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LOCAL PI BOUNDARY FEEDBACK STABILIZATION FOR QUASILINEAR
HYPERBOLIC SYSTEMS OF BALANCE LAWS∗

LIGUO ZHANG† , CHRISTOPHE PRIEUR‡ , AND JUNFEI QIAO†

Abstract. The proportional-integral boundary stabilization of nonlinear hyperbolic systems of balance laws is investigated
for the H2-norm, in which the control and output measurements are all located at the boundaries. The boundary conditions of the
system are subject to unknown constant disturbances. The induced closed-loop system is proven to be locally exponentially stable
with respect to the steady states. To this end, a set of matrix inequalities is given by constructing a new Lyapunov function as a
weighed H2-norm of the classical Cauchy solution and the integral of boundary output. Furthermore, the traffic flow dynamics of
a freeway section are modeled with Aw-Rascle-Zhang model. To stabilize the oscillations of traffic demand, a local PI boundary
feedback controller is designed with the integration of the on-ramp metering and the variable speed limit control. The exponential
convergence of the nonlinear traffic flow dynamics in H2 sense is achieved and validated with simulations.

Key words. Quasilinear hyperbolic systems, Balance laws, PI boundary feedback stabilization, Lyapunov function, ARZ
traffic flow model.
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1. Introduction. Hyperbolic systems of balance laws have been extensively used to represent the fun-
damental dynamics of many physical processes. An interesting example is Aw-Rascle equation in [1], or
Aw-Rascle-Zhang equation in [34], in which the variation of the average density and speed of vehicles over a
road is balanced by its flux through the boundaries and its reaction of drivers inside the road. Other typical ex-
amples include Saint-Venant equation in [12] for open channels, Euler equation in [18] for gas pipes, telegrapher
equations in [13] for electrical transmission lines, and Kac-Goldstein equation in [24] for chemotaxis.

Boundary feedback control is central for stabilization of the hyperbolic systems where the control units
and measurements are all located at boundaries of the domain. The initial result for the asymptotic stability is
presented by Greenberg and Li in [14]. Recently, the Lyapunov technique is proposed in [7] for the exponential
stability of nonlinear hyperbolic system of conservation laws. Following the static boundary feedback control
law, many results have been established in [19, 37, 10], and [17] for the L2 or H2 topology. The stabilization
of the isothermal Euler equations to non-constant states that depend on the space variable has been solved
in [18]. Inspired from [7], we develop a dynamic proportional-integral (PI) boundary feedback control for
stabilization of the general nonlinear hyperbolic system of balance laws.

As it is well-known that PI feedback control is one of the most widely used method in engineering since its
advantage is to cancel the forced oscillations. One disadvantage of it is that, in some sense, it might damage
the stability. Frequency domain is the most used approach to prove the stability of the linear hyperbolic
system. An explicit necessary and sufficient condition is proposed in [5] for the linearized density-flow system
by using Laplace transformation. Similar results are also given by combining the operator and semi-group
approach in [32, 29]. Backstepping is used in [22] to elaborate the PI-based trajectory tracking for the linear
hyperbolic system. It is also interesting to note that PI observer is proposed in [2] for the hydraulic cylinder
system by using the backstepping method. Moreover, Lyapunov approach is considered in [11] and [31] for the
linear hyperbolic conservation laws, and in [16] for the wave equation. The significant advantage of this direct
method is that it can be extended to deal with the nonlinear systems besides offers the tractable method to
design the control law.

In [30], the integral controller is designed for a scalar nonlinear hyperbolic system of conservation laws,
in which the output measurement is regulated to the desired reference but the equilibrium of the system is
unknown. In our paper, the final desired state of the nonlinear partial differential equations (PDE) is fixed
in advance although the boundary conditions are corrupted by the unknown disturbance. We consider the PI
boundary stabilization of nonlinear hyperbolic system of balance laws and prove the local exponential stability
for the H2-norm. A new Lyapunov function as a weighed H2-norm of the classical Cauchy solution and the
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integral of the boundary output is constructed. The time derivative of this Lyapunov function can be made
strictly negative definite by an appropriate choice of boundary gains to meet a set of matrix inequalities.

Aw-Rascle-Zhang (ARZ) model, compared to the scalar LWR model [23] and [27], is a second-order
hyperbolic system with developed speed equation to reveal the anisotropic property of the macroscopic traffic
flow dynamics [9]. Adopting boundary feedback control is natural for the system since available control
signals for on-ramp metering or VMSs (Variable Message Signs) for regulating vehicle speed usually located
at boundaries of a road. In [6], the spectral analysis is applied to design the boundary control laws for the
linearized ARZ model. An integrated on-ramping metering and variable speed limit control is proposed in
[35] by investigating stabilization of positive hyperbolic systems. For the Markov jumped hyperbolic systems,
[36] develops the stochastic stability with application to ARZ model including one free-flow and one congested
modes. Recently, boundary feedback control laws are developed in [33] by using backstepping to reduce the
stop-and-go oscillations for congested traffic.

This paper further studies the problem of traffic flow control via PDEs technique as the traffic demand of
the road is uncertain. As the flow-rate of the driving-in vehicles through the upstream boundary is affected
by the fluctuating traffic demand, the developed PI boundary feedback laws can be used to suppress the
uncertainties and stabilize the traffic parameters (the vehicle density and speed) at the desired states by using
the integrated on-ramp metering and variable speed control.

The rest of the paper is organized as follows. The statement of the PI boundary feedback control for the
nonlinear hyperbolic system of balance laws and the main result are given in Section 2. In Section 3 we presents
the proof of the main result by using the Lyapunov techniques in the H2 topology. Section 4 is devoted to the
boundary feedback stabilization of a freeway section with the uncertain traffic demand based on the nonlinear
ARZ equation. Some concluding remarks and possible further research lines are presented in Section 5.

Notation: Rn and Rn×n denote the set of n-order vectors and n-order matrices. For a matrix A,
A > 0 means that A is a symmetric positive definite matrix, A> is the transpose, and for a partitioned
symmetric matrix, the symbol ? stands for the symmetric blocks. ξt and ξx stand for the partial derivatives
of the function ξ with respect to t and x, respectively. For ξ = (ξ1, . . . , ξn)> ∈ C0((0, L);Rn), we denote
|ξ|0 = max{|ξ(x)|0, x ∈ (0, L)}, with |ξ(x)|0 = max{|ξi(x)|, i = 1, . . . , n}. H2((0, L);Rn) is the Sobolev space
of all n-order C2 functions on the open set (0, L), and ξ ∈ H2((0, L);Rn) means that

‖ξ‖2H2((0,L);Rn) =

∫ L

0

(|ξ|2 + |ξx|2 + |ξxx|2)dx <∞.

2. PI Boundary Control for Hyperbolic Systems. Consider the general quasilinear hyperbolic sys-
tem of balance laws

ξt + Λ(ξ)ξx = B(ξ), t ∈ [0,∞), x ∈ (0, L),(2.1)

where ξ : [0, L] × [0,∞) → Rn is the vector of the state variables, Λ(ξ) ∈ Rn×n is the diagonal matrix of
C2-functions defined as Λ(ξ) = diag{Λ+(ξ),−Λ−(ξ)}, with Λ+(ξ) = diag{λ1(ξ), . . . , λm(ξ)}, and Λ−(ξ) =
diag{λm+1(ξ), . . . , λn(ξ)}, 1 ≤ m ≤ n, and eigenvalues λi(ξ) > 0 for all i ∈ {1, . . . , n}, B(ξ) ∈ C2(Rn,Rn) is
the vector function of source terms which satisfies B(0) = 0 for a given state ξ = 0.

For simplicity, we use the notations

ξin(t) :=

[
ξ+(0, t)
ξ−(L, t)

]
and ξout(t) :=

[
ξ+(L, t)
ξ−(0, t)

]
,(2.2)

to denote the input and the output of the system (2.1) on the left and the right boundaries, in which the
vectors ξ+ and ξ− are defined as ξ+ = [ξ1, . . . , ξm]> and ξ− = [ξm+1, . . . , ξn]>, respectively.

In this paper, we consider the boundary condition of the PI feedback type, i.e.,

ξin(t) = Kpξout(t) +Ki

∫ t

0

ξout(τ)dτ + θ̄,(2.3)

where Kp ∈ Rn×n, Ki ∈ Rn×n is the proportional and the integral tuning matrices, respectively, and θ̄ ∈ Rn
is an additive outside unknown disturbance which corrupts the system (2.1) on the boundaries of input. In
this case, we assume that θ̄ ∈ Rn is an unknown constant, and Ki ∈ Rn×n is an invertible matrix.
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The purpose of the paper is to investigate sufficient conditions on the PI boundary feedback controller
(2.3), such that the solution of the system (2.1) exists globally, suppresses the static error, and exponentially
converges to the state ξ = 0, for all x ∈ [0, L], as t→∞.

