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LMI-based output feedback control of singularly perturbed systems
with guaranteed cost

Eduardo S. Tognetti, Taı́s R. Calliero, Irinel-Constantin Morărescu and Jamal Daafouz

Abstract— This paper addresses the problem of dynamic
output feedback controller design for linear two time-scales
dynamics. Unlike most of the works in the literature on
singularly perturbed systems, we also consider the case where
the state matrix of the fast dynamics is singular (nonstandard
systems) and unstable. Our approach relies on decoupling the
slow and fast dynamics of the closed-loop system and applying
algebraic manipulations based on Finsler’s Lemma to obtain ε-
dependent and ε-independent controllers. The design conditions
are computationally oriented since they are expressed in term of
Linear Matrix Inequalities (LMIs). On top of this, a quadratic
cost is guaranteed to be upper-bounded for all positive values
of the singular parameter. The proposed conditions circumvent
some drawbacks of the existing works on this topic by providing
a dynamic controller that does not depend on the singular
parameter. A numerical example illustrates the effectiveness of
the proposed approach.

I. INTRODUCTION

Dynamical systems evolving on multiple time-scales are
present in many fields of application and it is well known
that, in this context, standard control techniques may lead to
ill-conditioned strategies. To overcome the inherent numeri-
cal problems, singular perturbation framework [1] performs
a time-scale decomposition in two smaller-order subsystems
associated with the original dynamic. Based on this decou-
pling into slow and fast dynamics, many works focused
on the state feedback control problem [1]. It is also worth
mentioning the work [2] that deals with the problem of
state feedback quadratic optimal control design for linear
singularly perturbed systems.

The output feedback design, without the use of the separa-
tion principle (independent design of observer and controller
gains), for singularly perturbed systems still remains a less
explored field. One main reason is the difficulty to combine
the control gains designed for the low-order subsystems to
obtain a composite control for the global system. Some
alternative solutions have been proposed. The work [3]
applies a frequency-domain description of the two-time scale
system to design an output controller. In [4], the authors
present a set of ε-independent Riccati equations to design a
two-time scale dynamic output feedback controller. The work
[5] proposes high-gain observer-based controllers to achieve

This work was supported by the Brazilian agency FAPDF.
Eduardo S. Tognetti is with the Department of Electrical Engineering,

University of Brasilia – UnB, 70910-900, Brası́lia, DF, Brazil,
estognetti@ene.unb.br. Taı́s R. Calliero is with Faculty
of Technology Gama, University of Brasilia – UnB, 70910-900, Brası́lia,
DF, Brazil, tais.calliero@gmail.com. I.-C. Morărescu and J.
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robust output feedback controllers for a specific classes of
nonlinear systems where the output does not depend on
the system’s fast state. More recently, [6] presented finite-
frequency methods to design gains for the fast and slow
subsystems however the composite controller is only valid
for the original system if the feedthrough matrix of the
controller has small magnitude.

We can cite as drawbacks of the above approaches, the
inability to deal with nonstandard singularly perturbed sys-
tems, the lack of convex design conditions and the difficulty
to impose dynamic controllers that do not dependent on
the singular parameter. This last issue can be particularly
important for the case where this parameter is not known
(only an upper bound is available) or the actuators cannot
respond to the fast variables resulting in controllers that are
not implementable.

In this work we consider the problem of designing full
and reduced-order dynamic output feedback controllers for
singular perturbed linear systems with guaranteed cost. Dif-
ferently from the current works in the literature and as an
important feature, we propose a time-scale decomposition of
the closed-loop system avoiding the design of a composite
control law composed by the slow and fast components, sep-
arately designed. This approach allows to handle nonstandard
singularly perturbed systems. As a novelty, we also propose
the design of low order controllers, independent of the sin-
gular parameter, providing flexibility in the implementation.

