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Abstract
This paper describes the theoretical principles and experimental results of reinforcement learning algorithms embedded into IoT
devices (Internet of Things), in order to tackle the problem of radio collision mitigation in ISM unlicensed bands. Multi-armed
bandit (MAB) learning algorithms are used here to improve both the IoT network capability to support the expected massive
number of objects and the energetic autonomy of the IoT devices. We first illustrate the efficiency of the proposed approach in a
proof-of-concept, based on USRP software radio platforms operating on real radio signals. It shows how collisions with other RF
signals are diminished for IoT devices that use MAB learning. Then we describe the first implementation of such algorithms on
LoRa devices operating in a real LoRaWAN network at 868 MHz. We named this solution IoTligent. IoTligent does not add
neither processing overhead, so it can be run into the IoT devices, nor network overhead, so that it requires no change to
LoRaWAN protocol. Real-life experiments done in a real LoRa network show that IoTligent devices’ battery life can be extended
by a factor of 2, in the scenarios we faced during our experiment. Finally we submit IoTligent devices to very constrained
conditions that are expected in the future with the growing number of IoT devices, by generating an artificial IoT massive radio
traffic in anechoic chamber. We show that IoTligent devices can cope with spectrum scarcity that will occur at that time in
unlicensed bands.
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1 Introduction

Wireless Internet of Things (IoT) is based on low-power wide-
area networks (LPWAN) able to interconnect low-cost and
mostly battery-powered devices over long ranges to an access
point to the Internet. This is made possible by the use of low
bit rates, low-bandwidth machine-to-machine (M2M) types
communications. After the expansion of human-to-human
mobile communications in the 1990s and then human to the
Internet communications in the 2000s, now has come the era
of M2M and especially Machine to the Internet (M2I). M2I is

expected to experience a tremendous expansion in the very
next few years, through IoT networks.

We can consider two categories of IoT networks. First are
the cellular IoT networks, deployed by mobile phone opera-
tors, running 3GPP standards such as EC-GSM IoT, LTE-
Cat0, LTE-Cat M1, NB-IoT, or expected 5G IoT. These stan-
dards will be supported in licensed frequency bands operated
for cellular telephony. The second category of IoT wireless
networks uses unlicensed bands for wireless links, also called
ISM bands, which are open to the use for industrial, scientific,
and medical applications. The most commonly used ISM
bands are 434 MHz and 868 MHz in Europe and Africa and
915 MHz in America, with worldwide bands at 2.4 GHz and
5.8 GHz. Due to the constraints in terms of range and band-
width, the 868 MHz and 915 MHz bands are mostly preferred
for IoT networks. They communicate through protocols based
on very different radio physical layer and medium access con-
trol specifications. For instance, the current two most well-
known IoT standards are LoRaWAN [1], based on a chirp
spread-spectrum solution, and Sigfox [2], based on an ultra-
narrow band technology.
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In cellular licensed IoT networks, only one transmission
may occur in a given place, at a given time, and in a given
frequency band, between any operated device and the radio
access point, scheduled by the cellular network. However, in
unlicensed bands, IoT networks face very different and spe-
cific conditions. Many IoT networks can be deployed in the
same area and overlap geographically, regardless if they are
using the same protocol or not. Even if there exist rules to be
followed in unlicensed bands, such as transmit power mask
and duty cycle limits in the 434, 868, and 915 MHz band, for
instance, many radio transmissions may collide at the same
place, time, and frequency, as no global coordination is
achieved.

The goal of this paper is to present the original IoTligent
approach that embeds very low-cost machine learning algo-
rithms inside IoT devices in order to make them smart. We
named these IoT “intelligent devices”: IoTligent [3].
Intelligence here is used in order to mitigate radio collisions
and other jamming effects (propagation, malicious attacks,
etc.) in the ISM bands. Low cost here is to be considered in
terms of processing power, processing resources, memory
footprint, protocol overhead, and frequency resources usage.

After exposing the issues we target in this work and the
corresponding hypothesis in Section 2, Section 3 reminds the
foundation of the learning algorithms used in IoTligent. Then,
we show how we validated our approach through several
gradual stages of experimentations. Measurements 1 of
Section 4 give results of a proof-of-concept made in laborato-
ry conditions using SDR (software-defined radio) platforms in
order to validate the learning approach. Then, Section 5 gives
the experimental architecture and hardware configuration
used for measurement 2 campaign presented in Section 6.
Experiments have been realized on LoRa IoT devices operat-
ed in real radio conditions of an operating LoRaWAN net-
work in the city of Rennes (France). In Section 7, we present
measurement 3 made in an anechoic chamber with an emulat-
ed radio traffic generator. We reproduce here the future very
dense IoT networks radio conditions and validate the pro-
posed learning approach for future ultra-dense LoRaWAN
networks.

2 Collisions, hypothesis, and advantages
of decentralization

2.1 Collisions vs. autonomy

Radio collisions are the main drawback for IoT in unlicensed
band, both in terms of battery autonomy and also of IoT via-
bility in the ISM bands itself. Indeed, collisions may cause
(many) retransmissions at the cost of an increase of the RF
(radio frequency) contention and may lead to a lower battery
lifetime of the devices. Even worse, this could lead to a total

failure of the IoT service, either because IoT devices cannot
succeed in sending any data to the network or because multi-
ple repetitions could make them consume all their energy
much faster than expected.

2.2 Analysis of collisions

Radio collisions will be the weak point of LPWAN IoT net-
works operating in the unlicensed bands. Different kinds of
collisions exist, as collision may occur with:

& Other IoT devices of the same network, as several net-
works covering the same area are not coordinated. This
can occur between IoT devices uplink (UL) transmissions
and between IoT UL and gateway downlink (DL) trans-
missions towards IoT devices.

& Other IoT devices of surrounding IoT networks using the
same IoT standard. This can occur both in UL and DL, as
surrounding IoT gateways of different networks are not
coordinated. They could use the same channels or partly
same and partly different channels.

& Other IoT radio signals using other IoT radio standards
with different channels, bandwidth, users’ repartition, etc.

& Other radio signals present in the ISM bands that are not
IoT signals. By definition, they use completely different
rules than IoT. They can be considered “jammers” from
the IoT network point of view.

It is also important to note that, as each IoT standard uses its
own rules for channeling and bandwidth, all this leads to an
erratic spectrum usage, which cannot be planned, and has to
be learnt in vivo. However, unlicensed band does not mean
un-ruled band (there are for duty cycle, power, etc.), but they
are more exposed to the non-respect of these few rules as
regulation is relaxed and, thus, controls as well.

