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Formation control using optimal time multiplexing

Harsh Oza', Ravi Banavar!, Sukumar Srikant!, I.C. Morirescu

Abstract— Lack of availability of adequate bandwidth for
simultaneous communication between a large number of agents
and the central processing unit motivates us to study a multi-
agent system employing time multiplexed control. Achieving a
formation under such time-multiplexing constraints is posed as
a discrete constrained optimal control problem. Employing the
discrete Pontryagin Maximum Principle (DMP) we obtain first
order necessary conditions to be satisfied by an optimal control
law, which tackles both problems of formation control and
time multiplexing simultaneously. The information structure of
relative states is embedded into the problem using a graph
theoretic framework. The necessary conditions appear in the
form of a two-point boundary value problem and this is solved
using a multiple shooting method. The results are then validated
through numerical experiments for various cases.

I. INTRODUCTION

Multi-agent robotic systems find wide applications in
areas such as autonomous vehicle fleet, surveillance, rescue
operations etc [1] - [2]. In a system involving a large number
of agents, there are always naturally occurring constraints on
the communication capabilities between all the agents and
the central controller, in terms of bandwidth and size of data
packets to be transmitted or received. One solution to this is
by employing time multiplexing of control, since this reduces
the bandwidth requirement to that for communication only
between one agent and the central controller.

A time multiplexed control system is a dynamical system
having M agents controlled by a central processing unit that
can transmit a control signal at a given time to at most one
among M agents via a transmission channel. Here, M agents
work together as a joint system and are controlled through
a single processor. The multiplexer selects the appropriate
input signal and sends it to one of the plants. A schematic
is shown in Figure 1. A scheduling of the selection is to be
done in order to achieve optimized operation of the system
for a specified cost function. One of the initial attempts at
employing optimal control ideas in the time multiplexing
problem is found in [3], and the results are illustrated in an
orientation manoeuver of an ensemble of satellites.

A broad perspective on the development in multi-agent
control systems is found in [4]. The survey paper illustrates
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the work done on sensing capabilities and position or dis-
placement based control. Apart from this, the literature cov-
ers various other aspects such as consensus algorithms, cyclic
pursuit, graph-based and leader-follower strategies, etc. [5]—
[8]. The protocols are dependent upon the availability of
individual controller for each agent. In systems involving
a large number of agents it is not feasible to deploy a large
number of dedicated controllers or ensure full information
of each agent to every other agent in the system. In order to
solve this problem in [9] the authors propose a network based
information multiplexing rules, which eliminates the need for
global information. Yet, this method requires large number
of controllers to process and implement decentralised control
scheme. Existing literature in time multiplexed control cover
periodic and aperiodic type of resource scheduling problems.
A sparse-networked optimal scheduling problem is addressed
in [10], where it is posed as a Mayer problem in continuous
time. Control and scheduling strategy is jointly optimized
by dynamic programming of a discrete time networked
control system in [11]. An online scheduling algorithm using
Mixed Integer Quadratic Programming is presented in [12].
This method is applicable for continuous and linear time
invariant systems, where the ultimate objective is to provide
a stabilizing control law. Model predictive control is used in
[13] to pre-plan resource sharing for each agent. Only a few
methods emphasize on optimality of a cost function while
using time multiplexing [3], [10].

The Pontryagin maximum principle (PMP) [14] provides
a set of necessary conditions on the control actions to ensure
optimality. The extension to discrete time with state and
control constraints is found in [15]. [16] extends the discrete
PMP version to matrix Lie groups, while [17] incorporates
frequency constraints into the problem. In this article, we
address the problem of achieving formation under a time
multiplexing constraint and with a measure of performance.
We use the discrete PMP to arrive at necessary conditions of
optimality and give the condition for rendezvous of agents
under time multiplexing constraints. The two point boundary
value problem arising from the necessary conditions is solved
numerically via multiple shooting method based on Newton’s
root finding algorithm [18]. The rest of the paper is organized
as following. The problem is presented via a mathematical
statement in §II. Necessary conditions are given §III, fol-
lowing which numerical experiments are presented in §IV.
Finally, in §V concluding remarks are made.
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Fig. 1: A schematic representation of the time multiplexing
task, where one agent is selected through the multiplexer
and command is given to only that agent from the central
processing unit. Rest of the agents evolve without any input.

Fig. 2: An example directed graph. The direction indicates
that the node at the origin of the arrow has the relative state
information of its neighbours.