We shall consider the initial condition

ξ(x, 0) = ξo(x), x ∈ (0, L),(2.4)

which satisfies the C0 and C1 compatibility conditions
[
ξ+
o (0)
ξ−o (L)

]
= Kp

[
ξ+
o (L)
ξ−o (0)

]
+ θ̄,(2.5)

and
[

Λ+(ξo(0))∂xξ
+
o (0)−B+(ξo(0))

−Λ−(ξo(L))∂xξ
−
o (L)−B−(ξo(L))

]

= Kp

[
Λ+(ξo(L))∂xξ

+
o (L)−B+(ξo(L))

−Λ−(ξo(0))∂xξ
−
o (0)−B−(ξo(0))

]
+Ki

[
ξ+
o (L)
ξ−o (0)

]
,(2.6)

respectively, where the sub maps B+ ∈ Rm, and B− ∈ Rn−m are defined such that B := [B+, B−]>.
The well-posedness of the Cauchy problem (2.1), (2.3), (2.4), and the existence of unique classical solutions

follows from [4, Appendix B, see precisely Theorem B1 and Corollary B.2] by using the boundary condition
(2.3).

Theorem 2.1. There exists δ0 > 0 such that, for every ξo ∈ H2((0, L);Rn) satisfying ‖ξo‖H2((0,L);Rn) ≤ δ0
and the compatibility conditions (2.5) and (2.6), the Cauchy problem (2.1), (2.3), (2.4) has a unique maximal
classical solution

ξ ∈ C0([0, T ), H2((0, L);Rn)) ∩ C1([0, T )× (0, L);Rn)(2.7)

with T ∈ (0,∞]. Moreover, if

‖ξ(·, t)‖H2((0,L);Rn) ≤ δ0, ∀ t ∈ [0, T ),(2.8)

then T =∞.
The definition of the locally exponentially stability for the system (2.1) is given as follows.
Definition 2.2. The state ξ = 0 of the system (2.1), (2.3) is locally exponentially stable (for the H2-norm)

if there exist δ > 0, θmax(δ) > 0, ν > 0, and C > 0 such that, for every |θ̄| ≤ θmax(δ), ξo ∈ H2((0, L),Rn)
satisfying ‖ξo‖H2((0,L);Rn) ≤ δ and the compatibility conditions (2.5), (2.6), the unique solution ξ(x, t) of the
Cauchy problem (2.1), (2.3), (2.4) is defined on [0, L]× [0,∞) and satisfies

‖ξ(·, t)‖H2((0,L);Rn) ≤ Ce−νt‖ξo‖H2((0,L);Rn), ∀ t ∈ [0,∞).(2.9)

Define the matrix M ∈ Rn×n as the linearization of the source term B(ξ) at the state ξ = 0, i.e.

M :=
∂B

∂ξ
(0).(2.10)

Then the main result of the paper is given as follows.
Theorem 2.3. If there exist a diagonal matrix P1 ∈ Rn×n, a symmetric matrix P2 ∈ Rn×n, a matrix

P3 ∈ Rn×n, and a real constant µ ∈ R, satisfying the matrix inequalities, for all x ∈ [0, L]

(i) P =

[
P1 P3

? P2

]
> 0,(2.11)

(ii) Ωe(x) =




Ωe11(x) Ωe12(x) P3(x) 0 0
? Ωe22 Ωe23 0 0
? ? Ωe33 Ωe34 0
? ? ? Ωe44 Ωe45

? ? ? ? Ωe55



< 0,(2.12)
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where

Ωe11(x) = M>P1(x) + P1(x)M − 2µ|Λ(0)|P1(x),

Ωe12(x) = M>P3(x)− µ|Λ(0)|P3(x),

Ωe22 =
1

L
(K>i |Λ(0)|P1E1Ki +K>i |Λ(0)|P3E3 + E3P

>
3 |Λ(0)|Ki),

Ωe23 =
1

L
(K>i |Λ(0)|P1E1Kp − |Λ(0)|P3E4 + E3P

>
3 |Λ(0)|Kp) + P2,

Ωe33 =
1

L
(K>p |Λ(0)|P1E1Kp +K>i |Λ(0)|P1E1Ki − |Λ(0)|P1E2),

Ωe34 =
1

L
K>i |Λ(0)|P1E1Kp,

Ωe44 = Ωe33,

Ωe45 = Ωe34,

Ωe55 =
1

L
(K>p |Λ(0)|P1E1Kp − |Λ(0)|P1E2),

with P1(x) = P1diag
{
e−2µxIm, e

2µxIn−m
}
, P3(x) = P3diag {e−µxIm, eµxIn−m}, |Λ(0)| = diag{Λ+(0),Λ−(0)},

and E1 = diag
{
Im, e

2µLIn−m
}
, E2 = diag

{
e−2µLIm, In−m

}
, E3 =

√
E1, E4 =

√
E2, then the following

properties hold true:
• [Local well-posedness] There exist δ0 > 0 and θmax(δ0) > 0 such that, for any unknown constant
disturbance θ̄ satisfying |θ̄| ≤ θmax(δ0), for every ξo ∈ H2((0, L),Rn) satisfying ‖ξo‖H2((0,L);Rn) ≤ δ0
and the compatibility conditions (2.5), (2.6), the Cauchy problem (2.1), (2.3), (2.4) has a classical
unique solution ξ(·, t), defined for t ∈ [0,∞), such that

ξ(·, t) ∈ C0([0,∞);H2((0, L);Rn)) ∩ C1([0,∞)× (0, L);Rn)).

• [Local exponential stability] The system (2.1) with the PI boundary feedback controller (2.3) is locally
exponentially stable for the state ξ = 0.

Remark 2.4. The static boundary stabilization of the quasilinear hyperbolic system of conservation laws has
been solved in [7]. In this paper, as the boundary conditions of the quasilinear hyperbolic system of balance laws
(2.1) are corrupted by the unknown constant disturbance, a proportional controller is not suitable, whereas the
PI boundary feedback controller (2.3) can be used to suppress the error and hence guarantee the local exponential
stabilization of the closed loop system.

Remark 2.5. For the hyperbolic system of balance laws, there is a limitation on the maximal length L above

which the stabilization by a static boundary feedback is impossible, as matricesM =

[
0 c
c 0

]
, Kp =

[
0 k
1 0

]
,

c < 0, k ∈ R, (see Section 5 in [3]). In Theorem 2.3, if L is too large, then Ωe55 > 0, and thus there is no
solution to the inequality Ωe(x) < 0.

3. Proof of The Main Result. In order to prove Theorem 2.3, we temporarily assume that the solution
ξ(x, t) : [0, L] × [0, T ) → Rn are of class C3, then relax to the condition of class C1 later by the density
argument developed in [Comment 4.6, page 127] of [4]. The appropriate Lyapunov function candidate V :
H2((0, L);Rn)× R→ R has the following form

V := V1(ξ, ζ) + V2(ξt) + V3(ξtt)(3.1)

with

V1(ξ, ζ) =

∫ L

0

[
ξ>P1(x)ξ + ξ>P3(x)ζ + ζ>P>3 (x)ξ

]
dx+ Lζ>P2ζ,

=

∫ L

0

[
ξ
ζ

]> [
P1(x) P3(x)
? P2

] [
ξ
ζ

]
dx(3.2)

V2(ξt) =

∫ L

0

ξ>t P1(x)ξtdx,(3.3)

V3(ξtt) =

∫ L

0

ξ>ttP1(x)ξttdx,(3.4)
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where ζ(t) : [0, T )→ R is the integral of the output of the system (2.1), i.e.,

ζ(t) =

∫ t

0

ξout(τ)dτ +K−1
i θ̄.(3.5)

The proof of Theorem 2.3 is based on the estimates of the time derivatives V̇i, i = 1, 2, 3, along the solutions
of the system (2.1) and (2.3), by expanding the analysis up to the dynamics of ξtt with the assumption that
solutions ξ of class C3.

Remark 3.1. The proposed Lyapunov function (3.1) is an extension of the one in [7], in which the
static boundary feedback control is considered. When we involve the boundary measurement ζ(t) of (3.5), the
candidate Lyapunov function, more specifically in the first V1(ξ, ζ) term (3.2), has to be modified to refer to
this integral variable.