Notation: The notation R
n, R+ and R

n×m respectively
denote the sets of n-dimensional real vectors, positive scalars,
and n×m-dimensional real matrices. For a matrix A, AT

denotes the transpose of A and, if A is square, consider: Tr(A)
stands for the trace of A; A−1 and A−T denote the inverse
of A and AT , respectively; and He{A}= A+AT . The block-
diagonal matrix is denoted by diag(·). The identity matrix of
order n is denoted by In and the null m×n matrix is denoted
by 0m,n (or simply I and 0 if no confusion arises). The symbol
⋆ denotes symmetric blocks in partitioned matrices.

II. PRELIMINARIES

Consider the following singularly perturbed linear system:
[

ẋ(t)
ε ż(t)

]

=

[

A11 A12

A21 A22

][

x(t)
z(t)

]

+

[

B1

B2

]

u(t)

y(t) =
[

C1 C2
]

[

x(t)
z(t)

] (1)

where x(t) ∈ R
nx and z(t) ∈ R

nz are the states, u(t) ∈ R
nu

is the control input, y(t) ∈ R
ny is the measured output and

ε > 0 is a singular perturbation parameter.



Define the following quadratic cost function associated
with the dynamic (1):

J =

∫ ∞

0
x(t)T Qxx(t)+ z(t)T Qzz(t)+ u(t)T Ru(t)dt (2)

where Qx ≥ 0, Qz ≥ 0 and R > 0 are symmetric matrices that
weights the effort of the control action and convergence of
the trajectories. The objective is to design a dynamic output
feedback (DOF) controller that minimizes an upper bound
to the quadratic cost (2) for any sufficiently small parameter
ε , that is, there exists ε∗ > 0 such that the guaranteed cost
J satisfies

J ≥ J, ∀ε ∈ (0,ε∗). (3)

Observe that the cost (2) can be rewritten as

J =

∫ ∞

0
yz(t)

T yz(t)dt

with

yz(t) =
[

Cz1 Cz2
]

[

x(t)
z(t)

]

+Du(t) (4)

and

[

Cz1 Cz2
]

=





√
Qx

0
0

0√
Qz

0



 , D =





0
0√
R



 .

We consider in this work two classes of controllers:
ε-dependent and ε-independent DOF controllers. The ε-
dependent full-order DOF controller has the following struc-
ture:

[

ẋc(t)
ε żc(t)

]

=

[

Ac11 Ac12

Ac21 Ac22

][

xc(t)
zc(t)

]

+

[

Bc1

Bc2

]

y(t)

u(t) =
[

Cc1 Cc2
]

[

xc(t)
zc(t)

]

+Dcy(t)
(5)

where xc(t) ∈ R
nx and zc(t) ∈ R

nz are the states of the
controller. Note that the controller has a two time-scale
property and we suppose that the actuator of a plant modeled
by (1) is able to respond to the fast variable zc(t) presented
in the control signal u(t).

The closed-loop system formed by (1) and (5) is given by
[

ξ̇ (t)
εµ̇(t)

]

=

[

Ã11 Ã12

Ã21 Ã22

][

ξ (t)
µ(t)

]

yz(t) =
[

C̃z1 C̃z2
]

[

ξ (t)
µ(t)

]

,

(6)

with ξ (t) = (x(t)T ,xc(t)T )T ∈R
2nx , µ(t) = (z(t)T ,zc(t)T )T ∈

R
2nz , and matrices given by

Ãi j =

[

Ai j +BiDcC j BiCc j

BciC j Aci j

]

, C̃zi =
[

Czi +DDcCi DCci
]

,

(7)

i, j = 1,2.
Although the ε-dependent output feedback controller per-

forms very well, it may be difficult to implement due to fast
actuation requirement. Motivated by this observation, we will
also design ε-independent output feedback controllers that

provides slow actuation. In this part we suppose that ε is
unknown but upper bounded by a known value.

The following ε-independent reduced-order DOF con-
troller is considered:

ẋc(t) = Acxc(t)+Bcy(t)

u(t) =Ccxc(t)+Dcy(t),
(8)

where xc(t) ∈R
nx .

