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Guaranteed cost for an event-triggered consensus strategy for interconnected two time-scales systems with structured uncertainty Yan Lei, Yan-Wu Wang, Irinel-Constantin Morȃrescu, and Jiang-Wen Xiao

Abstract-This paper proposes the design of an event-triggered control strategy for consensus of interconnected two-time scales systems with structured uncertainty. The control design under consideration ensures also that consensus is achieved with an overall guaranteed cost. Since each system involves processes evolving on both fast and slow time scales, two Zeno-free eventtriggered mechanisms are designed to independently decide the sampling and transmission instants for the slow and fast states respectively. As the first step, we design an event-triggering consensus protocol in the ideal/nominal case when the interconnected systems are not affected by uncertainties and the interactions happen over a fixed interaction network. Next, the results are extended in order to take into account structured uncertainties affecting the systems dynamics. At this step, we go further and we provide sufficient conditions for event-triggering consensus with a guaranteed overall cost. Finally, two numerical examples are provided to demonstrate the effectiveness of the proposed theoretical results.

Index Terms-Event-triggered control, interconnected systems, two-time-scale, guaranteed cost.

I. INTRODUCTION

T HE last decades witnessed an increasing attention given to cooperative control of interconnected systems. This is certainly due to its numerous applications including mobile robots [START_REF] Bullo | Distributed control of robotic networks: a mathematical approach to motion coordination algorithms[END_REF], monitoring control [START_REF] Wang | Optimal persistent monitoring using second-order agents with physical constraints[END_REF], biology [START_REF] Steur | Semi-passivity and synchronization of diffusively coupled neuronal oscillators[END_REF], traffic flow [START_REF] Michiels | Consensus problems with distributed delays, with application to traffic flow models[END_REF] or opinion dynamics [START_REF] Morarescu | Opinion dynamics with decaying confidence: Application to community detection in graphs[END_REF]. Consensus problem is the most popular problem in cooperative control of interconnected systems. Consensus protocols aim at driving each system towards an agreement relying on the information exchanged locally among neighbors.

Traditionally, the consensus protocols for continuous time dynamics are mostly designed to be applied continuously. Nevertheless, digital implementation of the controller is required in most of the applications. This means that control signals can be updated only at particular discrete time instants corresponding to interaction/communication times. Moreover, in order to extend the life cycle of devices we are often interested to minimize the number of interactions and implicitly the number of control updates. There are many effective way to save the communication and control resources, for example, impulsive control [START_REF] Ma | Stochastic synchronization of delayed multiagent networks with intermittent communications: An impulsive framework[END_REF], periodic sampling control [START_REF] Wu | Consensus of multiagent systems using aperiodic sampled-data control[END_REF], intermittent control [START_REF] Wang | Output formationcontainment of coupled heterogeneous linear systems under intermittent communication[END_REF], event-triggered control [START_REF] Fan | Distributed event-triggered control of multi-agent systems with combinational measurements[END_REF]- [START_REF] Ding | Distributed secondary control for active power sharing and frequency regulation in islanded microgrids using an event-triggered communication mechanism[END_REF] and the combination of these strategies [START_REF] Zhang | An overview and deep investigation on sampled-data-based event-triggered control and filtering for networked systems[END_REF]. Among all these strategies, eventtriggered strategy is very attractive since each system only needs to update control actuation and communicate with neighbors when a pre-defined event is triggered. A distributed event-triggered control strategy requires a distributed eventtriggered controller and a distributed Zeno-free event-triggered mechanism. In [START_REF] Dimarogonas | Distributed event-triggered control for multi-agent systems[END_REF], [START_REF] Garcia | Decentralised event-triggered cooperative control with limited communication[END_REF], two distributed event-triggered control strategy are proposed to achieve the consensus of the interconnected systems with single-integrator dynamic. Then, the event-triggered consensus problem is further studied for the interconnected systems with double-integrator [START_REF] Seyboth | Event-based broadcasting for multi-agent average consensus[END_REF] and general linear dynamics [START_REF] Demir | Event-based synchronisation of multi-agent systems[END_REF]- [START_REF] Ye | Distributed adaptive eventtriggered fault-tolerant consensus of multiagent systems with general linear dynamics[END_REF]. In [START_REF] Hu | Output consensus of heterogeneous linear multi-agent systems by distributed event-triggered/self-triggered strategy[END_REF], a self-triggered scheme is further proposed to avoid the continuous monitoring of the neighbors states and achieve the output consensus of heterogeneous linear interconnected systems. It is noteworthy that all these studies consider only dynamics evolving on one time scale while in many practical applications the dynamics evolves on two time scales.