2.3 Other issues

Other issues can affect IoT transmission success. First one is
propagation. Depending on the specific environment condi-
tions around each device, it is unpredictable to know if radio
propagation does affect all channels in the same way. Then, a
channel facing bad propagation conditions would make IoT
network to suffer from the same effect as made by collisions.
Then electromagnetic circumstances could be disturbed in the
area of devices, due to the proximity of other electric or elec-
tronic devices suffering from leakage radiations, as in factory
environment, for instance. IoT signals may be very weak, and
receivers should have a very low sensitivity in order to con-
sume as less power as possible. Last but not least, malicious
attacks could be made in the radio domain, but they could
hardly cover all ISM bands and be permanent in order to stay
discrete enough and undetected.
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2.4 A device side solution for spectrum management

Our learning approach can help IoT devices to cope with all
this kind of disturbances which act as jammers for the IoT
spectrum in unlicensed bands. It imposes no change on the
usual settings of IoT protocols, as, for instance, LoRaWAN
[1]. It means that it imposes no extra retransmission, no data to
be added in frames, no extra power consumption, etc. to be
done. The only condition is that the proposed solution should
work with the acknowledged (ACK) mode for IoT. The un-
derlying hypothesis is that channels’ jamming (even if there
are no official channels in ISM bands) provoked by surround-
ing radio signals (IoT or not) and propagation effects is not
equally balanced. In other words, some ISM sub-bands are
less occupied or less jammed than others. However, it is not
possible to predict it in time and space, by a centralized unit,
so it has to be learnt on the fly, in a decentralized manner, i.e.,
on device’s side.

The considered learning algorithms are a kind of artificial
intelligence (AI) algorithms that are compatible with the con-
straint of low complexity of IoT devices, as we explain below.
It is indeed muchmore efficient to implement a radio collision
mitigation approach on the device side, as devices may be
quite far away from gateways and suffer from different radio
and jamming/co-existence conditions. But they are the place
where everyWatt counts at transmission and where sensitivity
should be the best at reception, as no extra processing can be
afforded.

2.5 Advantages of the proposed solution

The proposed approach is based on reinforcement learning
algorithms studied in [4] and experimentally validated on real
radio signals for cognitive radio and especially for opportu-
nistic spectrum access (OSA) in [5]. We assert that, as for
OSA, the IoT spectrum access issue can be modeled as a
multi-armed bandit (MAB) problem [6] [7]. Reinforcement
learning is based on a feedback loop that gives a success/
failure measure of experience. In the IoT context, we propose
to use the acknowledgement (ACK) sent by the gateway to the
IoT device as a binary reward (1/0 for presence/absence of
ACK). A reward of “1” means that a message has been suc-
cessfully transmitted from the device to the gateway on the
uplink channel, as well as the ACK message has been suc-
cessfully transmitted from the gateway and received by the
device on the same channel in downlink. A reward of “0”
means that some collision, or other issue, happened either on
uplink or downlink, so that ACK has not been received by the
IoT device. Every device aims at maximizing its transmission
success rate or, equivalently, at maximizing its cumulated re-
ward (i.e., number of received ACK).

The main advantages of our solution are that:

& Bandit algorithms have strong mathematical proofs of
convergence.

& Proofs are verified in real radio conditions, thanks to the
good matching between models and reality.

& Learning converges very fast in real radio applications
experiments [8].

& Implementation and execution both require very low pro-
cessing and memory overhead, so that it is possible to add
the proposed approach in IoT devices for a negligible
complexity (processing, hardware, memory) and negligi-
ble extra energy consumption overhead.

& Learning can efficiently start from scratch, so there is no
need for any prior training when deploying the IoT device
(i.e., no need to lose some time to acquire this knowledge
before operation really starts).

& Using such learning algorithms will never give worse re-
sults than a state-of-the-art random solution [9], even at
the very beginning of the learning process, i.e., before
learning brings a clear advantage.

Hence, we argue that the proposed approach can adapt to
any kind of radio context, and we also note that:

& The stationarity of the environment is a requirement for
the proofs of convergence, but if conditions change occa-
sionally, convergence is so fast that a simple solution con-
sists in resetting learning from time to time [9] (note that
there also exists adaptive versions).

& No coordination is required between devices, but benefits
decrease with the number of devices using the proposed
solution, when it represents a great majority of devices
(see the solutions presented in [9] [10]).

& As soon as a device is running in acknowledged mode, no
overhead is added, neither in terms of protocol nor extra
bits to be put into the LoRaWAN frames in uplink or
downlink. A received ACK yields a reward of 1, and no
ACK yields a reward of 0, without needing to change the
content of the ACK messages.

3 MAB model and learning solutions

Wemodel the IoT wireless spectrum issue as a MAB problem
[6], and we propose to use bandit algorithms [7] at the IoT
device side to solve this issue.

3.1 System model

We consider the systemmodel presented in Fig. 1, where a set
of devices sends uplink packets to the IoT network gateway.

The communications between IoT devices and the gateway
are done through a simple ALOHA-based protocol, where
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devices transmit uplink packets of fixed duration, whenever
they want. The devices can transmit their packets in one of the
K ≥ 2 channels. Channels are predefined (in frequency), but
time is unslotted. In the case where the gateway receives an
uplink message in one channel, it transmits an ACK response
in downlink to the corresponding end device in the same
channel, after a fixed delay. These communications operate
in unlicensed ISM bands, and consequently, as stated in the
previous section, they suffer in particular from interferences
generated by uncoordinated neighboring networks. This inter-
fering traffic is uncontrolled and can be unevenly distributed
over the K different channels.

We consider the network from the point of view of a single
IoT device. Every time slot has to communicate with the gate-
way (at each transmission t ≥ 1, t ϵ ℕ), it has to choose one
channel, denoted asC(t) = k ϵ {1, . . . ,K}. After transmission,
the IoT device starts to wait in the same channel C(t) for an
ACK sent by the gateway. Before sending another message
(i.e., at time t + 1), the IoT device knows if it received this
ACKmessage or not. For this reason, selecting the channel (or
arm) k at time t yields a (random) feedback, called a reward,
rk(t) ϵ {0, 1}, being 0 if no ACK was received after the pre-
vious message or 1 if ACK was successfully received. The
goal of the IoT device is to minimize its packet loss ratio or,
equivalently, to maximize its successful transmission rate,
which here is its cumulative reward, as it is usually done in
MAB problems [6] [7] [11]:

r1…T∶ ¼ ∑
T

t¼1
rC tð Þ tð Þ ð1Þ

This problem is a special case of the so-called “stochastic”
MAB, where the sequence of rewards drawn from a given arm
k is assumed to be i.i.d., under some distribution νk, that has a

mean μk. Several types of reward distributions have been con-
sidered in the literature, for example, distributions that belong
to a one-dimensional exponential family (e.g., Gaussian, ex-
ponential, Poisson or Bernoulli distributions). As rewards are
binary in our model, we consider only Bernoulli distributions,
in which rk(t) ∼ Bern (μk), that is, rk(t) ϵ {0, 1} and ℙ(rk(t) = 1)
= μk ϵ [0, 1]. Contrary to many previous works done in the
cognitive radio field (for instance, in opportunistic spectrum
access [12]), the reward rk(t) does not come from a sensing
phase before sending the t-th message, as it would do for any
“listen-before-talk” model. Rewards come from receiving an
ACK from the gateway, between the t-th and t + 1-th
messages.