The closed-loop system composed by (1) and the con-
troller (8) is given by (6) with ξ (t)= (x(t)T ,xc(t)T )T , µ(t)=
z(t), and matrices:

Ã11 =

[

A11 +B1DcC1 B1Cc

BcC1 Ac

]

, Ã12 =

[

A12 +B1DcC2

BcC2

]

Ã21 =
[

A21 +B2DcC1 B2Cc
]

, Ã22 = A22 +B2DcC2,

C̃z1 =
[

Cz1 +DDcC1 DCc
]

, C̃z2 =Cz2 +DDcC2.

(9)
We are now ready to state the problem addressed in this

paper.

Problem 1 For the singularly perturbed linear system (1),
find a DOF controller (5) (respectively, (8)) such that the
closed-loop system (6) is asymptotically stable and mini-
mizes the guaranteed cost J such that (3) holds.

The following lemmas will be useful for the further
developments.

Lemma 1 Let a symmetric matrix M0 ∈R
n×n and matrices

M1 ∈R
m×n and M2 ∈R

m×n. Then the following conditions
are equivalent:

i. M0 +He
{

MT
1 M2

}

< 0

ii. ∃ N1 ∈R
n×m and N2 ∈R

m×m :
[

M0 MT
2

M2 0

]

+He

{[

N1

N2

]

[

M1 −I
]

}

< 0.

Proof: The equivalence can be demonstrated by the
Finsler’s Lemma [7] and is omitted for the sake of brevity
and due to space limitations.

Lemma 2 ( [8]) Consider two symmetric matrices with the
following structure

Θ =

[

Θ11 Θ12

⋆ Θ22

]

, ϒ =

[

0 ϒ12

⋆ ϒ22

]

,

with ϒ22 nonsingular. The following conditions are equiva-
lent.

1) There exists ε∗ such that

Θ+ ε−1ϒ < 0 (10)

holds for all ε ∈ (0,ε∗).
2) The conditions

ϒ12 = 0, Θ11 < 0, ϒ22 < 0 (11)

simultaneously hold.



III. MAIN RESULTS

In the sequel we use the Lyapunov function

V (ξ ,µ) =
[

ξ
µ

]T

W−1
[

ξ
µ

]

, (12)

with W ∈ R
2nx+2nz a symmetric positive definite matrix,

ξ (t) = (x(t)T ,xc(t)T )T and µ(t) = (z(t)T ,zc(t)T )T . If there
exist a matrix W =W T > 0 and a scalar γ > 0 such that the
following inequality holds

V̇ (ξ (t),µ(t))+ γ−1yz(t)
T yz(t)≤ 0, (13)

then the integration of (13) over that interval [0,∞) implies

J ≤ γV (ξ (0),µ(0)), (14)

that is, the cost J is upper limited by the initial condition
(ξ (0),µ(0)) weighted by γW−1. For the minimization of the
guaranteed cost J such that (3) holds we can exploit the fact
the initial condition of the controller can be set arbitrarily to
zero and minimize γ and the trace of W−1.

Usually, in the literature of singularly perturbed systems,
the control design is performed for each subsystem (slow
and fast lower-order dynamics) and their combination allows
obtaining a composite control for the global system [1]. This
approach requires A22 to be nonsingular and works very well
for the state feedback control problem [1]. For the DOF
control problem, this is also the approach followed in [4]
using a Riccati formulation, but the LMI-based design be-
comes intricate. In this work we adopt a different approach,
we propose a time-scale decomposition of the closed-loop
system to define two ε-independent subsystems associated
with (6). As a consequence, we can deal with nonstandard
singularly perturbed systems where matrix A22 is not required
to be non-singular.