Biological systems [START_REF] Wang | Modelling periodic oscillation of biological systems with multiple timescale networks[END_REF], chemical reactions [START_REF] Zagaris | Analysis of the computational singular perturbation reduction method for chemical kinetics[END_REF], power systems [START_REF] Ball | Nonlinear controllability of singularly perturbed models of power flow networks[END_REF], [START_REF] Jiang | A two-time scale dynamic correction method for fifth-order generator model undergoing large disturbances[END_REF] involve both slow and fast processes leading to dynamics that are mathematically described as two-time scales systems. Feedback design for such two time-scales systems (TTSSs)is often subject to high dimensionality and is numerical ill-conditioned. Consequently, it is interesting, yet challenging, to consider the problem of control design for consensus of interconnected TTSSs. The stabilization problem of centralized TTSSs has been widely studied [START_REF] Yoo | New designs of linear observers and observerbased controllers for singularly perturbed linear systems[END_REF]- [START_REF] Song | Dynamic event-triggered sliding mode control: Dealing with slow sampling singularly perturbed systems[END_REF], but the corresponding results on the consensus of interconnected TTSSs are relatively few. In [START_REF] Yang | Modulus consensus in a network of singularly perturbed systems with collaborative and antagonistic interactions[END_REF], the time scale decomposition method is utilized to achieve the consensus of interconnected TTSSs. In [START_REF] Yang | Coordination of networked delayed singularly perturbed systems with antagonistic interactions and switching topologies[END_REF], time-varying delay and switching interaction topology are further considered for the bipartite consensus of interconnected TTSSs. However, the Laplacian matrix associating with the interaction topology is required to be known in [START_REF] Yang | Modulus consensus in a network of singularly perturbed systems with collaborative and antagonistic interactions[END_REF], [START_REF] Yang | Coordination of networked delayed singularly perturbed systems with antagonistic interactions and switching topologies[END_REF]. In [START_REF] Rejeb | Control design with guaranteed cost for synchronization in networks of linear singularly perturbed systems[END_REF], the proposed consensus control protocol for the interconnected TTSSs is independent of the Laplacian matrix and only depends on the size of the interaction network. A practical limitation of the designs in [START_REF] Yang | Modulus consensus in a network of singularly perturbed systems with collaborative and antagonistic interactions[END_REF]- [START_REF] Rejeb | Control design with guaranteed cost for synchronization in networks of linear singularly perturbed systems[END_REF] is that the consensus algorithms have to be continuously applied. To overcome this limitation, in [START_REF] Sivaranjani | Synchronization of nonlinear singularly perturbed complex networks with uncertain inner coupling via event triggered control[END_REF] the authors designed an event-triggered control strategy for synchronization of a class of nonlinear TTSSs in which the control inputs acts independently on each component (i.e. the coefficient of the input is the identity matrix). Beside that, as pointed out in [START_REF] Jaleel | Decentralized energy aware cooptimization of mobility and communication in multiagent systems[END_REF], energy aware strategies need to guaranty an overall synchronization cost while saving communication resources.

The main contribution of this paper is threefold. First, we extend the results in [START_REF] Rejeb | Control design with guaranteed cost for synchronization in networks of linear singularly perturbed systems[END_REF] by proposing an event-triggering protocol to synchronize TTSSs with a guaranteed cost. Second, we analyze the closed-loop dynamics through Lyapunov techniques and show that event-triggering mechanisms for slow and fast states are Zeno free and not synchronized. Third, the results are proven in the wider framework of TTSSs with structured uncertainties. This last feature renders the results implementable in real applications in which the agents are slightly different although they are supposed to be identical.

The rest of the paper is organized as follows. Some preliminaries of algebraic graph theory and guaranteed-cost consensus are introduced in Section II. The analysis of the guaranteed-cost consensus problem of linear interconnected TTSSs under fixed interaction topology is detailed in Section III. In this section we first analyze the synchronization for nominal/identical systems and then we extend the results to the case of dynamics affected by uncertainties. Two illustrative examples are presented in Section IV. Conclusion is drawn in Section V.

Notation. R m×n denotes the set of m × n real matrices. We write P > 0 to precise that a real symmetric matrix P is positive definite. λ min (P ) and λ max (P ) represent the minimum and the maximum eigenvalue, respectively. • denotes the Euclidean norm for vectors or the induced 2-norm for matrices. ⊗ stands for Kronecker product. The notation diag (d 1 , . . . , d N ) denotes the diagonal matrix with diagonal elements d 1 , . . . , d N .