The problem parameters μ1, ..., μK are of course unknown
to the IoT device, so to maximize its cumulated reward, it
must learn the distributions of the channels, in order to be able
to progressively focus on the best arm (i.e., the arm with larg-
est mean). This requires to tackle the so-called exploration-
exploitation dilemma: a player (here, an IoT device) has to try
all arms (here, channels), a sufficient number of times to get a
robust estimate of their qualities, while not selecting the worst
arms too much.

We use here the UCB1 algorithm which is known to be
efficient for stationary i.i.d. rewards and is shown below.

3.2 The UCB1 algorithm

A first naive approach could be to use the empirical mean
estimator of the rewards for each of the K channels and select
the channel with the highest estimated mean at each time.
However, this “greedy” approach is known to fail dramatical-
ly [6]. Indeed, with this policy, the selection of arms is highly
dependent on the first draws: if the first transmission in one
channel fails and the first one on other channels succeeds, the

Fig. 1 System model used for
IoT, with intelligent IoT devices
that are able to dynamically set
their transmission channel, thanks
to a learning algorithm, in order to
minimize collisions and
interference from other radio
signals in the unlicensed ISM
band, especially other IoT
networks which will be
responsible of most of future
traffic
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device will never use the first channel again, even it is the best
one, which is the most available one in average.

Upper confidence bounds (UCB) algorithms instead use a
confidence interval on the unknown mean μk of each arm,
which can be viewed as adding a “bonus” exploration to the
empirical mean. They follow the “optimism-in-face-of-uncer-
tainty” principle: at each step, they play according to the best
model, by selecting the statistically best possible arm (i.e., the
highest upper confidence bound). More formally, for one IoT
device, we denote by

ð2Þ

the number of times the channel kwas selected up-to time t
≥ 1. The empirical mean estimator of channel k is defined as
the mean reward obtained by selecting it up to time t,

ð3Þ

For UCB1 [7], the confidence term is

Ak tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αlog tð Þ=Tk tð Þ
p

; ð4Þ

and the upper confidence bound is the sum of the confi-
dence term and the empirical mean,

Bk tð Þ ¼ X k tð Þ þ Ak tð Þ; ð5Þ

which is used by the device to decide the channel for com-
municating at time step t + 1:

C t þ 1ð Þ ¼ argmax
1≤ k ≤K

Bk tð Þ ð6Þ

The UCB1 algorithm is called an index policy. It uses
a parameter α > 0, originally set to 2 [13], but empiri-
cally α = 1/2 is known to work better (uniformly across
problems), and α ≥ 1/2 is advised by the theory [13].
This algorithm is simple to implement and to use in
practice, even on embedded microprocessors with limited
computation and memory capabilities. In our model, ev-
ery IoT device implements its own UCB1 algorithm, in-
dependently. For one IoT device, the time t is the total
number of sent messages from the beginning, as rewards
are only obtained after a transmission. Different devices
do not share this time index t as time is not slotted.

3.3 Multiplayer bandit issue

We can prove that one single intelligent IoT can improve
consequently its performance in LPWAN IoT networks using
unlicensed band [14]. But we have also shown that even if
there are a lot of intelligent IoT devices and the model of other
surrounding IoT devices does not stay purely stochastic,

learning still brings improvement [9] [14]. Further theoretical
developments on this direction are an interesting future work.

4 Measurement 1: IoT proof-of-concept

4.1 Preceding results

Bandit algorithms have been identified more than 10 years
ago as efficient solutions for many cognitive radio problems,
as introduced in [4]. In particular, the very trendy dynamic
spectrum access (DSA [12]) issue has been identified as a
multi-armed bandit (MAB) problem in [5]. The first imple-
mentation validating the bandit algorithms on real radio sig-
nals was presented 5 years ago for opportunistic spectrum
access (OSA) in [8]. Reinforcement learning algorithms, such
as UCB1, were firstly used, but any kind of bandit algorithm
[15] [16] [17] could be used indifferently. Their efficiency and
implementation complexity can be considered criterion to de-
cide which algorithm to implement. In the context of IoT,
MALIN [18] is the first proof-of-concept (PoC) demonstrat-
ing the feasibility of using learning algorithms on the IoT
device side, on real radio signals in lab conditions.

4.2 PoC setup

As illustrated in Fig. 2, this PoC is based on 4 USRP
(Universal Software Radio Platforms) from Ettus Research
and National Instrument1 transmitting in the 434 MHz ISM
bando (in order to not interfere with surrounding IoT networks
usually deployed at 868MHz). The development is made with
GNU Radio2 software, and the source code of the PoC is
published on-line3, in order to ease the full reproducibility of
our results. We have not implemented a real IoT standard in
this PoC, in order to show that it can be applicable for any IoT
standard. However, global characteristics are rather corre-
sponding to the LoRa context (not ultra-narrow band, reduced
number of channels, frame duration around a few hundreds of
milliseconds, etc.).

One or two (or more) USRP platforms are playing the role
of IoT devices that can run (or not) the proposed learning
algorithms, as platforms PF#3 and PF#4 of Fig. 2. So PF#3
and/or PH#4 (etc.) can play the role of one IoTligent device.
They transmit at their own initiative some very light modulat-
ed information (using QPSK), in order to be identified by the
gateway, and then wait during one second for the gateway
ACK. Both uplink transmissions and downlink receptions
use the same frequency channel.Whether the ACK is received

1 See https://www.ettus.com/ for more details.
2 See https://www.gnuradio.org/ for more details.
3 See https://bitbucket.org/scee_ietr/malin-multi-armed-bandit-learning-for-
iot-networks-with-grc. The code is released publicly under the open-source
GPLv3 license.
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or not, the learning algorithm updates its knowledge about the
channel used during this iteration.

USRP platform PF#2 is a traffic generator that emulates as
much IoT traffic as we want, in order to be able to tune each
channel’s load independently. Traffic laws can be pro-
grammed independently on each channel on demand. For in-
stance, we typically choose random i.i.d. channel loads rang-
ing from 0 to 20%.

Last USRP PF#1 is a gateway (GW) that is continuously
scanning all the K channels and monitors the IoT traffic com-
posed of the artificial signals produced by the traffic generator
and the IoT devices signals. The gateway has the ability to
answer to the IoT devices, by sending back to them an ACK
message, which contains their identifier (actually, the symbols
corresponding to the QPSK complex conjugate of their
identifier).

4.3 PoC results

The number of IoT channelsK is a parameter, and we can set it
to 4, 8, and 16 channels in our experiments, but there is no
limitation. For the sake of clarity in the figures, we give ex-
amples below with 4 channels that are separated by empty
channels, but they could be contiguous with no change neither
in the implementation nor in the results. Only one IoTligent
device is running in this experiment.