Our objective in what follows is to decouple the slow and
fast dynamics that are combined in the overall system. Let
us recall that the reduced-order(slow) system is obtained in
[1] by setting ε = 0 in (6) and expressing the slow part of
µ(t), denoted by µs(t), in terms of the slow part of ξ (t),
denoted by ξs(t). If Ã22 is non-singular, we can write

µs(t) =−Gξs(t),

where G = Ã−1
22 Ã21, and, therefore, the reduced-order (slow)

system is

ξ̇s(t) = Asξs(t), ξs(0) = ξ (0), (15)

where As = Ã11 − Ã12G.
On the other hand, the boundary-layer (fast) system is

defined by treating ξ (t) as a constant variable and removing
the slow bias from µ(t), that is, µ f (t) = µ(t)− µs(t). This
leads at

εµ̇ f (t) = Ã22µ f (t), µ f (0) = µ(0)+Gξ (0). (16)

Consequently,

yz(t) = C̃z1ξs(t)+ C̃z2(µ f (t)−Gξs(t))

=Csξs(t)+ C̃z2µ f (t),
(17)

where Cs = C̃z1 − C̃z2G.
System (15) is well-defined only if Ã22 is nonsingular. To

impose this condition we design (Ac22,Bc2,Cc2,Dc) such that
Ã22 is Hurwitz, that is, the fast system (16) is asymptotically
stable.

Next, we present ε-independent conditions for asymptoti-
cally stability with guaranteed cost of the close-loop system
(6) in terms of its slow and fast decomposition.

Lemma 3 Suppose there exist symmetric positive definite
matrices W1 ∈R

nx×nx and W2 ∈R
nz×nz , and a scalar γ ∈R+

verifying the following conditions:
[

AsW1 +W1AT
s ⋆

CsW1 −γI

]

< 0, (18)

Ã22W2 +W2ÃT
22 < 0. (19)

Then, there exists ε∗ > 0 such that for all ε ∈ (0,ε∗) the
closed-loop system (6) is asymptotically stable with guaran-
teed cost given by J = γξ (0)TW−1

1 ξ (0)+γµ f (0)TW−1
2 µ f (0).

Proof: It follows from the proof of Theorem 1 of [8]
by considering the system (6) rewritten as
[

ξ̇
µ̇

]

= Ã(ε)
[

ξ
µ

]

, Ã(ε) =
[

Ã11 Ã12

0 0

]

+ ε−1
[

0 0
Ã21 Ã22

]

,

yz = C̃z

[

ξ
µ

]

, C̃z =
[

C̃z1 C̃z2
]

.

Condition (13) with the Lyapunov function given by (12) is
equivalent to

WÃ(ε)T + Ã(ε)W + γ−1WC̃T
z C̃zW < 0. (20)

Consider W with the following partition

W =

[

W1 −W1GT

⋆ W2 +GW1GT

]

. (21)

If we replace (21) in (20), we obtain an expression in the
form of (10) where ϒ22 = Ã22W2+W2ÃT

22 and Θ11 = AsW1+
W1AT

s + γ−1W1CT
s CsW1. Then, by Lemma 2 and applying

the Schur complement in Θ11 < 0, conditions (18)–(19) are
equivalent to (11). Observe that W is a candidate Lyapunov
matrix in (20) since W > 0 is assured by W1 > 0 and, by
Schur complement, W2 > 0.

From (21), one has

W−1 =

[

W−1
1 +GTW−1

2 G GTW−1
2

⋆ W−1
2

]

then, considering (14), one has

J ≤ γ
[

ξ (0)
µ(0)

]T [
W−1

1 +GTW−1
2 G GTW−1

2
⋆ W−1

2

][

ξ (0)
µ(0)

]

= γξ (0)TW−1
1 ξ (0)+ γ(µ(0)+Gξ (0))TW−1

2 (µ(0)+Gξ (0))
= γξ (0)TW−1

1 ξ (0)+ γµ f (0)
TW−1

2 µ f (0).

Observe from Lemma 3 that V1(ξs) = ξ T
s W−1

1 ξs and
V2(µ f ) = µT

f W−1
2 µ f can be seen as Lyapunov functions for

stability analysis of the slow and fast systems, respectively,



for all ε ∈ (0,ε∗). This fully agrees with the arguments of
time-decomposition provided in [1]. However, conditions of
Lemma 3 are non-convex for the design of the controller (5).