Remark 3.2. For the quasilinear hyperbolic system of balance laws, it is well known that even for small
initial conditions, the shocks may occur in finite time. By means of the Lyapunov function (3.1), the result of
Theorem 2.3 guarantees that the shocks will not develop and the classical solutions exist on t ∈ [0,∞), for all
initial conditions ‖ξo‖H2((0,L);Rn) ≤ δ0 and for any disturbances smaller than the bound θmax(δ0) (that depends
on the size of the initial condition set).

3.1. Proof in the case where m = n. We first prove Theorem 2.3 in the special case where m = n,
which means that the characteristic matrix Λ(ξ) = Λ+(ξ) with λi(ξ) > 0, for all i = 1, . . . , n.

To simplify the notation, we denote ξ0(t) := ξ(0, t) and ξL(t) := ξ(L, t). In this case, the PI boundary
controller (2.4) is simply rewritten as

ξ0(t) = KpξL(t) +Ki

∫ t

0

ξL(τ)dτ + θ̄

= KpξL(t) +Kiζ(t).(3.6)

Moreover, condition (ii) of Theorem 2.3 is turning into the single matrix inequality as

(ii′) Ω =




Ω11 Ω12 P3 0 0
? Ω22 Ω23 0 0
? ? Ω33 Ω34 0
? ? ? Ω44 Ω45

? ? ? ? Ω55



< 0,(3.7)

where

Ω11 = M>P1 + P1M − 2µΛ(0)P1,

Ω12 = M>P3 − µΛ(0)P3,

Ω22 =
1

L
(K>i Λ(0)P1Ki +K>i Λ(0)P3 + P>3 Λ(0)Ki),

Ω23 =
1

L
(K>i Λ(0)P1Kp − e−µLΛ(0)P3 + P>3 Λ(0)Kp) + P2,

Ω33 =
1

L
(K>p Λ(0)P1Kp +K>i Λ(0)P1Ki − e−2µLΛ(0)P1),

Ω34 =
1

L
K>i Λ(0)P1Kp,

Ω44 = Ω33,

Ω45 = Ω34,

Ω55 =
1

L
(K>p Λ(0)P1Kp − e−2µLΛ(0)P1).

Let us firstly introduce a notation to deal with the estimates on the higher order terms. We denote by
O (X;Y ), with X > 0 and Y > 0, quantities for which there exist C > 0 and ε > 0, independent of ξ, ξt and
ξtt, such that

(Y 6 ε)⇒ (|O (X;Y )| 6 CX) .
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Lemma 3.3. The time derivative of V1(ξ, ζ) along the solutions of (2.1), (2.4), (3.6) is written as follows

V̇1(ξ, ζ) =

∫ L

0



ξe−µx

ζ(t)
ξL(t)



> 


Ω11 Ω12 P3

? Ω22 Ω23

? ? Ω55





ξe−µx

ζ(t)
ξL(t)


 dx

+O
(
|ξL(t)|3 + |ξL(t)|2|ζ(t)|+ |ξL(t)||ζ(t)|2; |ξL(t)|

)

+O

(∫ L

0

(|ξ|3 + |ξ|2|ξt|+ |ξ|2|ζ(t)|+ |ξ||ξt||ζ(t)|)dx; |ξ|0

)
.(3.8)

Proof: The time derivative of V1(ξ, ζ) along the solutions of (2.1) is

V̇1(ξ, ζ) =

∫ L

0

[
2ξ>t P1ξe

−2µx + ξ>t P3ζe
−µx + ξ>P3ξL(t)e−µx

+ ξ>L (t)P>3 ξe
−µx + ζ>P>3 ξte

−µx] dx+ 2Lζ>P2ξL(t)

= T11 + T12 + T13(3.9)

in which

T11 = 2

∫ L

0

ξ>t P1ξe
−2µxdx,(3.10)

T12 =

∫ L

0

[ξ>t P3ζ + ξ>P3ξL(t) + ξ>L (t)P>3 ξ + ζ>P>3 ξt]e
−µxdx,(3.11)

T13 = 2Lζ>P2ξL(t).(3.12)

Using the nonlinear equation (2.1), and performing an integration by parts for the first two terms T11 and
T12, respectively, we get

T11 = 2

∫ L

0

[−Λ(ξ)ξx +B(ξ)]>P1ξe
−2µxdx

=
[
−ξ>Λ(ξ)P1ξe

−2µx
]L
0

+

∫ L

0

ξ>
∂Λ

∂ξ
(ξ)ξxP1ξe

−2µxdx

+

∫ L

0

[−2µξ>Λ(ξ)P1ξ +B>(ξ)P1ξ + ξ>P1B(ξ)]e−2µxdx,(3.13)

and

T12 =

∫ L

0

[−Λ(ξ)ξx +B(ξ)]>P3ζe
−µxdx

+

∫ L

0

ζ>P>3 [−Λ(ξ)ξx +B(ξ)]e−µxdx

+

∫ L

0

[ξ>P3ξL(t) + ξ>L (t)P>3 ξ]e
−µxdx

= −
[
ξ>Λ(ξ)P3ζe

−µx + ζ>P>3 Λ(ξ)ξe−µx
]L
0

−µ
∫ L

0

[ξ>Λ(ξ)P3ζ + ζ>P>3 Λ(ξ)ξ]e−µxdx

+

∫ L

0

[ξ>
∂Λ

∂ξ
(ξ)ξxP3ζ + ζ>P>3

∂Λ

∂ξ
(ξ)ξxξ]e

−µxdx

+

∫ L

0

[B>(ξ)P3ζ + ζ>P>3 B(ξ) + ξ>P3ξL(t) + ξ>L (t)P>3 ξ]e
−µxdx.(3.14)
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Then, combine the feedback gain matrices Kp, and Ki of the PI boundary controller (3.6), and the linearized
matrix M of the source term (2.10) into equations (3.13) and (3.14), respectively, we have

T11 = −ξ>L (t)Λ(0)P1ξL(t)e−2µL + [KpξL(t) +Kiζ]>Λ(0)P1[KpξL(t) +Kiζ]

+O
(
|ξL(t)|3 + |ξL(t)|2|ζ(t)|+ |ζ(t)|2|ξL(t)|; |ξL(t)|

)

+

∫ L

0

[−2µξ>Λ(0)P1ξ + ξ>M>P1ξ + ξ>P1Mξ]e−2µxdx

+O

(∫ L

0

(|ξ|3 + |ξ|2|ξt|)dx; |ξ|0

)

=

∫ L

0

ξ>[M>P1 + P1M − 2µΛ(0)P1]ξe−2µxdx

+

[
ζ(t)
ξL(t)

]> [
K>i Λ(0)P1Ki K>i Λ(0)P1Kp

? K>p Λ(0)P1Kp − e−2µLΛ(0)P1

] [
ζ(t)
ξL(t)

]

+O
(
|ξL(t)|3 + |ξL(t)|2|ζ(t)|+ |ζ(t)|2|ξL(t)|; |ξL(t)|

)

+O

(∫ L

0

(|ξ|3 + |ξ|2|ξt|)dx; |ξ|0

)

=

∫ L

0



ξe−µx

ζ(t)
ξL(t)



> 


Ω11 0 0

?
K>i Λ(0)P1Ki

L
K>i Λ(0)P1Kp

L
? ? Ω55





ξe−µx

ζ(t)
ξL(t)




+O
(
|ξL(t)|3 + |ξL(t)|2|ζ(t)|+ |ζ(t)|2|ξL(t)|; |ξL(t)|

)

+O

(∫ L

0

(|ξ|3 + |ξ|2|ξt|)dx; |ξ|0

)
,(3.15)

and

T12 = −ξ>L (t)Λ(0)P3ζe
−µL − ζ>P>3 Λ(0)ξL(t)e−µL

+[KpξL(t) +Kiζ]>Λ(0)P3ζ + ζ>P>3 Λ(0)[KpξL(t) +Kiζ]

+O
(
|ξL(t)|2|ζ(t)|+ |ζ(t)|2|ξL(t)|; |ξL(t)|

)

−µ
∫ L

0

[ξ>Λ(0)P3ζ + ζ>P>3 Λ(0)ξ]e−µxdx

+

∫ L

0

[ξ>M>P3ζ + ζ>P>3 Mξ + ξ>P3ξL(t) + ξ>L (t)P>3 ξ]e
−µxdx

+O

(∫ L

0

(|ξ|2|ζ(t)|+ |ξ||ξt||ζ(t)|)dx; |ξ|0

)

=

[
ζ(t)
ξL(t)

]> [
K>i Λ(0)P3 + P>3 Λ(0)Ki P>3 Λ(0)Kp − e−µLΛ(0)P3

? 0

] [
ζ(t)
ξL(t)

]

+

∫ L

0



ξe−µx

ζ(t)
ξL(t)



