�∈[0,2�]

e��‖pn(�)‖

⟶
n→+∞

M sup
�∈[−r−�,0]

‖x0(�)‖ +N sup
�∈[0,T ]

e��‖p(�)‖,

where the limit holds by a continuity argument. Thus, the
claimed estimate (17) holds.
3.2. Study of the truncated model

We apply the result of Lemma 3 to the study of the finite-
dimensional truncated model composed of (9) and (11c).
Lemma 4. Under the assumptions of Theorem 2, there ex-
ist �, C1, C2, C3, C4, C5, C6 > 0 such that, for any D ∈
1(ℝ+;ℝ) with |D − D0| ≤ �, X0 ∈ , and d1, d2 ∈
1(ℝ+;Km), Y defined by (10), where X ∈ 0(ℝ+;) is
the mild solution of the closed-loop system (11a-11d) asso-
ciated with (D,X0, d1, d2), satisfies

‖Y (t)‖ ≤ C1e
−�t

‖X0‖ + C2 sup
�∈[0,t]

e−�(t−�)‖d1(�)‖ (26)
+ C3 sup

�∈[0,max(t−(D0−�),0)]
e−�(t−�)‖d2(�)‖

for all t ≥ 0. Furthermore, the control law u satisfies (14)
with � = � for all t ≥ 0.

PROOF. Let � ∈ (0, D0) satisfying the small gain condition
(12) be given. Let �,N > 0 and M ≥ 1 be the constants
provided by Lemma 3 for A = Acl, C = BN0K , q = 1, r =
D0, and � = �. We introduce the Artstein transformation [1,
27] by defining, for all t ≥ 0,

Z(t) = Y (t) + ∫

t

t−D0
e(t−D0−s)AN0BN0u(s) ds. (27)

As u(�) = 0 for � ≤ 0, we obtain that u = 'KZ + 'd2.Taking the time derivative, (9) yields for all t ≥ 0
Ż(t) =

{

AN0 + '(t)e
−D0AN0BN0K

}

Z(t) (28)
+ BN0K

{

['Z](t −D(t)) − ['Z](t −D0)
}

+ BN0d1(t) + '(t)e
−D0AN0BN0d2(t)

+ BN0
{

['d2](t −D(t)) − ['d2](t −D0)
}

.

We first study the case t ≥ t1 ≜ t0+D0+ �. We have for
all t ≥ t1 that '(t) = '(t −D0) = '(t −D(t)) = 1 and thus
Ż(t) = AclZ(t) + BN0K

{

Z(t −D(t)) −Z(t −D0)
}

+ BN0d1(t) + e
−DAN0BN0d2(t)

+ BN0
{

d2(t −D(t)) − d2(t −D0)
}

.

Consequently, it follows from (17) that, for all t ≥ t1,
‖Z(t)‖ (29)
≤Me−�(t−t1) sup

�∈[t0,t1]
‖Z(�)‖ + Ñ1 sup

�∈[t1,t]
e−�(t−�)‖d1(�)‖

+ Ñ2 sup
�∈[t0,t]

e−�(t−�)‖d2(�)‖,

with Ñ1 = N‖BN0‖ and

Ñ2 = N
{

‖e−D0AN0BN0‖ + ‖BN0‖e
�D0 (e�� + 1)

}

.

We now study the case 0 ≤ t ≤ t1. Introducing W (t) =
‖Z(t)‖2∕2, the evaluation of Ẇ via (28), the use of Young’s
inequality, and recursive estimations over time intervals of
finite lengthD0 − � > 0 show the existence of 
0, 
1, 
2 > 0,which only depend of AN0 , BN0 , K,D0, �, t0, such that
‖Z(t)‖ ≤ 
0e

−�t
‖Y (0)‖ + 
1 sup

�∈[0,t]
e−�(t−�)‖d1(�)‖ (30)

+ 
2 sup
�∈[0,t]

e−�(t−�)‖d2(�)‖,

for all 0 ≤ t ≤ t1, where it has been used Z(0) = Y (0).
Thus, combining (29-30), we obtain that, for all t ≥ 0,
‖Z(t)‖ ≤ 
3e

−�t
‖Y (0)‖ + 
4 sup

�∈[0,t]
e−�(t−�)‖d1(�)‖ (31)