Observe that the inverse of Ã22 in the conditions (18) and
(19) impose a difficulty. One possible solution is to design
the gains (Ac22,Bc2,Cc2,Dc) such that (19) holds and then
solve (18). However, the design in two independent steps
is not convenient since the gains obtained to stabilize the
fast systems may not be suitable to stabilize the slow one
or may yield a conservative solution for the guaranteed cost
J. Therefore, we propose an LMI-based one-step procedure
for Lemma 3. We will first detail the design of ε-dependent
DOF controllers and then consider ε-independent ones.

A. ε-dependent DOF controllers

Consider the following parametrization for the Lyapunov
matrices adapted from [9]:

Wi =

[

Xi −Xi

−Xi Hi

]

, W−1
i =

[

Yi Vi

Vi Vi

]

, i = 1,2, (22)

where X1 ∈ R
nx×nx , Y1 ∈ R

nx×nx , X2 ∈ R
nz×nz , Y2 ∈ R

nz×nz

are symmetric positive definite matrices, Vi = Yi −X−1
i and

Hi = Xi +V−1
i .

We observe that matrices Ã11, Ã12, Ã21 and Ã22 have the
same structure, then the product with the Lyapunov matrices
can be handled with the congruence transformation and the
change of variables proposed by [9]. Define the following
non-singular matrices

Ti =

[

I Yi

0 V T
i

]

, i = 1,2. (23)

Then, pre- and post-multiplying (18) by diag(T T
1 , I) and its

transpose, respectively, and introducing the terms T2T−1
2 =

I and W2T2T−1
2 W−1

2 = I in appropriate positions, one can
observe that the inequality (18) is equivalent to

[

He
{

T T
1 Ã11W1T1 −∆1

}

⋆

C̃z1W1T1 −∆2 −γI

]

< 0 (24)

where

∆1 = T T
1 Ã12(W2T2T−1

2 W−1
2 )Ã−1

22 (T
−T

2 T T
2 )Ã21W1T1

∆2 = C̃z2(W2T2T−1
2 W−1

2 )Ã−1
22 (T

−T
2 T T

2 )Ã21W1T1,

and matrices Ãi j and C̃zi are given by (7). Inequality (24)
can be rewritten as

[

He
{

Ψ11 −Ψ12Ψ−1
22 Ψ21

}

⋆

Λ1 −Λ2Ψ−1
22 Ψ21 −γI

]

< 0, (25)

where Ψi j = T T
i Ãi jWjTj and Λi = C̃ziWiTi, i, j = 1,2. If we

define the following variables

Li = (DcCi −Cci)Xi, Fi = YiBiDc +ViBci

Qi j =
[

Yi Vi
]

Ãi j

[

X j

−X j

]

,
(26)

the terms Ψi j and Λi can be rewritten as

Ψi j =

[

Ai jX j +BiL j Ai j +BiDcC j

Qi j YiAi j +FiC j

]

,

Λi =
[

CziXi +DLi Czi +DDcCi
]

.

(27)

One can see in (27) that Ψi j and Λi are affine in the
variables Xi, Yi, Li, Fi, Qi j, i, j = 1,2, and Dc. Consequently,
we can apply Lemma 1 to decouple the product involving
the terms Ψi j and Λi. Our first main result is given below
and it basically presents sufficient conditions for Lemma 3.
to hold true.

Theorem 1 Suppose that there exist symmetric positive defi-
nite matrices X1 ∈ R

nx×nx , Y1 ∈ R
nx×nx , X2 ∈ R

nz×nz , Y2 ∈
R

nz×nz , a scalar γ ∈ R+ and matrices F1 ∈ R
nx×ny , L1 ∈

R
nu×nx , F2 ∈ R

nz×ny , L2 ∈ R
nu×nz Q11 ∈ R

nx×nx , Q12 ∈
R

nx×nz , Q21 ∈ R
nz×nx , Q22 ∈ R

nz×nz , and Dc ∈ R
nu×ny , a

given scalar ς > 0, and a given matrix I ∈ R
2nx×2nz , such

that
[

Xi I
I Yi

]