> 


0 M>P3 − µΛ(0)P3 P3

? 0 0
? ? 0





ξe−µx

ζ(t)
ξL(t)


 dx

+O
(
|ξL(t)|2|ζ(t)|+ |ζ(t)|2|ξL(t)|; |ξL(t)|

)

+O

(∫ L

0

(|ξ|2|ζ(t)|+ |ξ||ξt||ζ(t)|)dx; |ξ|0

)
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=

∫ L

0



ξe−µx

ζ(t)
ξL(t)



> 


0 Ω12 P3

?
K>i Λ(0)P3+P>3 Λ(0)Ki

L
P>3 Λ(0)Kp−e−µLΛ(0)P3

L
? ? 0





ξe−µx

ζ(t)
ξL(t)


 dx

+O
(
|ξL(t)|2|ζ(t)|+ |ζ(t)|2|ξL(t)|; |ξL(t)|

)

+O

(∫ L

0

(|ξ|2|ζ(t)|+ |ξ||ξt||ζ(t)|)dx; |ξ|0

)
.(3.16)

Moreover, the term T13 in (3.12) may be rewritten as

T13 = L

[
ζ(t)
ξL(t)

]> [
0 P2

? 0

] [
ζ(t)
ξL(t)

]
.(3.17)

Substituting the block matrices of T13 in (3.17) into the integral term of T12 in (3.16), and further combining
T11 in (3.15), we finally get the estimate

V̇1(ξ, ζ) =

∫ L

0



ξe−µx

ζ(t)
ξL(t)



> 


Ω11 Ω12 P3

? Ω22 Ω23

? ? Ω55





ξe−µx

ζ(t)
ξL(t)


 dx

+O
(
|ξL(t)|3 + |ξL(t)|2|ζ(t)|+ |ξL(t)||ζ(t)|2; |ξL(t)|

)

+O

(∫ L

0

(|ξ|3 + |ξ|2|ξt|+ |ξ|2|ζ(t)|+ |ξ||ξt||ζ(t)|)dx; |ξ|0

)
.(3.18)

This concludes the proof of Lemma 3.3. 2

Under the assumption that the solution ξ of class C3, maps Λ, B are of class C3, by the time differentiation
of (2.1) and (2.3), and by recalling the integral of (3.5), ξt : [0, L]×[0, T )→ Rn satisfies the following hyperbolic
dynamics:

ξtt + Λ(ξ)ξtx + diag
[
∂Λ

∂ξ
(ξ)ξt

]
ξx =

∂B

∂ξ
(ξ)ξt,(3.19)

with the boundary condition

ξt(0, t) = Kpξt(L, t) +KiξL(t),(3.20)

where, the matrix diag [(∂Λ/∂ξ)ξt] stands for the diagonal matrix whose diagonal entries are the components
of the vector (∂Λ/∂ξ) ξt.

Lemma 3.4. The time derivative of V2(ξt) along the solutions of (3.19), (3.20) is written as follows

V̇2(ξt) =

∫ L

0

ξ>t Ω11ξte
−2µxdx

+

[
ξL(t)
ξt(L, t)

]> [
K>i Λ(0)P1Ki K>i Λ(0)P1Kp

? K>p Λ(0)P1Kp − e−2µLΛ(0)P1

] [
ξL(t)
ξt(L, t)

]

+O
(
|ξt(L, t)|2|ξL(t)|+ |ξL(t)|2|ξt(L, t)|+ |ξL(t)|3; |ξL(t)|

)

+O

(∫ L

0

(|ξt|2|ξ|+ |ξt|3)dx; |ξ|0

)
(3.21)

The proof of this result is given in Appendix A.
Since Λ, B, ξ are of class C3, by time differentiation of the system equations (3.19) and (3.20), ξtt :

[0, L]× [0, T )→ Rn can be shown to satisfy the following hyperbolic dynamics:

ξttt + Λ(ξ)ξttx + 2diag
[
∂Λ

∂ξ
(ξ)ξt

]
ξtx + diag

[
∂Λ

∂ξ
(ξ)ξt

]

t

ξx =
∂B

∂ξ
(ξ)ξtt +

[
∂B

∂ξ
(ξ)

]

t

ξt,(3.22)
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with the boundary condition

ξtt(0, t) = Kpξtt(L, t) +Kiξt(L, t).(3.23)

Lemma 3.5. The time derivative of V3(ξtt) along the solutions of (3.22), (3.23) is written as follows

V̇3(ξtt) =

∫ L

0

ξ>ttΩ11ξtte
−2µxdx

+

[
ξt(L, t)
ξtt(L, t)

]> [
K>i Λ(0)P1Ki K>i Λ(0)P1Kp

? K>p Λ(0)P1Kp − e−2µLΛ(0)P1

] [
ξt(L, t)
ξtt(L, t)

]

+O
(
|ξtt(L, t)|2|ξL(t)|+ |ξt(L, t)|2|ξL(t)|+ |ξtt(L, t)||ξt(L, t)||ξL(t)|; |ξL(t)|

)

+O

(∫ L

0

(|ξtt|2|ξ|+ |ξtt|2|ξt|+ |ξtt||ξt|2)dx; |ξ|0 + |ξt|0

)
(3.24)

The proof of this result is given in Appendix B.
Lemma 3.6. There exist constants α > 0, β > 0, and δ > 0, such that for every solution ξ : (0, L)×[0, T )→

Rn of (2.1) and (3.6), satisfying |ξ|0 + |ξt|0 ≤ δ, we have

1

β

(∫ L

0

(
|ξ|2 + |ξx|2 + |ξxx|2

)
dx+ |ζ(t)|2

)
≤ V ≤ β

(∫ L

0

(
|ξ|2 + |ξx|2 + |ξxx|2

)
dx+ |ζ(t)|2

)
,(3.25)

V̇ ≤ −αV.(3.26)

Proof: From the system equations (2.1) and (3.19), we know that

ξt = −Λ(ξ)ξx +B(ξ),(3.27)

ξtt = Λ(ξ)[Λ(ξ)ξx −B(ξ)]x + diag
[
∂Λ

∂ξ
(ξ)(Λ(ξ)ξx −B(ξ))

]
ξx −

∂B

∂ξ
(ξ)(Λ(ξ)ξx −B(ξ)).(3.28)

Using the expressions (3.27), (3.28), inequality (3.25) follows directly from the definition of Lyapunov function
V and the straightforward estimates as β is large enough.

Let us introduce the compact vector notation:

φ>(x, t) :=
[
ξe−µx, ζ(t), ξL(t), ξt(L, t), ξtt(L, t)

]>
.(3.29)

Then, for every solution ξ : (0, L) × [0, T ) → Rn of (2.1) and (3.6), it follows from Lemmas 3.3, 3.4, and 3.5
that

V̇ = V̇1(ξ, ζ) + V̇2(ξt) + V̇3(ξtt)

=

∫ L

0

φ>(x, t)Ωφ(x, t)dx+

∫ L

0

ξ>t Ω11ξte
−2µxdx+

∫ L

0

ξ>ttΩ11ξtte
−2µxdx

+O
(
|ξL(t)|(|ζ(t)|2 + |ξL(t)|2 + |ξt(L, t)|2 + |ξtt(L, t)|2 + |ζ(t)||ξL(t)|)
+ |ξt(L, t)||ξL(t)|2 + |ξL(t)||ξt(L, t)|ξtt(L, t)|; |ξL(t)|

)
.

+O(

∫ L

0

(|ξ|+ |ξt|)(|ξ|2 + |ξt|2 + |ξtt|2) + |ζ(t)||ξ|2 + |ξtt||ξt|2 + |ζ(t)||ξ||ξt|)dx; |ξ|0 + |ξt|0).(3.30)

Since Ω < 0, it follows that φ>(x, t)Ωφ(x, t) is a strictly negative definite quadratic form in ζ(t), ξL(t), ξt(L, t),
and ξtt(L, t). Consequently, there exist a δ1 > 0 and α1 > 0, such that, if |ξL(t)| ≤ δ1, then

V̇ ≤ −α1

∫ L

0

|φ(x, t)|2dx+

∫ L

0

ξ>t Ω11ξte
−2µxdx+

∫ L

0

ξ>ttΩ11ξtte
−2µxdx

+O(

∫ L

0

(|ξ|+ |ξt|)(|ξ|2 + |ξt|2 + |ξtt|2) + |ζ(t)||ξ|2 + |ξtt||ξt|2 + |ζ(t)||ξ||ξt|)dx; |ξ|0 + |ξt|0).(3.31)
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For every η > 0, we have
∫ L

0

|ζ(t)||ξ|2dx ≤
∫ L

0

(
1

4η
|ξ|4 + η|ζ(t)|2

)
dx

≤ 1

4η
|ξ|20

∫ L

0

|ξ|2dx+ η

∫ L

0

|ζ(t)|2dx,(3.32)