We can see on Fig. 3 a time-frequency waterfall view cap-
tured by the gateway, where we can observe the RF traffic in
the K= 4 channels. The y-axis for the time is vertical and goes
down, and frequency is on the x-axis. The difference of colors
on the waterfall view is a difference of received power, due to
the distance of the transmitters to the gateway receiver antenna
during the experiment. The gateway transmitter antenna is
very close so signals transmitted by the gateway are red. The
traffic generator and IoT devices are a little bit further away,
so the gateway received weaker signals from them: one is blue
and the other green, which reveals a low difference.

In this experiment, we can see on Fig. 3 that channel #0 on
the left hand side faces a dense IoT traffic, which appears as
blue short transmissions (produced by the traffic generator).
Some others uplink transmissions appear on channel #1 (sec-
ond left hand side), but we do not see any blue short messages
on channel #2 (third left) and #3 (on the right hand side, empty
in this measure). However, we see on these channels longer
messages of two kinds: green messages which correspond to
IoT device transmissions, and red messages that are the an-
swer done by the gateway. In order to rapidly have results in
the demo, we make IoT device transmit roughly every 5 s, for
a message duration of 1 s. Then when an IoT device transmits
a message, the gateway should answer and send an ACK to
the IoT device within 1 s, if the gateway was able to demod-
ulate the signal, i.e., if there is no collision in the radio chan-
nel. For instance, we can see on Fig. 3 that the IoT device
moved from channel #2 to channel #1, and at each of its
transmission, the gateway was able to answer, by successfully
sending an ACK response.

Fig. 2 PoC architecture
composed of 4 USRP
platforms programmed with GRC
(GNU Radio Companion): PF#1,
gateway; PF#2, traffic generator;
PF#3, 4, etc., IoT devices
(IoTligent devices if they run the
learning algorithm or usual
devices if they make a random
access to the channels).

Fig. 3 Spectrum waterfall view on GRC received at gateway side in a 4
channels example (only 3 occupied in this picture), during experiments.
Time is in y-axis (going down) and frequency in x-axis. Blue short trans-
missions are those produced by the traffic generator, green blocks are our
IoT transmissions, and red blocks are the gateway transmissions itself
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Fig. 4 gives the perspective of the IoTligent device, at a
different moment for the same scenario. Then we observe that
colors have changed, as the received power is now taken at the
device side. The IoT device transmitter antenna is now very
close, so signals transmitted by the IoT device are red. The
traffic generator (representing other IoT devices’ traffic) and
then the gateway all are a little bit further away, so the IoT
device received weaker signals from all of them, one is blue
and the other green but inversed. However, it is not so obvi-
ous, so it is better to consider the message duration in the y-
axis indeed.

We can see on Fig. 4 that if we use the same scenario of
traffic as in Fig. 3, but at a different time, i.e., with a very
dense traffic on channel #0, less dense on channel #1, even
less dense on channel #2, then transmission appears on chan-
nel #3, but it is indeed just even less dense. At that time of the
experiment, our IoTligent device is moving from channel #2,
where maybe it faced some collisions in the downlink trans-
mission of ACK, to channel #3, where several successive
transmissions and receptions seem to occur.

Figure 5 is a screenshot taken at some moment during
an experiment that gives the details of the learning algo-
rithm operation embedded in IoTligent device. We can
see in the top-left red data the number of selections of
each channel. There is a clear disequilibrium with channel
#3 that has been much more (17 times) used than channel
#2 (8 times), itself more used than channel #1 (6 times)
and channel #0 (only once). This reveals the effect of the
learning algorithm. It has analyzed which channels are
more occupied and more disturbed by other users of the
band (emulated here by the traffic generator). The top-
right green and therefore the bottom-right blue data ex-
plain such a choice. Channel #4 has known 16 successes
(over 17), so a rate of 94%. We remind that successes
mean that the IoT device received on that channel 16
ACK from the gateway after transmitting 17 times in this
channel. So just one “exchange” was lost, either in UL or

in DL, due to a collision with some interfering signal in
the channel. We can see on the opposite that no success
has been obtained for channel #0, so it has a 0% rate.
UCB data, in bottom-left green part, are harder to follow,
as UCB1 indexes rapidly converge to very close values,
but at each transmission, the IoT device chooses channel
with highest UCB1 index, as in (6).

5 Experimental architecture and hardware
configuration for real LoRa measurements

The next step after the previously exposed proof-of-
concept consists in implementing the same approach in
real conditions of operation, that is, in a real IoT net-
work and not only in laboratory conditions. We target
here a LoRaWAN [1] [19] IoT context in the 868 MHz
band, but it could be done with any other IoT standard,
as soon as it uses ACK feedback. We describe the in-
volved implementation details in this section.

As far as the authors know, this is the first implemen-
tation of decentralized artificial intelligence algorithms in
IoT devices to tackle the IoT spectrum contention mitiga-
tion problem. It is first necessary to remind quickly how a
LoRaWAN network is constituted. We are using here a
real LoRa network in the European ISM band, at 868
MHz.

5.1 LoRaWAN architecture

The implementation of the learning algorithm we propose is
decentralized, which means that it takes only place on the
LoRa device side. As stated earlier, it impacts no aspect of
the LoRaWAN network. We explain below a little bit more
the LoRaWAN network side configuration, and we refer to
[19] for more details. LoRaWAN network, as any other IoT
network, can be summarized by four main elements, as shown
in Fig. 6:

& LoRa IoT devices (IoTligent devices run the UCB1 algo-
rithm here)

& One or more LoRa gateway(s) receiving all LoRa radio
signals in their radio range

& A LoRa network server (LNS) that discriminates devices
subscribing to its network from others

& An Application Server (AS) that receives the data sent by
devices and sends back ACK to the devices (mandatory
here)

At their very first transmission, the IoT devices are
associated to a given LoRaWAN network during a “join
phase,” through a gateway of this network. The LNS is

Fig. 4 Spectrumwaterfall view on GRC received at IoTligent device side
in a 4 channels example, during experiments. Time is in y-axis (going
down) and frequency in x-axis. Green short transmissions are those pro-
duced by the traffic generator, red blocks are the IoT device transmis-
sions, and blue blocks are gateway transmissions.
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in charge of the association, as explained below.
Finally, data extracted from radio signals, sent by the
IoT devices, are sent to the application server (AS) that
manages data (i.e., processes them, sends them to a

storing place in the cloud and/or an application). Then
the role of the AS is to launch the sending of an ACK
to the IoT device, through LNS and a gateway, down to
the IoT device.

Fig. 5 Live results enabling to
monitor the learning algorithm
evolution at the IoTligent device
side in a K = 4 channels example.
Top-left red, number of trials on
each channel; top-right green,
number of successes on each
channel (ACK received by IoT
device); bottom-left green, UCB1

index Bk(t) for each channel; and
bottom-right blue, success rate on
each channel

Fig. 6 LoRaWAN network parts:
IoT devices, gateways, LNS, and
AS [19]
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5.2 Device side

For this experiment, we implement an IoT device by using a
Pycom card4 composed of an Expansion Board and a LoPy 4
module which can support LoRa wireless connectivity, as
shown on Fig. 7. The Pycom card is programmed in the
MicroPython language. The frequency channels used in the
experiments are those authorized in France, the country of
experimentation. The IoTligent proposal is agnostic to K, the
number of channels in the standard, and thus, it can be used in
any country.