> 0, i = 1,2, (28)

Ξ < 0 (29)

where

Ξ =





He{Ψ11 +Θ} ⋆ ⋆

Ω ςHe{Ψ22} ⋆

Λ1 +Λ2I
T ςΛ2 −γI



 , (30)

Θ = I ΨT
12, Ω = Ψ21 +Ψ22I

T + ςΨT
12, (31)

Ψi j and Λi given in (27). Then, there exists ε∗ > 0 such that
for all ε ∈ (0,ε∗) the controller (5) with gains

[

Aci j Bci

Cc j Dc

]

=

[

V−1
i −V−1

i YiBi

0 I

][

Qi j −YiAi jX j Fi

L j Dc

]

×
[

−X−1
j 0

C j I

]

, Vi = Yi −X−1
i , i, j = 1,2, (32)

makes the closed-loop system (6) asymptotically stable with
guaranteed cost J = γξ (0)TW−1

1 ξ (0)+ γµ f (0)TW−1
2 µ f (0).

Proof: First, note that inequality (28) is equivalent to
T T

i WiTi > 0, for W1 and W2 as in (22) and T1 and T2 as in (23),
then Wi > 0, i = 1,2, since Ti is non-singular. Observe also
that (28) implies, by the Schur complement, Vi non-singular.

The inequality (25) can be written as condition i. of
Lemma 1 with

M0 =

[

He{Ψ11} ⋆

Λ1 −γI

]

, MT
1 =−

[

Ψ12

Λ2

]

Ψ−1
22 , (33)

M2 =
[

Ψ21 0
]

, and inequality (29) can be written as
condition ii. of Lemma 1 with NT

1 = −Ψ22[I
T 0] and

N2 =−ςΨT
22. Therefore, by Lemma 1, if (29) holds, then (25)

is satisfied. By considering the change of variables (22) and
(26), rewriting (25) as (24), pre- and post-multiplying (24)
by diag(T−T

1 , I) and its transpose, respectively, one obtains
(18). Pre- and post-multiplying Ξ by [0 T−T

2 0], then (29)
implies (19) for any ς > 0.

Then, by Lemma 3, we conclude that there exists ε∗
such that the closed-loop system (6) is asymptotically sta-
ble with a guaranteed cost J given by γξ (0)TW−1

1 ξ (0)+
γµ f (0)TW−1

2 µ f (0) for all ε ∈ (0,ε∗).



Remark 1 Condition (29) becomes an LMI for fixed values
of ς and I . Matrix I is a given matrix used to adjust
the dimension in (29) for the case nx 6= nz. We remarked
good numerical results for the choice I = 0 or I = τI,
where I ∈ R

2nx×2nz is the identity matrix for nx = nz, I =
[I 0] for nx < nz and I = [I 0]T for nx > nz, where 0 is
a rectangular matrix with appropriate dimension. The scalar
τ ∈R represents an extra degree of freedom.

Remark 2 The inequality (25) can be also written as condi-
tion i. of Lemma 1 with

M1 = Ψ−1
22

[

Ψ21 0
]

, MT
2 =−

[

Ψ12

Λ2

]

and M0 as in (33). Therefore, the choice NT
1 =−[I 0]ΨT

22
and N2 =−ςΨT

22 yields Ξ in (30) with

Θ = I Ψ21, Ω = ΨT
12 +ΨT

22I
T + ςΨ21. (34)

Finally, we observe that conditions of Theorem 1 with (31)
and (34) are not equivalent, thus one condition may be
feasible and other not and different costs may be obtained
for a given initial condition.

B. ε-independent DOF controllers

First, observe that inequality (18) with matrices (9) is
equivalent to
[

He
{

T T
1 Ã11W1T1 −TT

1 Ã12Ã−1
22 Ã21W1T1

}

⋆

C̃z1W1T1 − C̃z2Ã−1
22 Ã21W1T1 −γI

]

< 0 (35)

or, alternatively,
[

He
{

Ψ11 −ϕ12Ã−1
22 ϕ21

}

⋆

Λ1 − (Cz2 +DDcC2)Ã
−1
22 ϕ21 −γI

]

< 0

with

ϕ12 =
[

(A12 +B1DcC2)
T AT

12Y1 +CT
2 FT

1

]

,

ϕ21 =
[

A21X1 +B2L1 A21 +B2DcC1
]

.