+ 
5 sup
�∈[0,t]

e−�(t−�)‖d2(�)‖

with 
3 =Me�t1
0, 
4 =Me�t1
1+Ñ1, and 
5 =Me�t1
2+
Ñ2. From u = 'KZ + 'd2 and (2), we deduce that (14)
holds for � = � with C4 = ‖K‖
3∕

√

mR, C5 = ‖K‖
4, and
C6 = ‖K‖
5+1. Now, using estimates (2), (14) with � = �,
and (31) into (27) and the fact that, for i ∈ {1, 2},

∫

t

max(t−D0,0)
sup
�∈[0,s]

e−�(s−�)‖di(�)‖ ds

≤ D0e
�D0 sup

�∈[0,t]
e−�(t−�)‖di(�)‖,

we obtain that
‖Y (t)‖ ≤ C1e

−�t
‖X0‖ + C2 sup

�∈[0,t]
e−�(t−�)‖d1(�)‖ (32)

+ C3 sup
�∈[0,t]

e−�(t−�)‖d2(�)‖

for all t ≥ 0, with
C1 = 
3∕

√

mR + e
D0(�+‖AN0‖)

‖BN0‖C4∕�,

C2 = 
4 +D0e
D0(�+‖AN0‖)

‖BN0‖C5,

C3 = 
5 +D0e
D0(�+‖AN0‖)

‖BN0‖C6.

To conclude the proof, it remains to show that we can sub-
stitute in estimate (32) the term sup

�∈[0,t]
e−�(t−�)‖d2(�)‖ by the
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term sup
�∈[0,max(t−(D0−�),0)]

e−�(t−�)‖d2(�)‖. To do so, let T ≥ 0

be arbitrary. Let �n ∈ 1(ℝ;ℝ)with 0 ≤ �n ≤ 1 be such that
�n||(−∞,T−(D0−�)] = 1 and �n||[T−(D0−�)+(D0−�)∕n,+∞] = 0 for
n ≥ 1. Then we define d2,n = �nd2 ∈ 1(ℝ+;Km). Thus wecan introduce (Xn, un) the mild solution of (11a-11d) associ-
ated with (D,X0, d1, d2,n). From [18, Lem. 5.3] (see also [3]
in the case ' = 1), it can be seen that X|[0,T ] = Xn

|

|[0,T ] and
u|[−D0−�,T−(D0−�)] = un||[−D0−�,T−(D0−�)]. Applying the ISSestimate (32) at time t = T to Xn for any n ≥ 1, we obtain
that
‖Y (T )‖

≤ C1e
−�T

‖X0‖ + C2 sup
�∈[0,T ]

e−�(T−�)‖d1(�)‖

+ C3 sup
�∈[0,T ]

e−�(T−�)‖�n(�)d2(�)‖.

By letting n → +∞, a continuity argument shows that (26)
holds at time t = T . As T ≥ 0 is arbitrary, this concludes
the proof.

4. Exponential ISS of the infinite-dimensional
system
This section is devoted to the proof of the main result of

this paper: namely, Theorem 2. Let � > 0 be provided by
Lemma 4. Let 0 < � < min(�, �) be given and define � =
�∕� ∈ (0, 1). First, we infer from � = sup

n≥N0+1

|

|

|

|

�n
Re �n

|

|

|

|

< ∞

that the following estimate holds true for all n ≥ N0 + 1

|

|

|

|

�n
Re �n + �

|

|

|

|

=
|

|

|

|

�n
Re �n

|

|

|

|

×
|

|

|

|

Re �n
Re �n + �

|

|

|

|

≤ �
|

|

|

|

−�
−� + �

|

|

|

|

≤ ��
� − �

, (33)

where we have used the facts thatRe �n ≤ −� < −� < 0 andthe function x→ x∕(x+�) is positive and strictly increasing
for x ∈ (−∞,−�). Now, from the integral expression (7) of
the coefficient of projection cn and using the definition of theboundary input (4), we have for all t ≥ 0
|cn(t)|

≤ eRe �nt|cn(0)| (34)
+ |�n|∫

t

0
eRe �n(t−�)| ⟨Bu(� −D(�)),  n⟩ | d�

+ ∫

t

0
eRe �n(t−�)| ⟨Bu(� −D(�)),  n⟩ | d�

+ |�n|∫

t

0
eRe �n(t−�)| ⟨Bd1(�),  n⟩ | d�

+ ∫

t

0
eRe �n(t−�)| ⟨Bd1(�),  n⟩ | d�.