∫ L

0

|ξtt||ξt|2dx ≤
1

4η
|ξt|20

∫ L

0

|ξt|2dx+ η

∫ L

0

|ξtt|2dx,(3.33)

∫ L

0

|ζ(t)||ξ||ξt|dx ≤ |ξt|0
∫ L

0

|ζ(t)||ξ|dx

≤ 1

4η
|ξt|0

∫ L

0

|ξ|2dx+ η|ξt|0
∫ L

0

|ζ(t)|2dx,(3.34)

By combing the inequalities (3.32), (3.33), and (3.34), it follows that exist δ2 > 0 and C > 0, such that, if
|ξ|0 + |ξt|0 ≤ δ2, then

O(

∫ L

0

(|ξ|+ |ξt|)(|ξ|2 + |ξt|2 + |ξtt|2) + |ζ(t)||ξ|2 + |ξtt||ξt|2 + |ζ(t)||ξ||ξt|)dx; |ξ|0 + |ξt|0)

≤ C(|ξ|0 + |ξt|0)V.(3.35)

Moreover, using Ω11 < 0 as Ω < 0, there exist α2 > 0 such that

−α1

∫ L

0

|φ(x, t)|2dx+

∫ L

0

ξ>t Ω11ξte
−2µxdx+

∫ L

0

ξ>ttΩ11ξtte
−2µxdx ≤ −α2V.(3.36)

It follows from (3.30) that, if δ < min{δ1, δ2} is taken sufficiently small, then α > 0 can be selected such that

V̇ ≤ (−α2 + C(|ξ|0 + |ξt|0))V ≤ −αV,(3.37)

for every ξ with |ξ|0 + |ξt|0 ≤ δ. This concludes the proof of Lemma 3.6. 2

3.2. Proof in the case where 0 < m < n. In this section, we explain the modifications of the proof of
Lemma 3.6 that used to deal with the case 0 < m < n. The case m = 0 is equivalent to the case m = n by
considering ξ(L− x, t) instead of ξ(x, t).

The major difference lies in the functionals V̇1(ξ, ζ), V̇2(ξt) and V̇3(ξtt) which are now rewritten, respec-
tively, as follows:

V̇1(ξ, ζ) =

∫ L

0




ξ
ζ(t)
ξout(t)



> 


Ωe11(x) Ωe12(x) P3(x)
? Ωe22 Ωe23

? ? Ωe55






ξ
ζ(t)
ξout(t)


 dx

+O
(
|ξout(t)|3 + |ξout(t)|2|ζ(t)|+ |ξout(t)||ζ(t)|2; |ξout(t)|

)

+O

(∫ L

0

(|ξ|3 + |ξ|2|ξt|+ |ξ|2|ζ(t)|+ |ξ||ξt||ζ(t)|)dx; |ξ|0

)
,(3.38)

V̇2(ξt) =

∫ L

0

ξ>t Ωe11(x)ξtdx

+

[
ξout(t)
ξ′out(t)

]> [
K>i |Λ(0)|P1E1Ki K>i |Λ(0)|P1E1Kp

? LΩe55

] [
ξout(t)
ξ′out(t)

]

+O
(
|ξ′out(t)|2|ξout(t)|+ |ξout(t)|2|ξ′out(t)|+ |ξout(t)|3; |ξout(t)|

)

+O

(∫ L

0

(|ξt|3 + |ξt|2|ξ|)dx; |ξ|0

)
,(3.39)
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V̇3(ξtt) =

∫ L

0

ξ>ttΩ
e
11(x)ξttdx

+

[
ξ′out(t)
ξ′′out(t)

]> [
K>i |Λ(0)|P1E1Ki K>i |Λ(0)|P1E1Kp

? LΩe55

] [
ξ′out(t)
ξ′′out(t)

]

+O
(
|ξ′′out(t)|2|ξout(t)|+ |ξ′out(t)|2|ξout(t)|+ |ξ′′out(t)||ξ′out(t)||ξout(t)|; |ξout(t)|

)

+O

(∫ L

0

(|ξtt|2|ξt|+ |ξtt|2|ξ|+ |ξtt||ξt|2)dx; |ξ|0 + |ξt|0

)
.(3.40)

Under the conditions (i) and (ii) that matrices P > 0 and Ωe(x) < 0, it is straightforward to verify that
Lemma 3.6 can be established for the case 0 < m < n in a manner completely parallel to the one that we have
followed in the case m = n.

3.3. Proof of Theorem 2.3. The temporary assumption that ξ of class C3 is relaxed in this subsection.
In Lemma 3.6, although the estimates (3.25) and (3.26) are obtained under the assumption that maps Λ and
B are of class C3, and the solution ξ of class C3, the selection of α, β depends only on the C2-norm of Λ, B
and the C0([0, T ];H2((0, L);Rn))-norm of ξ, (see, e.g., [4, Comment 4.6, page 127]). Hence, using the classical
density argument, the estimates (3.25) and (3.26) remain valid in the distribution sense with Λ, B of class C2,
and ξ is only of class C1.

For every ϕ in the Sobolev space H2((0, L);Rn), by Sobolev inequality (see e.g., [25]), there exists C1 > 0
such that

|ϕ|0 ≤ C1

(∫ L

0

(|ϕ|2 + |ϕx|2)dx

) 1
2

.(3.41)

In order to take the time derivative instead of the space derivative and use Lemma 3.6, we directly recall the
results in [7, Appendix Lemma B.6, B.7] that there exists C2 > 0 such that, if |ϕ|0 < δ0, then

|ϕt| ≤ C2(|ϕ|+ |ϕx|),(3.42)
|ϕxt| ≤ C2(|ϕ|+ |ϕx|+ |ϕxx|).(3.43)

Therefore, there exists C0 > 0 such that

|ϕ|0 + |ϕt|0 ≤ C0‖ϕ‖H2((0,L);Rn)(3.44)

for all |ϕ|0 < δ0. Let

ε , min

{
δ

2C0β
,
δ0
β

}
,(3.45)

where β ≥ 1 and therefore that ε ≤ δ0. Using Lemma 3.6, (3.44) and (3.45), for every t ∈ [0, T ]:

‖ξ(·, t)‖H2((0,L);Rn) ≤ ε,(3.46)

=⇒ |ξ(·, t)|0 + |ξt(·, t)|0 ≤
δ

2
and V ≤ βε2 + βζ2(t),(3.47)

=⇒ ‖ξ(·, t)‖H2((0,L);Rn) ≤ δ0 and V̇ ≤ 0.(3.48)

Let ξo ∈ H2((0, L);Rn) satisfies the compatibility conditions (2.5), (2.6) and

‖ξo‖H2((0,L);Rn) < ε.(3.49)

Let ξ ∈ C2([0, T ?);H2((0, L);Rn)) be the maximal classical solution of the Cauchy problem (2.1), (2.3) and
(2.4). Using implication (3.46) to (3.48) for T ∈ [0, T ?], we get that

‖ξ(·, t)‖H2((0,L);Rn) ≤ δ0, ∀ t ∈ [0, T ?),(3.50)
|ξ(·, t)|0 + |ξt(t, ·)|0 ≤ δ, ∀ t ∈ [0, T ?).(3.51)
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VMS

0x = x L=

( )r t

in
p

Fig. 1. A freeway section with the on-ramp and VMS.

Using (3.50) and Theorem 2.1, we have that T = +∞. Using Lemma 3.6 and (3.51), we finally obtain that

‖ξ(·, t)‖2H2((0,L);Rn) + ζ2(t) ≤ βV ≤ βe−αtV (0) ≤ β2e−αt‖ξo‖2H2((0,L);Rn).(3.52)

Let C = β and ν = α
2 , it follows that ‖ξ(·, t)‖H2((0,L);Rn) ≤ Ce−νt‖ξo‖H2((0,L);Rn).

This completes the proof of Theorem 2.3.

3.4. Conditions for linear hyperbolic systems of balance laws. In order to contract the results of
Theorem 2.3 with the PI boundary stabilization for the linear systems in L2-norm, let us recall an extended
result for the linearized case.

Consider the linear hyperbolic systems of balance laws

ξt + Λ(0)ξx = Mξ, t ∈ [0,∞), x ∈ (0, L),(3.53)

with the PI boundary feedback control

ξin(t) = Kpξout(t) +Ki

∫ t

0

ξout(τ)dτ + θ̄.(3.54)

Take V1(ξ, ζ) as the Lyapunov function for the above linearized system. By differentiating it with time
along the solution of (3.53), (3.54), and using the similar techniques of Lemma 3.3, the following corollary is
easily obtained.