We had to make several modifications in the LoRa library
written in C and the ESP32 chip library written in
MicroPython. By default indeed, the Pycom configuration
for Europe is to use only 3 channels in a random access man-
ner: 868.1, 868.3, and 868.5 MHz (with a duty cycle of 1%).
So, for measurement 3 of Section 7 with more channels in-
volved, we added a custom configuration region in the LoRa
library with 16 channels, covering the band from 865.9 to
868.9 MHz. Moreover, we added the possibility for ESP32
chip to force a channel in LORAWANmode, what is necessary
in order to followUCB1 policy for both measurements 2 and 3
of the two following sections.

5.3 LoRa gateways

For measurement 2 of the next Section 6, we use outdoor
LoRa gateways operated by Acklio Company that has several
gateways deployed in the city of Rennes, where the experi-
ments were made. As we did not have access to their config-
uration, only the 3 default channels have been used for this
measurement campaign.

For measurement 3 of Section 7, we use our own indoor
gateway shown in Fig. 8, whose channel parameters could be
changed in order to adapt the number of channels depending
on the measurement needs. This is done by changing the con-
figuration file of the Semtech SX1301 chip which manages
two radio SX1257 chips. It consists in choosing the central
frequency of the two radio chips and choosing the offset in an
interval of ± 500 k Hz, for each channel.

5.4 Network side

We have access to the LNS provided by Acklio Company.
The LNS sends the received messages to an AS which is a
Linux server, running in the cloud. The AS is running a
Python program that enables to display data and metadata
(i.e., frequency, time of reception, etc.). This programs also
contains instructions to send an ACK to the device, using in
DL the same frequency used by the IoT device at UL.

6Measurement 2: IoTligent operation in a real
LoRaWAN network

6.1 Device side configuration

We use the LORAWAN mode at 868 MHz with an over-the-
air-activation (OTAA) using app_EUI and app_key keys, as
shown in the following MicroPython code for the Pycom
device:

The transmit channel frequency is then chosen in a set of K
channels, which is set here atK= 3 in this experiment.We use
standard Europe UL channels with the following frequency
table (in Hz):

The IoTligent device infinite while loop is started, running
the algorithm presented in the Section 3.2 and [5], in order to
choose which frequency to be selected at each iteration before

4 Pycom documentation: https://GitHub.com/PyCom/PyCom-libraries

Fig. 7 Pycom module composed of a LoPy4 and an Expansion Board

Fig. 8 Indoor gateway used for measurement 3 experiments on the left
side and packaged Pycom device on the right side

Ann. Telecommun.
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executing a send operation. AnACK is then expected from the
network side in non-blocking mode so that when ACK is not
received, the device just updates its learning data and still goes
on.

6.2 Network side – LoRa network server (LNS)

The different IoTligent devices should be declared to the LNS,
with at least the following information:

& devEUI: ID of the device obtained by executing a «
get_id.py » program4 on the Pycom device itself.

& appEUI: which should correspond to app_eui chosen in
the Pycom device.

& appKey: which should correspond to app_key chosen in
the Pycom device.

& Other parameters are let by default at SF = 12 (spreading
factor) and bandwidth BW = 125 kHz.

The address of the AS is also specified in Connectors, as
well as the mode used to send data between LNS and AS (we
chose http callback here).

6.3 Network side – application server (AS)

The AS runs a Python program that receives data from the
LNS, as well as LoRa metadata with all parameters of the
LoRaWAN transmission (frequency, SF, BW, time of arrival,
etc.). This program also sends an ACK message to the device
in DL. First, an acknowledgement attempt is sent by default at
the same frequency than the message transmitted by the de-
vice it answers to. Then we block any other retransmission.
This is exactly what is necessary for the learning process of
IoTligent:

& To use the same channel in both UL and DL
& To avoid retransmission in order to increase the battery

durations of devices on the one hand and radio frequency
overload on the other hand.

6.4 Learning algorithm in Pycom device

The learning algorithms used in IoTligent are (any) bandit
algorithms, such as those first used for cognitive radio
dynamic spectrum access in [5], and implemented in the
exhaustive open-source SMPyBandits Python library [17].

Fig. 9 Evolution of the Tk index
through time, as learning happens

Fig. 10 Evolution of the Xk

empirical mean through time
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We take here the example of UCB1 algorithm, as present-
ed above. We have chosen this algorithm as it is known to
be efficient and to converge quickly and also for its ease
of implementation. The only data necessary to be stored
for the UCB1 algorithm are:

& An iteration index initialized at 0: it
& A table of size N (the number of channels, 3 in this imple-

mentation example, but it could be arbitrarily high) for the
number of times each channel has been chosen,
representing Tk of (2): Tk[]

& Another table of size N for the empirical mean of success
of each channel, i.e., Xk(t) of (3): Xk[]

From the point of view of the learning algorithm, a success
occurs when an IoTligent device receives an ACK from the
IoT network (as explained above), which means that the cur-
rently used frequency channel suffered no collision in both
UL and DL. Otherwise, a failure occurred. The update of the
selected channel empirical means Xk is reconstructed easily
from the number of activations and the previously stored Xk
value. Therefore, it is not necessary to store in memory the
results of all past iterations, but just only a summary of it (its
mean). The proposed solution is thus realistic and efficient, as
it only requires a bounded storage capacity.

Then, after an initialization phase where each channel is
selected alternatively, once the channel selection really starts
to use the UCB1 indexes [5]. It consists for each iteration in
choosing the frequency channel with the greatest index Bk as
defined in (5), that is, computed for each channel like this in a
for loop on i index, and with alpha the UCB1 parameter α that
controls the exploration vs. exploitation trade-off [5]:

Ak i½ � ¼ sqrt alpha*log itð Þ=Tk i½ �ð Þ

The IoTligent device then selects as in (6) the channel
having the greatest UCB1 index Bk [5]:

for i in range Nð Þ :
Bk i½ � ¼ Xk i½ � þ Ak i½ �
if Bk i½ � > bestChannel :

bestChannel ¼ Bk i½ �; freq ¼ tabFreq i½ �

6.5 Results for the second measurement

Experiments have been done on a real LoRa network currently
deployed withK = 3 channels. We present results obtained on
an IoTligent device, for 129 transmissions done every 2 h, for
a period of 11 days. Figure 9 shows the evolution of the Tk
index through time, which is the number of time each channel
has been selected by the learning algorithm. In the figures, the
red curve is for channel #0 (at 868.1 MHz), the green curve is
for channel #1 (868.3 MHz), and the light blue curve is for
channel #2 (868.5 MHz).

Figure 10 gives the empirical mean Xk experienced by the
device on each of the 3 channels. Each peak corresponds to a
successful LoRa bi-directional exchange between the device
and the AS: from the device UL transmission to the ACK
reception (DL) by the device.