We now evaluate the different terms on the right hand side
of (34). Denoting by e1,… , em the canonical basis of Km,

we have d1(t) =
m
∑

k=1
d1,k(t)ek with d1,k(t) ∈ K. Then, noting

that |d1,k(t)| ≤ ‖d1(t)‖, we have for all n ≥ N0+1 and t ≥ 0

|�n|∫

t

0
eRe �n(t−�)| ⟨Bd1(�),  n⟩ | d�

≤ |�n|
m
∑

k=1
| ⟨Bek,  n⟩ |∫

t

0
eRe �n(t−�)‖d1(�)‖ d�

≤ |�n|
m
∑

k=1
| ⟨Bek,  n⟩ |∫

t

0
e(1−�) Re �n(t−�) d�

× sup
�∈[0,t]

e� Re �n(t−�)‖d1(�)‖

≤ 1
1 − �

|

|

|

|

�n
Re �n

|

|

|

|

m
∑

k=1
| ⟨Bek,  n⟩ | sup

�∈[0,t]
e−��(t−�)‖d1(�)‖

≤ ��
� − �

m
∑

k=1
| ⟨Bek,  n⟩ | sup

�∈[0,t]
e−�(t−�)‖d1(�)‖. (35)

Similarly, we have for all n ≥ N0 + 1 and t ≥ 0

∫

t

0
eRe �n(t−�)| ⟨Bd1(�),  n⟩ | d�

≤ 1
� − �

m
∑

k=1
| ⟨Bek,  n⟩ | sup

�∈[0,t]
e−�(t−�)‖d1(�)‖. (36)

We now estimate the two remaining integral terms involving
the control input u on the right-hand side of (34). We note
that these two integrals are null for t ≤ D0−� because u(�) =
0 for � ≤ 0. Thus we focus on the case t ≥ D0 − �. First, weevaluate the following integral:

n(t) = ∫

t

0
e−Re �n�‖u(� −D(�))‖ d�

= ∫

t

0
e−Re �n��{s−D(s)≥0}(�)‖u(� −D(�))‖ d�

for t ≥ D0 − �. To do so, we note that

∫

t

0
e−Re �n��{s−D(s)≥0}(�) sup

s∈[0,�−D(�)]
e−�((�−D(�))−s)‖di(s)‖ d�

≤ e�(D0+�)

|Re �n + �|
e−(Re �n+�)t sup

s∈[0,t−(D0−�)]
e�s‖di(s)‖.

Therefore, recalling that 0 < � < �, the use of (14) provided
by Lemma 4 yields

n(t) ≤
e�(D0+�)

|Re �n + �|
e−Re �ntΔ(t)

with
Δ(t) = C4e−�t‖X0‖ + C5 sup

s∈[0,t−(D0−�)]
e−�(t−s)‖d1(s)‖

+ C6 sup
s∈[0,t−(D0−�)]

e−�(t−s)‖d2(s)‖.
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With u(t) =
m
∑

k=1
uk(t)ek where uk(t) ∈ K, we have that

|uk(t)| ≤ ‖u(t)‖ for all 1 ≤ k ≤ m. Recalling that Re �n ≤
−� < −� < 0 for any n ≥ N0 + 1, we obtain that, for all
n ≥ N0 + 1 and t ≥ D0 − �,

|�n|∫

t

0
eRe �n(t−�)| ⟨Bu(� −D(�)),  n⟩ | d�

≤ |�n|
m
∑

k=1
| ⟨Bek,  n⟩ |eRe �ntn(t)

≤ ��e�(D0+�)

� − �

m
∑

k=1
| ⟨Bek,  n⟩ |Δ(t) (37)

and

∫

t

0
eRe �n(t−�)| ⟨Bu(� −D(�)),  n⟩ | d�

≤
m
∑

k=1
| ⟨Bek,  n⟩ |eRe �ntn(t)

≤ e�(D0+�)

� − �

m
∑

k=1
| ⟨Bek,  n⟩ |Δ(t). (38)

Based on (35-38), we deduce from (34), Young’s inequal-
ity, and the fact ‖Y (0)‖2 =