Corollary 3.7. [38] The linearized system (3.53), (3.54) is globally exponentially stable if there exist a
diagonal matrix P1 ∈ Rn×n, a symmetric matrix P2 ∈ Rn×n, and a matrix P3 ∈ Rn×n, a real constant µ ∈ R,
such that the following matrix inequalities hold, for all x ∈ [0, L]

(i) P =

[
P1 P3

? P2

]
> 0,(3.55)

(ii
′′
) Ω(x) =




Ωe11(x) Ωe12(x) P3(x)
? Ωe22 Ωe23

? ? Ωe55


 < 0,(3.56)

where matrices P3(x), Ωe11(x), Ωe12(x), Ωe22, Ωe23, and Ωe55 are given as in conditions of Theorem 2.3.
Remark 3.8. In Theorem 2.3, a necessary condition is to have the spectral radii of Kp and Ki smaller

than one. However, for the linearized case (3.53), it is only necessary to have Ωe55 < 0 in the condition (ii
′′
)

of Corollary 3.7. Therefore, the set of integral gains Ki which make the nonlinear system (2.1) exponentially
stable is smaller than the set of parameters obtained for the linearized system (3.53).

4. PI boundary control for ARZ traffic flow model. Boundary control of traffic flow dynamics is
formulated in this section. A homogeneous freeway section including the on-ramp at the inlet boundary is
sketched in Fig. 1. We assume that the on-ramp signal is regulated with the metering strategies to control
the flow-rate of the driving-in vehicles into the mainline traffic, and VMSs are located at boundaries to limit
the driving speed of vehicles.

As the flow-rate of driving-in vehicles from the upstream section is affected by the uncertain traffic demand,
the PI boundary feedback control developed in this paper can be used to stabilize the traffic parameters (the
vehicle density and speed) at the steady states.
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4.1. ARZ Traffic Flow Model. The so-called Aw-Rascle-Zhang traffic flow model is a typical quasi-
linear hyperbolic balance law which describes the macroscopic traffic flow dynamics as

(4.1)
{
∂tρ+ ∂x(vρ) = 0,

∂tv + (v − ρp′(ρ))∂xv = S(ρ)−v
τ ,

where ρ(x, t) is the vehicle density, v(x, t) is the average speed, x ∈ (0, L), and τ is the relaxation time related
to the driving behavior. The variable p(ρ) is the traffic pressure defined as

p(ρ) = vf − S(ρ),(4.2)

where vf is the free flow speed. The function S(ρ) is the speed-density function given by Greenshields model
in [15] as

S(ρ) = vf

(
1−

(
ρ

ρm

)γ)
,(4.3)

ρm is the maximum vehicle density and γ > 0 is a constant.
Let z = v, w = v+ vf

(
ρ
ρm

)γ
, then the ARZ equation (4.1) may be written in the characteristic Riemann

coordinates as

(4.4)
{
∂tw + z∂xw =

vf−w
τ ,

∂tz + [(1 + γ)z − γw] ∂xz =
vf−w
τ .

In equation (4.4), the sign of the second characteristic velocity, (1 + γ)z − γw being positive or negative
indicates the information of vehicle speed propagating from the upstream boundary, i.e., x = 0 to the down-
stream boundary, x = L, or contrary. This sign can be used to determine the freeway traffic lies in the free-flow
or in the congested mode, as in [36]. In this case, we assume that the system (4.4) is strictly hyperbolic.

Denote (w∗, z∗) being the state of the system (4.4) which satisfies the relationship w∗ = vf . The deviations
from the nominal states (w∗, z∗) are defined as

w̃(x, t) = w(x, t)− w∗,(4.5)
z̃(x, t) = z(x, t)− z∗.(4.6)

We then obtain the deviation (w̃, z̃)-system

(4.7)
{
∂tw̃ + (z∗ + z̃)∂xw̃ = − 1

τ w̃,
∂tz̃ + [(1 + γ)z∗ − γw∗ + (1 + γ)z̃ − γw̃] ∂xz̃ = − 1

τ w̃.

Let ξ = [w̃, z̃]
>, the ARZ quasilinear hyperbolic system of balance laws is given as follows:

ξt + Λ(ξ)ξx = Mξ, x ∈ [0, L], t ∈ [0,∞),(4.8)

in which the system matrices

Λ(ξ) =

[
z∗ + z̃ 0

0 (1 + γ)z∗ − γw∗ + (1 + γ)z̃ − γw̃

]
,(4.9)

and

M =

[
− 1
τ 0
− 1
τ 0

]
.(4.10)

4.2. PI boundary feedback control. In this subsection, using the quasilinear ARZ traffic flow model
(4.7), we design the PI boundary feedback controller to stabilize the uncertain traffic demand which is regarded
as the external disturbance, as the freeway traffic lies in the congested regime, i.e. (1 + γ)z∗ − γw∗ < 0.

To perform the boundary feedback control, the control units are the inlet on-ramp metering r(t) and the
variable outlet speed limit v(L, t) of the freeway section, and the measurement units are the inflow speed v(0, t)
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and outflow density ρ(L, t). We assume that pin is the fixed traffic demand, and p̄ is the fluctuating of the
flow rate. Precisely, we introduce the PI boundary feedback law:

r(t) = r∗ + krp(ρ(L, t)− ρ∗) + kri

∫ t

0

(ρ(L, τ)− ρ∗)dτ,(4.11)

v(L, t) = v∗ + kvp(v(0, t)− v∗) + kvi

∫ t

0

(v(0, τ)− v∗)dτ,(4.12)

where r∗ is the nominal flow rate that satisfies the equilibrium relationship pin + r∗ = ρ∗v∗, and krp, kri , kvp
and kvi are tuning gains.

Let ρ̃ = ρ− ρ∗, ṽ = v − v∗, and from the PI boundary controller (4.11)-(4.12) directly, we have

r(t) = r∗ + krpρ̃(L, t) + kri

∫ t

0

ρ̃(L, τ)dτ,(4.13)

ṽ(L, t) = kvp ṽ(0, t) + kvi

∫ t

0

ṽ(0, τ)dτ.(4.14)

Using the flow-conserving condition at the inlet of the upstream boundary, i.e., x = 0, we have

pin + p̄+ r(t) = ρ(0, t)v(0, t).(4.15)

After the linearization of the flow-conserving condition (4.15), we have the following boundary condition:

p̄+ krpρ̃(L, t) + kri

∫ t

0

ρ̃(L, τ)dτ = v?ρ̃(0, t) + ρ?ṽ(0, t).(4.16)

As further assume γ = 1, and a =
vf
ρm

, and deleting the high-order terms, we could rewrite the condition (4.16)
in the Riemann coordinates of the system (4.7) as

w̃(0, t) = ṽ(0, t) + aρ̃(0, t)

=
ap̄

v?
+

(
1− aρ?

v?

)
ṽ(0, t) +

akrp
v?

ρ̃(L, t) +
akri
v?

∫ t

0

ρ̃(L, τ)dτ

=
ap̄

v?
+
krp
v?
w̃(1, t) +

kri
v?

∫ t

0

w̃(1, τ)dτ

+

(
1− aρ?

v?
−
krpk

v
p

v?

)
ṽ(0, t)

−
(
krpk

v
i

v?
+
kri k

v
p

v?

)∫ t

0

ṽ(0, τ)dτ.(4.17)

Combining (4.14) and (4.17) together for the system (4.7), we have the following PI boundary feedback
controller

[
w̃(0, t)
z̃(L, t)

]
= Kp

[
w̃(L, t)
z̃(0, t)

]
+Ki

∫ t

0

[
w̃(L, τ)
z̃(0, τ)

]
dτ + θ̄,(4.18)

in which the proportional and integral gains are given, respectively, as

Kp =

[
krp
v? 1− aρ?

v? −
krpk

v
p

v?

0 kvp

]
,(4.19)

Ki =

[
kri
v?

−krpk
v
i−k

r
i k
v
p

v?

0 kvi

]
,(4.20)

and the uncertain constant disturbance

θ̄> =
[
ap̄
v? 0

]
.(4.21)
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Fig. 2. The evolution of ρ of the quasilinear ARZ model (4.1) with PI boundary control (4.11)-(4.12) and state (ρ∗, v∗) =
(120, 70).

Fig. 3. The evolution of v of the quasilinear ARZ model (4.1) with PI boundary control (4.11)-(4.12) and state (ρ∗, v∗) =
(120, 70).

4.3. Simulations. The developed PI boundary feedback control laws (4.11)-(4.12) for the stabilization
of freeway traffic are now tested with the numerical simulations. To this end, we consider a freeway section
whose road and traffic parameters are given, respectively, as ρm = 200 veh./km, vf = 150 km/hour, a = 0.75,
pin = 6600 veh./hour, p̄ = 420 veh./hour, and r∗ = 1800 veh./hour. The total road length L = 1 km and the
relation time τ = 60 second.