We can see that channel #1 gives the best results, before
channel #2, but channel #0 always failed in sending back an
ACK to the device. Each peak in Fig. 10 reveals a successful
case where an ACK has been received by IoTligent device.
Table 1 gives the end results after 11 days. We can see that
channel #0 has been tried 29 times with Sk[0] = 0 success (i.e.,
no ACK received by the device). So the learning algorithm
made the device use 61 times channel #1 with Sk[1] = 7
successful bi-directional exchanges and 39 times channel #2
with Sk[2] = 2 successes. This corresponds to 7 (respectively
2) peaks of Xk[1] (respectively Xk[2]) on Fig. 10.

The empirical meanXk gives the vision the device obtained
from the channels, i.e., a mean probability of 11.5% of suc-
cessful bi-directional connection for channel #1 and 5% for
channel #2, whereas channel #0 never worked from the device
point of view. With a normal device, i.e., a non-IoTligent
device, that uses a purely random access, trying once over 3
times on each channel, for a global average successful rate of
5.5%.

It is important to note that here the learning algorithm is
mostly in its exploration phase, but it is learning very fast.
Only during the last 2 days of the experiment, channel #1
has already been used 4 times more than channel #0 and 2.5
times more than channel #2, which means that learning is
already very effective. As proven for UCB algorithms [6, 8],
channel 1 will be more and more selected so that the global
success rate will converge to the percentage of success of the
best channel, which is 11.5% in this experiment (this estimate
can be considered a good evaluation as it is based on 61 trials).
In other words, a mean of 15 successes can be expected in the
long term over the same period of 11 days with IoTligent. On
the contrary, normal devices will never improve and stay in
the current average, i.e., in average 7 successful transmissions
on the same period duration.

In order to have the same rate of successful transmissions,
normal IoT devices should consequently transmit twice more
often, which has two negative impacts. The first impact is that

Table 1 Results at the end of the experiment

Channel #0 Channel #1 Channel #2

Tk[0] = 29 Tk[1] = 61 Tk[2] = 39

Xk[0] = 0.0 Xk[1] = 0.115 Xk[2] = 0.051

Sk[0] = 0 Sk[1] = 7 Sk[2] = 2
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normal IoT devices autonomywill be twice less than IoTligent
devices. The second but not the least impact is that devices
will occupy twice more times the radio channels, hence con-
tributing to increase evenmore the risks of radio collisions and
thus the IoT bands congestion.

7 Measurement 3: IoTligent operation
in a LoRaWAN network with emulated
artificial traffic

As a way to make a complete validation of IoTligent proposal,
we now combine the two previous experiments by running
IoTligent real LoRa IoT devices on a real LoRaWAN network
at 868 MHz, but under the future expected heavy IoT net-
works load, emulated using USRP platforms.

7.1 Experimental setup

As far as we know, this is the first evaluation in a real
LoRaWAN network of LoRa devices running on-line learning
algorithms, with emulated traffic reproducing very dense IoT
conditions. The measures use a Faraday cage and an anechoic

chamber, in order to avoid jamming real LoRaWAN networks
operating in the surroundings of the laboratory. It also enables
to be fully in control of the ISM jammers as well as the chan-
nel propagation, and to perfectly monitor what is happening
during the measurement campaigns. As for the first PoC mea-
surement, we use one (or several) USRP platform as a traffic
generator, in order to emulate the ambient traffic made by the
surrounding IoT devices. Each channel’s occupancy rate can
be set independently on demand, so that it is non-uniform over
the channels. The experiments presented below used a set ofK
= 7 channels, with different colors in the next plots:

– Channel #0: 866.9 MHz, in red
– Channel #1: 867.1 MHz, in orange
– Channel #2: 867.3 MHz, in light green
– Channel #3: 867.5 MHz, in green
– Channel #4: 867.7 MHz, in light blue
– Channel #5: 867.9 MHz, in dark blue
– Channel #6: 868.1 MHz, in purple

For each experiment, we compare the results of two LoRa
IoT devices: (i) one IoTligent device running the learning al-
gorithm (UCB1) and (ii) one usual LoRa device that acts as a

Fig. 11 Evolution of the number
of selections through time of
IoTligent device for scenario 1

Fig. 12 Evolution of the number
of selection through time, for the
reference (naive) IoT device for
scenario 1
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reference and that we name reference IoT device. The gain
obtained by the proposed approach can be directly measured
by the difference between the number of successful commu-
nications obtained by IoTligent device compared with the re-
sults of the reference IoT device, as both run in the same
conditions of traffic load. It can also be made by a comparison
of their success rate.

During the experiments, we make devices transmit every
20 s. A successful communication occurs when the IoT device
receives in DL anACK to its own last UL transmission (on the
same channel). In that case, the gateway receives messages on
the frequency channel selected by the devices, i.e., randomly
for the reference device, or by running the bandit algorithm for
the IoTligent device. The gateway then forwards the message
to the AS through the LNS. The acknowledgement is then sent
back to the opposite way and the gateway uses the same chan-
nel as the one used by the device in uplink, regardless if the
device is IoTligent or not. As only these two devices are
requesting acknowledgements and no other real LoRa device
can access the gateway in the chamber, the constraint of 1%
duty cycle is not exceeded by the gateway in any channel.

We ran the experiments over several hundreds of iterations
(i.e., of transmissions) so that they have a duration of a couple
of hours. We used USRP platforms as jammers that generate

emulated IoT traffic. As the USRP transmission power, for
jamming signal, is not as high as those of LoRa IoT devices
and LoRa gateway, LoRa IoT devices power has been de-
creased with attenuators of 40 dB. However, this has not been
possible to do it on the gateway, and we discuss the conse-
quence below.

For one device, when no acknowledgement is received, it
means that there has been a collision either in DL or in UL.
Here we can assert that collisions only occur in UL as we can
check that at each time a message has been received by the AS,
an ACK has been correctly received by the IoT device (refer-
ence or IoTligent). This is because the gateway DL feedback
power is very high compared with the USRP jamming level.

We now detail here a couple of scenarios that have been
executed for measurement 3, one with a medium density con-
text of IoT devices and second one with even more dense
conditions.

7.2 Scenario 1: Not too heavy traffic and one free
channel

We choose in scenario 1 a context where channels occupancy
is slightly decreasing from one to another. This enables to
understand how the algorithm runs as a first approach. The

Fig. 13 Evolution of the Xk

empirical mean through time of
IoTligent device for scenario 1

Fig. 14 Evolution of the Xk

empirical mean through time of
reference IoT device for scenario
1

Ann. Telecommun.



percentage of occupancy for each channel is 30% for channel
#0, 25% for channel #1, 20% for channel #2, and so on de-
creasing of 5 % at each step until 0% for channel #6, so a
vector like this for the K = 7 channels: {0.30, 0.25, 0.20,
0.15, 0.10, 0.05, 0}. So the channel where less radio collisions
should occur is obviously channel #6 and we name it the best
channel.