N0
∑

n=1
|cn(0)|2 that, for all t ≥ 0,

∑

n≥N0+1
|cn(t)|2 ≤ C̃1e

−2�t
‖X0‖

2
 + C̃2 sup

�∈[0,t]
e−2�(t−�)‖d1(�)‖2

+ C̃3 sup
�∈[0,max(t−(D0−�),0)]

e−2�(t−�)‖d2(�)‖2,

(39)
where constants C̃i are given by

C̃0 = �2�2
m
∑

k=1
‖Bek‖

2
 +

m
∑

k=1
‖Bek‖2 ,

C̃1 =
4
mR

⎛

⎜

⎜

⎝

1 +
2mC

2
4e
2�(D0+�)

(� − �)2
C̃0

⎞

⎟

⎟

⎠

,

C̃2 =
8m

(

1 + C5e�(D0+�)
)2

mR(� − �)2
C̃0,

C̃3 =
8mC

2
6e
2�(D0+�)

mR(� − �)2
C̃0.

Consequently, as

‖X(t)‖ ≤
√

MR
∑

n≥1
|cn(t)|2

≤
√

MR

⎛

⎜

⎜

⎝

‖Y (t)‖ +
√

∑

n≥N0+1
|cn(t)|2

⎞

⎟

⎟

⎠

,

we obtain from (26) and (39) that the ISS estimate (13) holds
withC i =

√

MR

(

Ci +
√

C̃i

)

, 1 ≤ i ≤ 3, which concludes
the proof.

5. Extension of the main result to continuous
boundary perturbations
The result stated in Theorem 2 deals with mild solutions

associated with continuously differentiable boundary distur-
bances. However, as shown in [21], the satisfaction of an
ISS estimate, combined with the introduction of a proper
concept of weak solutions, can be employed to easily extend
the obtained ISS estimate to boundary disturbances exhibit-
ing relaxed regularity assumptions. Such a concept of weak
solutions extends to abstract boundary control systems the
concept of weak solutions originally introduced for infinite-
dimensional nonhomogeneous Cauchy problems in [2] and
further investigated in [8, Def. 3.1.6, Thm. 3.1.7, A.5.29] un-
der a variational from. In this context and adopting the ap-
proach reported in [21], we introduce the following concept
of weak solution for the closed-loop dynamics (11a-11d).
Definition 4. Let (,) be an abstract boundary control sys-
tem such that Assumption 1 holds. Let t0, D0 > 0, � ∈
(0, D0), a transition signal ' ∈ 1(ℝ;ℝ) over [0, t0], and
K ∈ Km×N0 be arbitrary. For a time-varying delay D ∈
1(ℝ+;ℝ) with |D −D0| ≤ �, an initial condition X0 ∈ ,
and boundary perturbations d1, d2 ∈ 0(ℝ+;Km), we say
that (X, u) ∈ 0(ℝ+;) × 0(ℝ+;Km) is a weak solution
of the abstract boundary control system (11a-11d) associ-
ated with (D,X0, d1, d2) if for any T > 0 and any z ∈
0([0, T ];D(∗

0))∩
1([0, T ];)with6∗

0z ∈ 0([0, T ];)
and z(T ) = 0, we have:

∫

T

0

⟨

X(t),∗
0z(t) +

dz
dt
(t)
⟩


dt

= − ⟨X0, z(0)⟩ (41)
+ ∫

T

0

⟨

B(u(t −D(t)) + d1(t)),∗
0z(t)

⟩

 dt

− ∫

T

0
⟨B(u(t −D(t)) + d1(t)), z(t)⟩ dt,

with B an arbitrarily given lifting operator associated with
(,) andwhere the control input u satisfies u|[−D0−�,0] = 0and, for all t ≥ 0,

u(t) = '(t)

{

KY (t) + d2(t) (42)

+K ∫

t

max(t−D0,0)
e(t−s−D0)AN0BN0u(s) ds

}

with Y defined by (10).
6Such a function z is called a test function over [0, T ].
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In particular, using the definition of the mild solutions
(6) into the left hand side of (41), it is easy to show based
on an integration by parts, the basic properties of the C0-semigroups, and the fundamental theorem of calculus that
any mild solution is also a weak solution.
Remark 6. Following [21, Sec. 4], we have the following
facts.

• Definition 4 is independent of a specifically selected
lifting operator in the sense that the right hand side of
(41) is unchanged when switching between different
lifting operators B associated with (,).

• X0 is the initial condition of the weak solution in the
sense that if (X, u) ∈ 0(ℝ+;) × 0(ℝ+;Km) is aweak solution associated with (D,X0, d1, d2) ∈  ×
0(ℝ+;Km) × 0(ℝ+;Km) of the abstract boundary
control system (11a-11d), then X(0) = X0.