Given the state (ρ∗, v∗) = (120, 70), which satisfies the ARZ equations (4.7) with λ∗2 = −20 < 0. Choose
the tuning parameters in the PI controller (4.11)-(4.12) as krp = 1, kvp = 0.1, kri = −65, and kvi = −0.9, then
the associated boundary condition matrices Kp, and Ki are given, respectively, as

Kp =

[
0.0143 −0.2871

0 0.1000

]
,(4.22)

Ki =

[
−0.9286 0.1057

0 −0.9000

]
.(4.23)

Taking µ = 0.01 and solving the conditions (i)-(ii) of Theorem 2.3, we can obtain the following diagonal
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Fig. 4. The evolution of the integral of the boundary output w(L, t) of the nonlinear ARZ model (4.1).

matrix P1, symmetric matrix P2, and matrix P3 as

P1 =

[
0.0045 0
? 0.9802

]
,(4.24)

P2 =

[
0.4515 0.1911
? 3.4649

]
,(4.25)

P3 =

[
0.0062 0.0011
0.0101 0.1597

]
.(4.26)

To compute the numerical solutions of the system (4.7), we discretize them using the two-step variant of
Lax-Wendroff method in [28]. The initial conditions from the state (ρ∗, v∗) are given as

{
ρ(x, 0) = ρ∗ + 0.5 sin(4πx)
v(x, 0) = v∗ + 1.8 cos(4πx)

.(4.27)

Figs. 2 and 3 show the evolution of variables, ρ(x, t) and v(x, t) of the nonlinear ARZ model (4.1)
with the PI boundary feedback controller (4.11)-(4.12). It is observed that both converge to their state
ρ∗ = 120 veh./km, and v∗ = 70 km/hour as expected from Theorem 2.3. Fig. 4 shows the evolution of the
integral of the boundary output w(L, t) perturbed by the disturbance p̄. As clearly indicated by the simulation,
by virtue of the integral action in the PI controller (4.11)-(4.12), the solutions to the ARZ model (4.1) converge
to the state (ρ∗, v∗) as t→∞ independently of the constant perturbations (assumed to be sufficiently small).

In contrast, we consider the linearized system at the state (ρ∗, v∗) = (120, 70), given as

(4.28)
{
∂tw̃ + z∗∂xw̃ = − 1

τ w̃,
∂tz̃ − [−(1 + γ)z∗ + γw∗] ∂xz̃ = − 1

τ w̃.

with the constant characteristic velocities

λ1 = z∗ > 0, λ2 = −(1 + γ)z∗ + γw∗ > 0.(4.29)

For the linearized system (4.28), it is possible for us to choose the bigger integral gains, kri = −650 and kvi = −9
than the nonlinear case of (4.22), in which these tuning parameters can not be obtained for the spacial length
L = 1 km as stated in Remark 2.5, Then the matrix Ki is given as

Ki =

[
−9.2857 1.0571

0 −9.0000

]
.(4.30)
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Fig. 5. The evolution of ρ of the linearized ARZ model (4.28) with PI boundary control (4.11)-(4.12) and state (ρ∗, v∗) =
(120, 70).

Fig. 6. The evolution of v of the linearized ARZ model (4.28) with PI boundary control (4.11)-(4.12) and state (ρ∗, v∗) =
(120, 70).

Using the PI boundary controller (4.11)-(4.12) with the proportional matrix Kp of (4.22) and the new integral
matrix Ki of (4.30), and solving the inequality conditions (i), (ii

′′
) of Corollary 3.7 for the linearized system

(4.29), µ = 0.01, we have the following matrices

P1 =

[
0.0070 0
? 0.0215

]
,(4.31)

P2 =

[
2.1510 −0.4688
? 2.8758

]
,(4.32)

P3 =

[
0.0335 0.0018
−0.0204 0.1127

]
.(4.33)

Using the same initial condition (4.27) and the same constant disturbance, Figs. 5, 6 and 7 show the
evolution of the state variables of the linearized ARZ model (4.28) with the PI boundary control. It is clearly
find that the closed-loop system has a faster respondence speed than the nonlinear ARZ model (4.7), as we
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Fig. 7. The evolution of the integral of the boundary output w(L, t) of the linearized ARZ model (4.28).

choose a bigger integral matrix Ki of (4.30), and almost arrive the state (ρ∗, v∗) in the finite time of about 0.4
hour.

4.4. Comparison with Backstepping Method. In this subsection, we make a comparison between
the Lyapunov approach and the backstepping method for the boundary control of the linearized ARZ model.
The boundary control of the linear hyperbolic system of balance laws has been considered by means of the
backstepping method in [8, 20]. The diagram of the control model is illustrated in Fig. 8. In this setting, only
the on-ramp flux rb(t) is the command signal.

Applying the assumption that the downstream of the freeway section x > L keeps the flux constant (see
[33]), we have the boundary condition at x = L,

z̃(L, t) = qw̃(L, t), q = −λ1

λ2
.(4.34)

Also considering the flow-conserving at the inlet of the freeway section

pin + p̄+ rb(t) = ρ(0, t)v(0, t),(4.35)

we have the second boundary condition at x = 0,

w̃(0, t) =
1

q
z̃(0, t) +

a

v∗
rb(t) +

ap̄

v∗
.(4.36)

To get the normal form of the 2× 2 linear hyperbolic systems in [8], we define the change of variables

ε1 = exp

(
x

τλ1

)
w̃,(4.37)

ε2 = z̃.(4.38)

for all x ∈ [0, L]. Then the system (4.28)-(4.29) and (4.34)-(4.35) is transformed into the following system

ε1
t + λ1ε

1
x = 0,(4.39)

ε2
t − λ2ε

2
x = −1

τ
exp

(
− x

τλ1

)
ε1,(4.40)

ε2(L, t) = q exp

(
− L

τλ1

)
ε1(L, t),(4.41)

ε1(0, t) =
1

q
ε2(0, t) + U(t) +

ap̄

v∗
,(4.42)
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0 z̃ L

q

w̃rb(t)

Fig. 8. Diagram of the freeway control model with the backstepping method.

where the new control variable satisfies U(t) = a
v∗ rb(t).

In the next step, using a backstepping transformation, we map the system (4.39)-(4.42) to a target system
which is exponentially stable for the state (ρ∗, v∗).

Let us consider the backstepping transformation

α(x, t) = ε1(x, t)−
∫ L

x

K11(x, ς)ε1(ς, t)dς −
∫ L

x

K12(x, ς)ε2(ς, t)dς,(4.43)

β(x, t) = ε2(x, t)−
∫ L

x

K21(x, ς)ε1(ς, t)dς −
∫ L

x

K22(x, ς)ε2(ς, t)dς,(4.44)

where 0 ≤ ς ≤ x ≤ L, the kernels K11, K12, K21, and K22 are defined by a set of hyperbolic PDEs that can
be found in [8].

The transformation (4.43)-(4.44) is invertible and the inverse transformation can be expressed as follow

ε1(x, t) = α(x, t) +

∫ L

x

Lαα(x, ς)α(ς, t)dς +

∫ L

x

Lαβ(x, ς)β(ς, t)dς,(4.45)

ε2(x, t) = β(x, t) +

∫ L

x

Lβα(x, ς)α(ς, t)dς +

∫ L

x

Lββ(x, ς)β(ς, t)dς.(4.46)

where the kernels Lαα, Lαβ , Lβα, and Lββ belong to L2((0, L);Rn).
Under the boundary feedback control law

U(t) = −1

q

∫ L

0

Lβα(0, ς)α(t, ς)dς − 1

q

∫ L

0

Lββ(0, ς)β(t, ς)dς + ki

∫ t

0

(β(0, s)− α(0, s))ds,(4.47)

where the integral tuning parameter ki ∈ R, the transformation (4.43)-(4.44) maps the original system (4.39)-
(4.42) to the following target system

αt + λ1αx = 0,(4.48)
βt − λ2βx = 0,(4.49)

β(L, t) = q exp

(
− L

τλ1

)
α(L, t),(4.50)

α(0, t) =
1

q
β(0, t) + ki

∫ t

0

(β(0, s)− α(0, s))ds+
ap̄

v∗
.(4.51)

The necessary and sufficient condition (see [5, Theorem 1]) has been presented to guarantee the target
system (4.48)-(4.51) exponentially stable by choosing the satisfied integral tuning parameter ki.