We visualize in Fig. 11 below the number of times each of
the channels has been used by IoTligent device through time.
The purple curve of channel #6 is clearly leading the race,
followed far away by dark blue channel #5, then light blue
channel #4, and so on. It allows to conclude that the learning
algorithm has clearly been able to favor the use of the less
occupied channels by the LoRa IoTligent device. Moreover,
after a short time, it has been able to make a difference be-
tween each different level of occupancy in the channels, with a
great advantage to the best one.

To give a rigorous comparison, we can see on Fig. 12 that
the reference LoRa device, on its side, has uniformly used the
7 channels during the experiment. This perfectly illustrates the
difference between an IoTligent and a usual (naïve) IoT de-
vice. IoTligent device uses reinforcement learning to make the
choice of a channel before each transmission, based on a given
metric (reward) depending on its past experience. Here the
followed policy is UCB1 (with exploration factor α = 2).

The curves of Fig. 13 represent the empirical mean reward
of (3) for each channel obtained by IoTligent device. With no
surprise, the channels that have been the most used for trans-
missions are those with the best mean reward, i.e., the best
percentage of vacancy. The same order is found as in Fig. 11,

with purple curve of channel #6 first, followed by dark blue
channel #5, then light blue channel #4, and so on. Indeed, Fig.
11 is a consequence of Fig. 13, as UCB1 chooses more and
more with time, as stated in (5), the channels with higher
empirical means Xk, as the Ak term decreases with the number
of activation Tk and becomes negligible compared with Xk.
Note that jumps in the curves are having bigger steps on the
channel curves that have been used less often, as Ak of (5) is
still predominant when Tk is low.

We also monitor the reference device empirical mean re-
ward in Fig. 14, but just for comparison purposes as it is not
used by the reference IoT device to select its channels. The
difference with the IoTligent device is that reference device
has played more times the bad channels and less times the best
channels, as expected. As a consequence, there is a little bit
less variance on the empirical mean reward for less occupied
channels for the reference IoT than for the IoTligent device
but the opposite for most occupied channels. However, from
IoTligent point of view, the goal is not to recover the empirical
mean, but to order the channels in terms of their occupancy
rate.

In Table 2. the number of activations and percentages of
successful transmission obtained on each channel by the
IoTligent and reference IoT devices are listed. Whereas the
reference IoT device uniformly transmits on all channels, we
can see that the IoTligent device has been concentrating on
most vacant channels, with a clear choice for the less occupied
channel #6. Over 526 iterations, 323 transmission have been
done in this channel, i.e., more than 4 times compared with the
reference IoT (with 75) and 27 times more than for channel #0
for IoTligent device (with 12). This gives the opportunity to
the IoTligent device to increase drastically its global success-
ful rate that can be seen on Table 3. The IoTligent solution
allows the device to reach a successful transmission rate of
almost 80% against 50% for the reference IoT device.

Table 3 emphasizes the advantage of IoTligent solution as
it almost improves by 2.5 times the performance of reference
device, in terms number of failure (when ACK is not received
by the device). This is due to the ability of IoTligent to favor

Table 2 Compared results at the
end of the experiment between
reference IoT device and
IoTligent device in terms of
number of activations and
percentage of success on each
channel for scenario 1

Reference IoT IoTligent

Channel % of success Nb of activations % of success Nb of activations

#0 21 % 76 8 % 12

#1 20 % 76 25 % 16

#2 24 % 75 25 % 16

#3 49 % 76 50 % 32

#4 62 % 74 61,7 % 47

#5 76,3 % 76 74,4 % 82

#6 96 % 75 94,4 % 323

Table 3 Compared results at the end of the experiment between
reference IoT device and IoTligent device in terms of percentage of
success (i.e., ACK received by the device) for scenario 1

Reference IoT IoTligent

Nb of iterations 528 528

Nb of no ACK 266 108

% of success 49.6 % 79.5 %

Ann. Telecommun.



the use of less occupied channels and especially channel #6
which is completely vacant.

7.3 Scenario 2: Very heavy traffic

Let us consider now a heavy traffic scenario as percentage of
occupancy for each channel is set to 40% for channel #0, #1,
and #2, 30% for channel #3, 20% for channel #4, 15% for
channel #5, and 10% for channel #6. So once again, channel
#6 is the best channel but far from being unoccupied this time.

As in the previous scenario,we illustrate onFig. 15 that channel
#6 is the most played one, even if it is not fully vacant. Indeed, the
learning algorithm takes into account the relative occupancy rate
between the channels. So the differences with the three following
channels (#5, #4, #3) look like scenario 1, but clearly all the three
first channels (#0, #1, and #2) are almost always avoided.

We see the empirical mean measured by the IoTligent de-
vice, in Fig. 16. It reflects once again the (inverse) order of the
occupancy rate that has been set for the channels.

Figure 17 confirms the results in terms of mean success of
channels by the reference IoT device, and we find approxi-
mately the same channel mean occupancy rates as for
IoTligent case of Fig. 16. Results are even more solid for the
reference device as all channels have been selected the same

number of times. Here also, the IoTligent device has only
gathered a few samples on the worst channels so that the
evaluated empirical mean is not so realistic.

Table 4 shows the number of times each channel has
been selected and the obtained empirical percentage of
successful transmission. For both devices, we can see a
direct (inverse) correspondence with the occupancy rate
of each channel given earlier. Most importantly, we ob-
serve an unbalanced number of activations of the chan-
nels thanks to the learning algorithm. Whereas the ref-
erence device roughly uses each channel equally
(around 80 times), we can see that the IoTligent device
concentrates its transmission in channel #6 (334 times)
as it provides the best percentage of success and ne-
glects the worse channels (20 times).

We can also see on Table 4. that despite the IoTligent device
experimented worse results than the reference IoT device on the
best channel (channel #6), its global results are much better.

Results of Table 5 in terms of percentage of success
show how efficient the proposed solution is. With a global
mean of 28% of channel occupancy on the 7 channels, the
reference IoT device obtains in this experiment a 32 % of
transmission successes, whereas IoTligent device is able
to reach 51%.

Fig. 16 Evolution of the Xk

empirical mean through time of
IoTligent device for scenario 2

Fig. 15 Evolution of the number
of selection through time of
IoTligent device for scenario 2
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Remark that these figures take into account the very begin-
ning of the learning phase where the bandit algorithm is still
exploring. Table 6 gives the results during the 100 last itera-
tions for best channel #6. Percentage of success reaches 66.7
% for IoTligent indeed, which is coherent with the results of
Table 4 where we can see that channel #6 percentage of suc-
cess is almost 66%. As IoTligent is now almost only targeting
channel #6 (81 times over 100), its percentage of success is
slowly sliding towards the empirical mean of this channel.
This is exactly what is proven to be achieved at infinity by
the mathematical proof of converge of UCB1 [5]. However,
we demonstrated that efficiency is obtained much earlier, in
practical radio conditions.