We first state a preliminary result about the uniqueness
of the weak solutions for the studied problem.
Lemma 5. For any D ∈ 1(ℝ+;ℝ) with |D − D0| ≤ �,
X0 ∈ , and d1, d2 ∈ 0(ℝ+;Km), there exists at most one
weak solution (X, u) ∈ 0(ℝ+;)×0(ℝ+;Km) associated
with (D,X0, d1, d2) of the closed-loop system (11a-11d).

PROOF. By linearity, it is sufficient to show that if (X, u) ∈
0(ℝ+;) × 0(ℝ+;Km) satisfies

∫

T

0

⟨

X(t),∗
0z(t) +

dz
dt
(t)
⟩


dt

= ∫

T

0

⟨

Bu(t −D(t)),∗
0z(t)

⟩

 dt

− ∫

T

0
⟨Bu(t −D(t)), z(t)⟩ dt

for all T > 0 and for all test function z over [0, T ] with
u|[−D0−�,0] = 0 and

u(t) = '(t)K

{

Y (t) + ∫

t

max(t−D0,0)
e(t−s−D0)AN0BN0u(s) ds

}

for all t ≥ 0, thenX = 0 and u = 0. We proceed by induction
by showing that X|[0,n(D0−�)]=0 and u|[−D0−�,(n−1)(D0−�)]=0for all n ≥ 1.

Initialization: From u|[−D0−�,0] = 0, we obtain for T =
D0 − � that:

∫

D0−�

0

⟨

X(t),∗
0z(t) +

dz
dt
(t)
⟩


dt = 0

for any test function z over [0, D0 − �] because t − D(t) ≤
0 and thus u(t − D(t)) = 0 for all t ≤ D0 − �. Using
the test function z(t) = e−�kt ∫ tD0−� ⟨X(�),  k⟩ e�k� d�  k,
we obtain that ∗

0z(t) +
dz
dt
(t) = ⟨X(t),  k⟩  k whence

∫ D0−�0 | ⟨X(t),  k⟩ |

2 dt = 0. By continuity of X, we infer
that ⟨X(t),  k⟩ = 0 for all t ∈ [0, D0 − �] and all k ≥ 1.
As { k, k ∈ ℕ∗

} forms a Riesz basis, this yields X(t) = 0
for all t ∈ [0, D0 − �].

Heredity: Let n ≥ 1 be such that X|[0,n(D0−�)] = 0 and
u|[−D0−�,(n−1)(D0−�)]=0. Then, Y |[0,n(D0−�)] = 0 and thus

u(t) = '(t)K ∫

t

max(t−D0,0)
e(t−s−D0)AN0BN0u(s) ds

for all t ∈ [0, n(D0−�)], whence (see [3] and [18, Lem. 5.3])
u(t) = 0 for all t ∈ [0, n(D0−�)]. Thus, u(t−D(t)) = 0 for all
t ∈ [0, (n+1)(D0−�)] andwe obtain with T = (n+1)(D0−�)that

∫

(n+1)(D0−�)

0

⟨

X(t),∗
0z(t) +

dz
dt
(t)
⟩


dt = 0

for all test function z over [0, (n+1)(D0−�)]. Using the test
function z(t) = e−�kt ∫ t(n+1)(D0−�) ⟨X(�),  k⟩ e�k� d�  k, we
obtain that∗

0z(t)+
dz
dt
(t) = ⟨X(t),  k⟩  k and thus we in-

fer that ∫ (n+1)(D0−�)0 | ⟨X(t),  k⟩ |

2 dt = 0. By continuity
of X, we infer that ⟨X(t),  k⟩ = 0 for all t ∈ [0, (n +
1)(D0 − �)] and all k ≥ 1. As { k, k ∈ ℕ∗

} forms a Riesz
basis, this yields X(t) = 0 for all t ∈ [0, (n + 1)(D0 − �)].This completes the proof by induction.

We can now state the main result of this section whose
proof is an adapation of [21, Thm. 3].
Theorem 6. In the context of both assumptions and conclu-
sions of Theorem 2, for anyD ∈ 1(ℝ+;ℝ) with |D−D0| ≤
�, X0 ∈ , and d1, d2 ∈ 0(ℝ+;Km), there exists a unique
weak solution (X, u) ∈ 0(ℝ+;)×0(ℝ+;Km) associated
with (D,X0, d1, d2) of the abstract boundary control system
(11a-11d). Furthermore, this weak solution satisfies the ISS
estimates (13-14) for all t ≥ 0.