Therefore, the original linearized ARZ model (4.28)-(4.29) and (4.34)-(4.35) is exponentially stable under
the feedback control law U(t). An explicit solution of the equations (4.45)-(4.46) can be found in [22] as

Lαα(x, ς) = 0,(4.52)
Lαβ(x, ς) = 0,(4.53)

Lβα(x, ς) =
1

τ(λ1 + λ2)
exp

(
− 1

τλ1

(
λ1x+ λ2ς

λ1 + λ2

))
,(4.54)

Lββ(x, ς) =
qλ1

τλ2(λ1 + λ2)
exp

(
−1

τ

(
x− ς
λ1 + λ2

))
.(4.55)
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Fig. 9. The evolution of ρ of the linearized ARZ model (4.28) with the backstepping control (4.47) and state (ρ∗, v∗) =
(120, 70).

Fig. 10. The evolution of v of the linearized ARZ model (4.28) with the backstepping control (4.47) and state (ρ∗, v∗) =
(120, 70).

Choosing the integral tuning parameter ki = 8, and under the same initial condition (4.27) and the same
constant disturbance p̄ = 420, Figs. 9 and 10 show the evolution of the state variables of the linearized ARZ
model (4.28) by using the backstepping control (4.47) as displayed in Fig. 11. The closed-loop system is
exponentially stable and converges to the steady state in the finite time about 1.5 hour.

Remark 4.1. As a result of the comparison, the PI boundary feedback control with the Lyapunov technique
has a obvious difference with the backstepping controller which is an infinite dimensional controller indeed.
The solutions of the kernel PDEs such as (4.43) and (4.44) have to be pre-computed. While, in our developed
boundary feedback stabilization there are only two tuning parameter matrices selected to satisfy a set of inequal-
ities (2.11) and (2.12). The advantages of the backstepping method can be further reviewed in the literature
[21] and [20].

5. Conclusion. We have addressed the issue of PI boundary stabilization of the quasilinear hyperbolic
system of balance laws in the H2-norm to suppress the static error of boundary conditions. The main con-
tribution is Theorem 2.3, in which the sufficient conditions are given as a set of matrix inequalities such that
the classical Cauchy solution exponentially converges. The theory contribution has been illustrated with the
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Fig. 11. The evolution of the backstepping control (4.47).

boundary control of the freeway traffic flow with uncertain traffic demand. PI boundary control by integrating
on-ramp metering and variable speed limit is designed to stabilize the ARZ traffic flow model. A natural
continuation of the work would be the extension to the cascade networks of freeway traffic and optimal control
such as the coordinated ramp metering of [26].

A. Proof of Lemma 3.4. Recall the definition of V2 in (3.3) and the definition of P1(x) in the statement
of Theorem 2.3: P1(x) = P1e

−2µx. The time derivative of V2(ξt) along the solutions of (3.19), (3.20) is

V̇2(ξt) = 2

∫ L

0

ξ>ttP1ξte
−2µxdx

= 2

∫ L

0

{
−Λ(ξ)ξtx − diag

[
∂Λ

∂ξ
(ξ)ξt

]
ξx +

∂B

∂ξ
(ξ)ξt

}>
P1ξte

−2µxdx(A.1)

Then, using an integration by parts, we get

V̇2(ξt) = T21 + T22,

with

T21 =
[
−ξ>t Λ(ξ)P1ξte

−2µx
]L
0
,(A.2)

T22 =

∫ L

0

{
ξ>t

(
−2µΛ(ξ)P1 +

∂Λ

∂ξ
(ξ)ξxP1 + 2P1

∂B

∂ξ
(ξ)

)
ξt − 2P1diag

[
∂Λ

∂ξ
(ξ)ξt

]
ξx

}
e−2µxdx.(A.3)

From the boundary condition (3.20), we have

T21 = −ξ>t (L, t)Λ(0)P1ξt(L, t)e
−2µL + [Kpξt(L, t) +KiξL(t)]>Λ(0)P1[Kpξt(L, t) +KiξL(t)]

+O
(
|ξt(L, t)|2|ξL(t)|+ |ξL(t)|2|ξt(L, t)|+ |ξL(t)|3; |ξL(t)|

)

=

[
ξL(t)
ξt(L, t)

]> [
K>i Λ(0)P1Ki K>i Λ(0)P1Kp

? K>p Λ(0)P1Kp − e−2µLΛ(0)P1

] [
ξL(t)
ξt(L, t)

]

+O
(
|ξt(L, t)|2|ξL(t)|+ |ξL(t)|2|ξt(L, t)|+ |ξL(t)|3; |ξL(t)|

)
.(A.4)
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Moreover, noting in particular that
∫ L

0
ξ>t

∂Λ
∂ξ (ξ)ξxP1ξte

−2µxdx = O
(∫ L

0
|ξt|2|ξx|dx; |ξ|0

)
= O

(∫ L
0
|ξt|3dx; |ξ|0|

)
,

we get with (A.3) that T22 is written as

T22 =

∫ L

0

ξ>t
[
−2µΛ(0)P1 +M>P1 + P1M

]
ξte
−2µxdx

+O

(∫ L

0

|ξt|2|ξ|+ |ξt|3dx; |ξ|0

)
.(A.5)

Then, V̇2(ξt) of (3.21) is derived by combining T21 of (A.4), and T22 of (A.5).
This concludes the proof of Lemma 3.4.

B. Proof of Lemma 3.5. Recall the definition of V3 in (3.4) and the definition of P1(x) in the statement
of Theorem 2.3: P1(x) = P1e

−2µx. The time derivative of V3(ξtt) along the solutions of (3.22), (3.23) is

V̇3(ξtt) = 2

∫ L

0

ξ>tttP1ξtte
−2µxdx

= 2

∫ L

0

[
−Λ(ξ)ξttx − 2diag

[
∂Λ

∂ξ
(ξ)ξt

]
ξtx − diag

[
∂Λ

∂ξ
(ξ)ξt

]

t

ξx

+
∂B

∂ξ
(ξ)ξtt +

[
∂B

∂ξ
(ξ)

]

t

ξt

]>
P1ξtte

−2µxdx(B.1)

Then, using the integration by parts, we get

V̇3(ξtt) = T31 + T32,

with

T31 =
[
−ξ>ttΛ(ξ)P1ξtte

−2µx
]L
0
,(B.2)

T32 =

∫ L

0

ξ>tt

[
−2µΛ(ξ)P1 +

∂Λ

∂ξ
(ξ)ξxP1 + 2P1

∂B

∂ξ
(ξ)

]
ξtte
−2µxdx

−2

∫ L

0

ξ>ttP1

{
2diag

[
∂Λ

∂ξ
(ξ)ξt

]
ξtx + diag

[
∂Λ

∂ξ
(ξ)ξt

]

t

ξx −
[
∂B

∂ξ
(ξ)

]

t

ξt

}
e−2µxdx.(B.3)

From (3.23), we have

T31 = −ξ>tt (L, t)Λ(0)P1ξtt(L, t)e
−2µL + [Kpξtt(L, t) +Kiξt(L, t)]

>Λ(0)P1[Kpξtt(L, t) +Kiξt(L, t)]

+O
(
|ξtt(L, t)|2|ξL(t)|+ |ξt(L, t)|2|ξL(t)|+ |ξtt(L, t)||ξt(L, t)||ξL(t)|; |ξL(t)|

)

=

[
ξt(L, t)
ξtt(L, t)

]> [
K>i Λ(0)P1Ki K>i Λ(0)P1Kp

? K>p Λ(0)P1Kp − e−2µLΛ(0)P1

] [
ξt(L, t)
ξtt(L, t)

]

+O
(
|ξtt(L, t)|2|ξL(t)|+ |ξt(L, t)|2|ξL(t)|+ |ξtt(L, t)||ξt(L, t)||ξL(t)|; |ξL(t)|

)
.(B.4)

Moreover, noting in particular that
∫ L

0
ξ>ttP1

{
2diag

[
∂Λ
∂ξ (ξ)ξt

]
ξtx

}
e−2µxdx = O

(∫ L
0
|ξtt||ξt||ξtx|dx; |ξ|0

)
=

O
(∫ L

0
|ξtt|2|ξt|dx; |ξ|0|

)
, we get with (B.3) that T32 is written as

T32 =

∫ L

0

ξ>tt
[
M>P1 + P1M − 2µΛ(0)P1

]
ξtte
−2µxdx

+O

(∫ L

0

(|ξtt|2|ξ|+ |ξtt|2|ξt|+ |ξtt||ξt|2)dx; |ξt|0 + |ξ|0

)
.(B.5)

Then, V̇3(ξtt) of (3.24) is derived by combining T31 of (B.4), and T32 of (B.5).
This concludes the proof of Lemma 3.5.
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