II. PROBLEM FORMULATION
A. Preliminaries

Theoretical issues in multi-agent systems have been widely
tackled using graph models [2]. In this framework, the nodes
of graphs represent the agents of the system and the edges
of the graph represent the information availability among the
agents. A graph G is represented by a pair (V, ), where V
represents the set of nodes and £ represents the set of edges.
Two nodes ¢ and j are said to be connected if there exists an
edge between them. A directed graph is when the edges are
directed from one node to another. The direction refers to
the flow of information.The set of neighbors of an agent ¢ is
given as N; := {j € V]edge is directed from i to j}. |N;]
represent the cardinality of the set. The Laplacian matrix
L := [l;;] of the directed graph is given by the following,

Wil it =
lyj=<—1 ifi#j andj€EN; S
0 otherwise

B. Problem Setup

We consider a system of M agents using time multiplexed
control, where at any time instant only one agent receives a

control input. Our study focusses on agents which are double
integrators
i =@ ie [M]* 2)
We set [M] := {0,1,2,---, M} and [M]* := [M]\ {0}.
(D € R™ and u(") € R™ represent the position and control
of " agent respectively. The system in discrete time is
represented by,
0 = af) + haf?

3)

o = o+ )

where

i) 2" € R™ and v\" € R™ are the position and velocity
of the i!"* agent at k' instant of time, where k € [N —1]
and i € [M]*.

ii) ug) is the admissible control input to the i* agent.

iii) h is the discretization step.

The agents are assumed to have information on each of
their neighbours’ states. We use a graph theoretic framework
to depict the information sharing topology. The associated
graph is G and graph Laplacian matrix is £ and the new
states are

) () () (%
2 2 2 2
z T v
Elog| ™ fana| T =] @)
M M M M
Z}E ) xl(c ) y]i ) v ](C )
where, z,(ci) and y,(;) denote the sum of relative positions and

velocities of i*" agent with respect to its neighbours, respec-
tively. Collecting all specific states of each agent, we denote

Zy, = (z,il), z,iz), s z,(fM) T as the joint position variable of
all agents, Yy, := (y,il), yf), e ,y,gM))T as the joint velocity
variable of all agents and Uj := (u,(cl)7u,(€2), . ,u,(CM))T as

the joint control input of all agents. In terms of the new
variables, the dynamics are

Zyy1 = Zy + hYy

(5)
Vi1 = Y + h(LUy)
The cost is defined as
N-1
J(Zi, Yi, Ur) = N8 (2N, YN) + D 02k, Vi, Us) - (6)
k=0

where, ¢ (Zk, Y, Us) is a map which gives the cost per
stage and ¢n(Zn,Yn) is a map which gives terminal stage
cost. We now formally state the optimal control problem.

Problem Statement:

minJ(Zk,Yk,Uk) (7)
Uk



subject to
dynamics (5)
Zo=Zin
. YO = Y;n
constraints (8)
g(Uk) <0 VEk € [N — 1]
on(Zn,YnN) : specifies
UpeU Vk € [N — 1]
where

i) g(Ux) < 0 is a map which restricts the magnitude of
control input;
i) Z;p € R™ x -+« x R™ (M times) refers to the fixed
initial positions of all agents;
i) Y, € R™ x --- x R™ (M times) refers to the fixed
initial velocities of all agents;
The time multiplexing constraint on set of controls is

realized by defining the admissible control set in following
manner.

r 0 0
0 T 0

= A EER R IR B TE[_lal] 9
0 0 r

This definition allows us to provide control input to only one
agent at a given time-step and the rest of the agents evolve
without any control input during that stage.

III. METHODOLOGY
A. Transformation of admissible control set into a convex set

The admissible time multiplexing constraint defined in (9)
is a star-shaped set. To impart convexity to incorporate this
constraint, we perform the following mathematical jugglery.
We define an auxiliary state w as follows:

wper = wp +0(Uk); wo = (0,007 (10)
where the map,
M-1 M L
— (@)112]],,(0) |12
V) = Y Z(IIW P11 ()
=0 j=1 (11)
D @yl (11) )
and
u ©u) = (Wu® (DT DT DT (m times))T)

1 if (j—1)m+1<i<jm
Wi =
0 else

The proof of equivalence between the set U and the map
is given in [3].

Theorem: Let (Uk)fc\’;ol be an optimal control trajectory for

(7) and (Zp)N_y, (Yi)N_, and (w),)_, be the optimal state
trajectory. Define the Hamiltonian,

Hi (A, Mey ey Zie, Yie, Ur) i= A0 (Zig, Y, wie, U )+

(Mes Fie(Zye, Yie, Ug)) + (g, w)
(12)

1
:\\’5 and
k

Fi(Zy, Yy, Ug) = (YkZ-kF Z(}Z};’fko Then there exist cor-
responding A’ € {—1,0}, A, € R?™ and d) € R? such
that the following necessary conditions hold. The necessary
conditions for optimal control in discrete time can be arrived
at using [15].

where, A\, =

(i) the non triviality condition:
adjoint variables \°, \; and cj do not vanish simulta-

neously.
(i) state:
Zii1 = Zi + WYy
}N/;H_l = Yk + h(ﬁﬁk) (13)
Wy, = Wi, + Y(Uy)
adjoint:
N Ok (Zr, Y, Uk) | <
)\,16_1 = )\O% + )\]1f
- Z, Yy, U ~ ~
2o = /\OM + hAL + A2
oYy
Qp—1 = Qi
Vk € [N —1]
(14
(iii) the Hamiltonian non-positivity:
Zi, Y] 5
)\OM +X(L)U, |6U <0
Uy,
. (15)
U+6U€cU
Vk € [N —1]

B. Condition for achieving the formation

As we have assumed a graph structure where agents have
relative information of other agents, it is natural to define
the formation as a function of relative state. We embed
the formation objective in the end stage constraint given by
on(Zn,Yn). For example, if our objective is rendezvous,
on(Zn,YN) := Zy = 0. This is utilized in defining the
boundary conditions(B), defined later.