PROOF. We consider � ∈ (0, D0), � ∈ (0, �), and the con-
stantsC1, C2, C3, C4, C5, C6 > 0 as provided by Theorem 2.
Let D ∈ 1(ℝ+;ℝ) with |D − D0| ≤ �, X0 ∈ , and
d1, d2 ∈ 0(ℝ+;Km) be given. The uniqueness follows fromLemma 5. We prove the existence.

For a given T > 0, as 1([0, T ];Km) is a dense subset
of 0([0, T ];Km), we introduce d1,n, d2,n ∈ 1([0, T ];Km)
such that (d1,n)n and (d2,n)n converge uniformly over [0, T ]
to d1||[0,T ] and d2||[0,T ], respectively. We introduce (Xn, un) ∈
0([0, T ];) × 1([−D0 − �, T ];Km) the unique mild solu-
tion of the abstract boundary control system (11a-11d) over
[0, T ] associatedwith (D,X0, d1,n, d2,n). By linearity of (11a-11d), (Xn −Xm, un − um) is the unique mild solution of the
abstract boundary control system (11a-11d) over [0, T ] asso-
ciated with (D, 0, d1,n − d1,m, d2,n − d2,m). Thus, we deducefrom (13-14) that (Xn)n and (un)n are Cauchy sequences of
the Banach spacesC0([0, T ];) andC0([0, T ];Km), respec-
tively. Thus Xn ⟶

n→+∞
X ∈ C0([0, T ];) and un ⟶

n→+∞
u ∈

C0([0, T ];Km) and (X, u) satisfies the estimates (13-14) for
H. Lhachemi et al.: Preprint submitted to Elsevier Page 9 of 11
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any t ∈ [0, T ]. It is easy to see from (13-14) that the obtained
X and u are independent of the selected approximating se-
quences (d1,n)n and (d2,n)n but only on D, X0, d1, and d2.

For any given 0 < T1 < T2, let (X1, u1) ∈ C0([0, T1];)×
C0([0, T1];Km) and (X2, u2) ∈ C0([0, T2];)×C0([0, T2];Km)be the result of the above construction over the time intervals
[0, T1] and [0, T2], respectively. By restricting the approx-
imating sequences of d1||[0,T2] and d2||[0,T2] to the interval
[0, T1], we obtain approximating sequences of d1||[0,T1] and
d2||[0,T1]. Then, we infer that X2||[0,T1] = X1 and u2||[0,T1] =
u1. Consequently, we can define (X, u) ∈ 0(ℝ+;) ×
0(ℝ+;Km) such that (X|[0,T ] , u|[0,T ]) is the result of the
above construction for any T > 0. Then, (X, u) satisfy the
estimates (13-14) for all t ≥ 0.

It remains to show that (X, u) is actually the weak solu-
tion associated with (D,X0, d1, d2) of the abstract boundarycontrol system (11a-11d). Let T > 0 be arbitrarily given.
Let (d1,n)n ∈ 1([0, T ];Km)ℕ and (d2,n)n ∈ 1([0, T ];Km)ℕ
be approximating sequences, compliant with the procedure
of the previous paragraphs, converging to d1||[0,T ],and d2||[0,T ],respectively. Thus, the corresponding sequence of mild so-
lutions (Xn, un)n converges uniformly to (X|[0,T ] , u|[0,T ]).As mild solutions are weak solutions, we obtain that, for any
test function z over [0, T ] and any n ≥ 1,

∫

T

0

⟨

Xn(t),∗
0z(t) +

dz
dt
(t)
⟩


dt

= − ⟨X0, z(0)⟩

+ ∫

T

0

⟨

B(un(t −D(t)) + d1,n(t)),∗
0z(t)

⟩

 dt

− ∫

T

0

⟨

B(un(t −D(t)) + d1,n(t)), z(t)
⟩

 dt

with un||[−D0−�,0] = 0 and

un(t) = '(t)

{

KYn(t) + d2,n(t)

+K ∫

t

max(t−D0,0)
e(t−s−D0)AN0BN0un(s) ds

}

for all t ∈ [0, T ], where

Yn(t) =
[

⟨Xn(t),  1⟩ …
⟨

Xn(t),  N0
⟩



]⊤
.