7.4 Synthesis and extension to multiusers

This final measurement campaign definitely confirms
that the proposed approach can be a solution for radio
collision mitigation in the future IoT ultra-dense net-
works in the unlicensed bands. Our study in [9] con-
firmed by simulation that advantage still remains even if
the number of IoTligent devices increases, using solu-
tion from the literature in order to orthogonalize
IoTligent devices without coordination.

8 Conclusion

We describe in this paper the decentralized solution we pro-
pose to mitigate radio collisions in IoT unlicensed bands. Our
solution is to use machine learning algorithms, to be imple-
mented on the IoT device side, at a very low cost of imple-
mentation and no protocol overhead.We propose to use multi-
armed bandit algorithms, and we first prove the efficiency of
the method on a proof-of-concept demonstration based on
USRP platforms in laboratory conditions. We then present
the implementation of these MAB learning algorithms on de-
vices deployed in a real IoT network, and finally we show the
validity in the expected future conditions of massive IoT de-
ployment. Implementation on LoRa devices in a real
LoRaWAN network is demonstrated and is named

Fig. 17 Evolution of the Xk

empirical mean through time of
reference IoT device for scenario
2

Table 4 Compared results at the
end of the experiment between
reference IoT device and
IoTligent device in terms of
number of activations and
percentage of success on each
channel for scenario 2

Reference IoT IoTligent

Channel % of success Nb of activations % of success Nb of activations

#0 7,9 % 76 5 % 20

#1 3,9 % 78 5 % 20

#2 3,5 % 85 5 % 20

#3 52 % 77 41 % 66

#4 38,5 % 78 35 % 51

#5 50,6 % 81 42 % 69

#6 72,4 % 76 65,9 % 334

Table 5 Compared results at the end of the experiment between
reference IoT device and IoTligent device in terms of percentage of
success (i.e., ACK received by the device) for scenario 2

Reference IoT IoTligent

Nb of iterations 551 580

Nb of no ACK 373 283

% of success 32,3 % 51,2 %

Ann. Telecommun.



IoTligent. As far as we know, we propose the first implemen-
tation of a decentralized spectrum learning scheme for IoT
wireless networks. Even if the current IoT networks are not
(yet) densely populated by devices, medium and even short-
term forecasts predict a high number of devices to overcrowd
the ISM unlicensed bands. The IoTligent approach is then a
solution to extend on the one hand the IoT devices battery life,
which is a key performance indicator in any IoT ecosystem,
and on the other hand to mitigate the collision issue that will
occur with the growing number of IoT devices.

Acknowledgment The authors would like to thank Rémi Bonnefoi for
theMALIN implementation as well Yalla Diop for their technical support
on LoRa network and Pycom programming.

Funding This publication is supported by the European Union through
the European Regional Development Fund (ERDF) and by the French
Region of Brittany, Ministry of Higher Education and Research, Rennes
Métropole and Conseil Départemental 35, through the CPER Project
SOPHIE/STIC & Ondes.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included
in the article's Creative Commons licence, unless indicated otherwise in a
credit line to the material. If material is not included in the article's
Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Sornin N, Luis M, Eirich T and Beylot AL (2015) “LoRaWAN
specification”, technical report, LoRa Alliance, Inc.

2. Fourtet C (2015) "The technical challenge of future IoT networks
and their consequences on modem’s and SoC’s design", Réseaux et
services conference. R&S, Paris

3. Moy C (2019) IoTligent: first world-wide Implementation of
decentralized spectrum learning for IoT wireless networks. URSI
AP-RASC, New Delhi, pp 9–14

4. Jouini W, Ernst D, Moy C, Palicot J (2009) Multi-armed bandit
based policies for cognitive radio’s decision making issues. Signal
Circuits and Systems Conference, Jerba, pp 6–8

5. Jouini W, Ernst D, Moy C and Palicot J, (2010)“Upper confidence
bound based decision making strategies and dynamic spectrum

acce s s ,” IEEE ICC , In t e rna t i ona l Con f e r en ce on
Communications, Cape Town, South Africa.

6. Lai TL, Robbins H (1985) Asymptotically efficient adaptive allo-
cation rules. Adv Appl Math 6(1):4–22

7. Auer P, Cesa-Bianchi N, Fischer P (2002) Finite-time analysis of
the multiarmed bandit problem. Mach Learn 47:2–3

8. Moy C (2014) “Reinforcement learning real experiments for oppor-
tunistic spectrum access”, Karlsruhe Workshop on Software Radio.
Karlsruhe, Germany

9. Bonnefoi R, Besson L, Moy C, Kaufman E, Palicot J (2017) Multi-
armed bandit learning in IoT networks: learning helps even in non-
stationary settings. CrownCom, Lisbon

10. Anandkumar A, Michael N, Tang AK, and Swami A, (2011)
“Distributed algorithms for learning and cognitive medium access
with logarithmic regret”, IEEE J Selected Areas Commun 29(4)

11. Robbins H (1952) Some aspects of the sequential design of exper-
iments. Bull Am Math Soc 58(5):527–535

12. Zhao Q, Sadler B, "A survey of dynamic spectrum access", in IEEE
Signal Processing and Magazine, 2007.

13. Bubeck S, Cesa-Bianchi N (2012) Regret analysis of stochastic and
non-stochastic multi-armed bandit problems. Found Trends®Mach
Learn 5(1):1–122

14. Besson L (2019), "Multi-players algorithms for Internet of Things
networks”, PhD thesis, CentraleSupélec.

15. Thompson WR, (1933)“On the likelihood that one unknown prob-
ability exceeds another in view of the evidence of two samples,”
Biometrika 5

16. Moy C, Palicot J, and Darak SJ, (2016) “Proof-of-concept system for
opportunistic spectrum access in multi-user decentralized networks”,
EAI Endorsed Transactions on Cognitive Communications 2.

17. Besson L, “SMPyBandits: an open-source research framework for
single and multi-players multi-arms bandits (MAB) algorithms in
Python”. Code on https://GitHub.com/SMPyBandits/SMPyBandits
and documentation on https://SMPyBandits.GitHub.io/. Accessed:
2020

18. Besson L, Bonnefoi R, Moy C (2018)MALIN: multi-armed bandit
learning for Iot networks with GRC: a TestBed implementation and
demonstration that Learning Helps. ICT, France

19. LoRaWAN™, (2017) v1.1 Specification, LoRa Alliance Inc,
https://LoRa-alliance.org/sites/default/files/2018-04/lorawantm_
specification_-v1.1.pdf. Accessed: 2020

20. Moy C, Besson L (2019) Decentralized spectrum learning for IoT
wireless networks collision mitigation. First International
Workshop on Intelligent Systems for the Internet of Things,
Santorini Island, pp 29–31

This journal paper is an extension of conference paper [20].

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Table 6 Compared results the last 100 iterations of the experiment between reference IoT device and IoTligent device in terms of number of activations
and percentage of success for channel #6 for scenario 2

Reference IoT IoTligent

Channel % of success Nb of activations % of success Nb of activations

#6 80 % 15 66,7 % 81
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