C. Multiple Shooting Method

Following the necessary condition, solution of the Two
Point Boundary Value Problem(TPBVP) is found using nu-
merical technique of multiple shooting. In multiple shooting
method, the time horizon is divided in sub interval and a
guess of every unknown state at each stage is taken. Using
the dynamics of the system each guess is corrected iteratively
till a tolerance bound is achieved.



We have Zj, Yy, wy and Ag as unknown states for all k €
[N] and the states are driven by dynamics (13) and (14). We
define our guess vector in following way.

X = (Zkvykva)\kyak)T

Vk € [N] (10
The boundary conditions are as following.
B:Zy = Zin;
Yo = Yin;
quv(Qj\;; = user defined; {17
wy = (0,0)"

The guess variables are fed to the dynamics of state and
adjoint given in (13) and (14) respectively with each guess
variable acting as an initial condition. The guess is true only
if the solution to k'" iterate is equal to the guess of (k+1)t"
variable. this is called matching conditions. All matching
conditions are combined and represented as F'(X) = 0,
where

Zys1 — (Zy + hYy)
Yk+1 - (Yk + h(ﬁUk))
wit1 — (wg + P (Uy))
A - )\oaqﬁk(zk,Yk,Uk) _i_;\%c)

07,
F(X):=
- 0k (Zn, Ye, U I
N - </\O¢k( ngk K il Aﬁ)
OMHi (N, A, s, Zig, Yy, wie, Uy)
A1 — Owp
B
Vk € [N — 1]
(18)

The solution of the problem (18) can be found using New-
ton’s root finding algorithm. First, we choose an appropriate
error bound ¢, which makes a terminating condition for our
algorithm. Till ||F'(X)||oc< € following steps are repeated.
(1) Calculate AX using the OxF(X)AX = —-F(X),
where Ox F'(X) is the Jacobain of function F(X) with
respect to X.

(2) Update the value of X = X + AX

(3) Calculate ||F(X)]|oo

Once the error is less than the tolerance bound, we conclude
that the trajectories are optimal. Remark: The Newton’s
method converges only when the initial guess is reasonably
close to the solution, and further, if there exists a solution to
the problem. Hence, if the optimal control problem under the
specific set of constraints is not feasible Newton’s method
will not yield a solution.

IV. NUMERICAL EXPERIMENTS

We verify our theory with numerical experiments on four
double integrator agents evolving on R? with the graph
topology shown in Fig. 2. We optimize the control input
with respect to the cost ¢x(Zy, i, Ur) := Spol U I3-
Additionally, we impose constraints on magnitude of control
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Fig. 4: X-coordinate of control
as g(Ug) := ||Ug|lco—1 < 0, which is natural in practical

cases. For the computation purpose we have taken the dis-
certization step size h = (0.1 and the number of discrete time
stages as [N = 100. We test our proposed solution technique
in two different scenarios: (a) A rendezvous problem (RP)
and (b) a formation problem (FP).

A. Case 1: Rendezvous problem

In this case, all the agents have to reach a common
position. All the agents start from different positions. The
final time conditions are given as following.

ON(ZN,YN)=ZN =0

Fig. 4 and Fig. 5 show the control inputs applied to all
the agents and it is clear that when one agent is receiving
input the others are not. and they reach an identical point,
as shown in Fig. 3. The energy utilized in this case is 12.58
units.
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Fig. 5: Y-coordinate of control
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B. Case 2: Formation problem

In this case, the agents are required to achieve a specified
formation. The agents make a *+’ shape. This is codified by,

QSN(ZN) = ZN — d = 0

o= () (3 (5) () e

"+’ formation shape in terms of relative distances.
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Fig. 8: Y-coordinate of control
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6 shows that all agents start from given initial states and
achieve the desired "+’ shape. Similar to case I, multiplexed

control can be observed in Fig. 7 and Fig. 8.

V. CONCLUSIONS

We have presented some early findings of our investiga-
tions into time multiplexing being employed for objectives
in multiagent problems using the framework of constrained
discrete optimal control. In the future we hope to drastically
increase the number of agents, and make more conclusive

assertions on the advantages and disadvantages of time mul-
tiplexing from various perspectives. We are also working on
the numerical aspects of solving the TPBVP using alternate
algorithms.
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