By letting n→ +∞, we obtain that (41-42) hold over [0, T ].
As both T > 0 and the test function z over [0, T ] have been
arbitrarily selected, this concludes the proof.

6. Conclusion
This paper has investigated the input-to-state stabiliza-

tion with respect to boundary disturbances of a class of di-
agonal infinite-dimensional systems via delay boundary con-
trol. First, a preliminary lemma regarding the robustness

of a constant-delay predictor feedback with respect to un-
certain and time-varying input delays has been derived un-
der the form of an ISS estimate with fading memory of the
disturbance input. This result was applied to a truncated
model capturing the unstable modes of the studied infinite-
dimensional system. Finally, this ISS property was extended
to the closed-loop infinite-dimensional system, first consid-
ering mild solutions and then for weak solutions associated
with disturbances exhibiting relaxed regularity assumptions.

A. Proof of Lemma 1
As u|[−D0−�,0] = 0, (6) is equivalent over [0, D0 − �] to

X(t) = S(t){X0 − Bd1(0)} + Bd1(t)

+ ∫

t

0
S(t − s){Bd1(s) − Bḋ1(s)} ds,

which is well and uniquely defined as an element of0([0, D0−
�];) with associated control input u = 0 ∈ 1([−D0 −
�, 0];Km).

We proceed by induction. Assume that, for a given n ∈
ℕ∗, there exists a unique couple (X, u) ∈ 0([0, n(D0 −
�)];) × 1([−D0 − �, (n− 1)(D0 − �)]) such that (6) holdsover [0, n(D0−�)] and (11c) holds over [−D0−�, (n−1)(D0−
�)]. In particular, reproducing the developments reported in
Subsection 2.2, cn is of class 1 over [0, n(D0 − �)], and
thus Y ∈ 1([0, n(D0 − �)],KN0 ). We show that there ex-
ists a unique couple (X̃, ũ) ∈ 0([0, (n + 1)(D0 − �)];) ×
1([−D0 − �, n(D0 − �)];Km) such that
X̃(t) = S(t){X0 − Bṽ(0)} + Bṽ(t) (43)

+ ∫

t

0
S(t − s){Bṽ(s) − B ̇̃v(s)} ds

with ṽ(t) = ũ(t−D(t))+d1(t) for all t ∈ [0, (n+1)(D0− �)]andwhere the control law is characterized by ũ|[−D0−�,0] = 0and, for all t ∈ [0, n(D0 − �)],

ũ(t) = '(t)

{

KỸ (t) + d2(t) (44)

+K ∫

t

max(t−D0,0)
e(t−s−D0)AN0BN0 ũ(s) ds

}

with

Ỹ (t) =
[

⟨

X̃(t),  1
⟩

 …
⟨

X̃(t),  N0
⟩



]⊤
.

In particular, the induction assumption yields X̃|

|[0,n(D0−�)]
=

X and ũ|[−D0−�,(n−1)(D0−�)] = u. Moreover, as t − D(t) ≤
n(D0 − �) for t ≤ (n + 1)(D0 − �), we have Ỹ (t) = Y (t),
i.e., the control input ũ over the time interval [0, n(D0 − �)]is only defined byX over the time interval [0, n(D0−�)] anddoes not depend on X̃ over [n(D0 − �), (n+ 1)(D0 − �)]. As
Y ∈ 0([0, n(D0− �)];KN0 ), we obtain from [18, Lem. 5.3]
(see also [3] in the case ' = 1) that the control ũ given by
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the implicit equation (44) is well and uniquely defined on
[−D0 − �, n(D0 − �)] as an element of 0([−D0 − �, n(D0 −
�)];Km) and is such that ũ|[−D0−�,(n−1)(D0−�)] = u. Introduc-ing

Z(t) = Y (t) + ∫

t

t−D0
e(t−D0−s)AN0BN0 ũ(s) ds,

which is such thatZ ∈ 1([0, n(D0−�)];KN0 ), we can write
ũ(t) = '(t)KZ(t)+'(t)d2(t) for all t ∈ [0, n(D0−�)]. Thus
ũ ∈ 1([−D0−�, n(D0−�)]) and we obtain that (43) is welldefined over [−D0−�, n(D0−�)]. This completes the proof
by induction.
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