Following similar steps as above, the next theorem
presents sufficient conditions for the design of (8).

Theorem 2 If there exist symmetric positive definite matrices
X1 ∈ R

nx×nx , Y1 ∈ R
nx×nx , W2 ∈ R

nz×nz , a scalar γ ∈ R+

and matrices F1 ∈R
nx×ny , L1 ∈R

nu×nx , Q11 ∈R
nx×nx , Dc ∈

R
nu×ny , a given positive scalar ς , and a given matrix I ∈

R
2nx×nz , such that (28) and




He{Ψ11 +I ϕ12} ⋆ ⋆

ϕ21 + Ã22I
T + ςϕ12 ςHe

{

Ã22
}

⋆

Λ1 +(Cz2 +DDcC2)I
T ς(Cz2 +DDcC2) −γI



< 0,

(36)
[

He{A22W2 +B2DcC2} ⋆

C2W2 −C2 +DT
c BT

2 −2I

]

< 0 (37)

hold, then there exists ε∗ > 0 such that for all ε ∈ (0,ε∗)
the closed-loop system (6) is asymptotically stable with
guaranteed cost J = γξ (0)TW−1

1 ξ (0) + γµ f (0)TW−1
2 µ f (0)

and controller gains of (8) given by (32) with i = j = 1.

Proof: The proof follows the same steps as the ones of
Theorem 1, Lemma 1 is applied with

M0 =

[

He{Ψ11} ⋆

Λ1 −γI

]

, MT
1 =−

[

ϕ12

(Cz2 +DDcC2)

]

A−1
22 ,

M2 =
[

ϕ21 0
]

, NT
1 = −A22[I

T 0] and N2 = −ςAT
22, we

conclude that if (36) holds, then (35) is satisfied and (18) is
verified.

Finally, pre- and post-multiplying (37) by [I B2Dc] and
its transpose, one gets (19).

Remark 3 If we consider the initial conditions of the con-
troller are zero, ξ (0)= (x(0),0) and µ(0)= (z(0),0), one has
J = γx(0)TY1x(0)+ γµ f (0)TW−1

2 µ f (0), µ f (0) = (z(0),0)+
G(x(0),0), G= Ã−1

22 Ã21. In this case, we can minimize J for a
given γ by the minimization of the trace of Y1 and W−1

2 . Con-
sidering the structure of the Lyapunov matrix given in (22),
one has Tr

(

W−1
2

)

= Tr
(

Y2 +Y2 −X−1
2

)

where Y2 −X−1
2 > 0

from (28). Therefore, the minimization of the guaranteed cost
is obtained by solving the following optimization problem:
min Tr(Q) subject to Q > diag(Y1,Y2) and (28)–(29) (or
(28) and (36)–(37)).

Remark 4 Notice that the controller u(t) = Ccxc(t) +
DcC1x(t)+DcC2z(t) involves both slow and fast variables.
Nevertheless, if we consider that the boundary-layer (fast)
system is open-loop stable, i.e., A22 Hurwitz, one can design
strictly proper controllers by imposing Dc = 0 in Theorem 2.
Doing so, the control signal u(t) does not depend anymore
on the fast variable z(t) leading to slow actuation that can
be easily implemented in practice.

IV. NUMERICAL EXAMPLE

Let system (1) given by the nominal singularly perturbed
in [1], [4] with the following matrices:

A11 =

[

−0.195 −0.676
1.478 0

]

, A12 =

[

−0.917 0.109
0 0

]

,

A21 =

[

−0.052 0
0.014 0

]

, A22 =

[

−0.368 0.438
−2.103 −0.215

]

,

B1 =

[

−0.023
−16.945

]

, B2 =

[

−0.048
−3.811

]

, D =

[

0
10

]

,

C1 =

[

0 1
0 0

]

, C2 =

[

0.921 −0.161
0 1

]

,

Cz1 = diag(0.1,0), Cz2 = diag(0,0), and the singular pertur-
bation parameter is ε = 0.0336 [1]. As in works [1], [4],
Theorem 1 with ς = 1 and I = 0 is able to find a solution
providing the following gains for the ε-dependent controller



(5)

[

Ac11 Ac12

Ac21 Ac22

]

=









−0.35 −0.49 −1.0 −1.3
1.3 −1.9 −1.4 −5.7

−0.16 0.023 −0.76 0.19
0.17 2.4 0.1 −0.53









,

[

Bc1

Bc2

]

=









0.16 −1.3
−1.4 −5.6
0.016 −0.14
2.1 0.038









, Dc =
[

−0.59 0.31
]

10−9
,

[

Cc1 Cc2
]

=
[

−2.68 −21.44 −3.94 1.13
]

10−3
.

(38)
The time-simulations of the closed-loop system for the initial
condition (x(0),z(0)) = (1,−1,1,−1) and zero initial condi-
tion of the controller is presented in Fig. 1 that shows the
state trajectories of the plant and the controller. As expected,
the fast variables z and zc change abruptly in the initial instant
demanding a fast response of the actuators.

Next, we would like to presented some scenarios that
cannot be handled by the classical approaches [1], [4].
First, consider the case of designing ε-independent DOF
controllers. The following gains for the controller (8) are
obtained by Theorem 2 with ς = 10−3, and I =−0.01I:

Ac11 =

[

3.13 14.34
−1.01 −4.04

]

, Bc1 =

[

−0.81 −18.63
−1.44 −5.71

]

,

Cc1 =
[

−0.58 −1.69
]

, Dc =
[

−0.063 1.063
]

.

We can also impose Dc = 0 in order to obtain a control signal
u(t) independent of the fast variable as matter of actuator rate
constraints, as point out in Remark 4, yielding the following
gains for the controller (8) obtained by Theorem 2 with ς =
10−9 and I = 0:

Ac =

[

−0.39 −2.10
1.33 −1.39

]

, Bc =

[

−1.36 −3.96
−1.30 −1.67

]

,

Cc =
[

−2.00 −0.32
]

10−2
.

(39)

We would like to stress the advantage of the proposed
conditions over the existing results in the literature by im-
posing matrix A22 singular and with an unstable eigenvalue.
The arbitrary choice is made (eigenvalues 0 and 0.07)

A22 =

[

−0.368 0.438
−0.368 0.438

]

and the following gains for the controller (5) are obtained
with Theorem 1 with ς = 1 and I = 0:

[

Ac11 Ac12

Ac21 Ac22

]

=









−0.24 −0.56 −61.2 −386.7
1.26 −3.13 −780.8 −4751.9
−0.11 −1.43 −48.7 −283.9
0.07 3.36 −102.8 −646.9









[

Bc1

Bc2

]

=









0.11 −19.01
−1.62 −81.69
−1.35 −12.00
3.51 1.41









, Dc =
[

2.90 2.12
]

·10−8
,

[

Cc1 Cc2
]

=
[

−0.010 −0.086 −31.10 −183.62
]

.
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Fig. 1: State trajectories of the plant (solid line) and the
controller (dashed line) with gains (38). The figure inset
illustrates the trajectories of the fast variables z (solid line)
and zc (dashed line) in the initial period.

V. CONCLUSION

In this paper, the output feedback guaranteed cost control
problem for linear singularly perturbed systems is explored.
We propose a time-scale decomposition of the closed-loop
system for the design of full and reduced-order controllers.
The design, implemented by ε-independent sufficient LMI
conditions, do not require the fast dynamic matrix to be non-
singular or stable. The controller implementation does not
require the knowledge on the singular perturbation parameter
and the use of fast actuators to stabilize the fast dynamics.
Numerical simulation emphasizes the effectiveness of our
results.
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