II. PROBLEM FORMULATION AND PRELIMINARIES A. Graph Theory

A graph G = (V, E, A) is defined by the vertex-set V = {1, 2, . . . , N }, edge-set E ⊂ V × V and adjacency matrix A ∈ R N ×N . System i obtains information from system j if and only if {j, i} ∈ E. The adjacency matrix is defined as A = (a ij ) N ×N , with a ij > 0 if and only if {j, i} ∈ E, otherwise,

a ij = 0. It is assumed that a ii = 0. A graph G = (V, E, A) is undirected if a ij = a ji , for ∀i, j ∈ V.
A sequence of distinct adjacent vertices starting with i and ending with j is called a path from i to j. If there is a path between any two nodes of the graph G, then G is called connected. The Laplacian matrix

L = (l ij ) N ×N of graph G is defined as l ij = -a ij , i = j and l ii = N k=1,k =i a ik .
As in [START_REF] Rejeb | Control design with guaranteed cost for synchronization in networks of linear singularly perturbed systems[END_REF] we impose the following Assumption.

Assumption 1. The interaction topology G is undirected and connected. All the non-zero weight a ij = 0 of the associated weighted Laplacian matrix are within the interval [a m , a M ] with a M ≥ a m > 0.

Under Assumption 1 the following result holds.

Lemma 1 ( [START_REF] Rejeb | Control design with guaranteed cost for synchronization in networks of linear singularly perturbed systems[END_REF]). Let an undirected graph G satisfy Assumption 1 and let 0 = λ 1 < λ 2 ≤ . . . ≤ λ N be the eigenvalues of the corresponding Laplacian matrix L. A rough lower-bound on λ 2 , independent of G, is λ * = a 2 m 2(N -1)N 2 . Therefore, it can be obtained that

λ * < λ 2 ≤ . . . λ N < N • a M λ • .
There exists an orthonormal matrix T ∈ R N ×N (i.e. T T T = T T T = I N ) such that T LT T = D = diag(λ 1 , λ 2 , . . . , λ N ).

B. Problem Description

Consider the following interconnected systems composed of N uncertain linear TTSSs,

ẋi (t) ε żi (t) = (A + Ξ i ) x i (t) z i (t) +Bu i (t), (1) 
where i = 1, . . . , N , x i (t) ∈ R nx and z i (t) ∈ R nz are the slow and fast state vectors, respectively, ε is a small positive parameter defining the time-scale separation between slow and fast dynamics, u i (t) ∈ R p is the control input vector,

A = A 11 A 12 A 21 A 22 , B = col(B 1 , B 2 ), A ij , B i , i, j = 1, 2,
are the known constant matrices with appropriate dimensions,

Ξ i = mi k=1
q ik Ξ ik represents the structured uncertainty with q ik uncertain parameters and Ξ ik known constant matrices.

Definition 1. The consensus of linear interconnected TTSSs (1) is achieved, if for any given admissible initial state x i (0), z i (0), lim

t→∞ x i (t) -x j (t) = 0, lim t→∞ z i (t) -z j (t) = 0, ∀i, j = 1, . . . , N .
For each system i, {t 1i k } for x i and {t 2i k } for z i , k ∈ 0, 1, 2, . . ., are two increasing sequences of triggering instants at which system i will respectively update the states x i and z i and send to its neighbors. Let t 1i 0 = t 2i 0 = 0, for i ∈ V. Define xi (t) = x i (t 1i k1i ) and ẑi (t) = z i (t 2i k2i ) as the latest sampled slow and fast states values of system i at time t. The distributed event-triggered controller is designed in the following form:

u i (t) = K 1 N j=1 a ij (x j (t)-x i (t))+K 2 N j=1 a ij (ẑ j (t)-ẑ i (t)). (2)
Define the measurement errors of slow and fast states as follows

e 1i (t) = xi (t) -x i (t), e 2i (t) = ẑi (t) -z i (t).
The sequences {t 1i k }, {t 2i k } for x i and z i are determined by the event-triggered mechanism designed in the following form

t 1i k+1 = inf{t > t 1i k |g(e 1i (t), q 1i (t), δ 1i (t)) = 0}, (3) 
t 2i k+1 = inf{t > t 2i k |g(e 2i (t), q 2i (t), δ 2i (t)) = 0}, (4) 
where g(•) is a nonlinear function to be designed,

q 1i (t) = N j=1 a ij (t)(x i (t) -xj (t)), q 2i (t) = N j=1 a ij (t)(ẑ i (t) -ẑj (t)),
δ 1i (t) and δ 2i (t) are two positive smooth functions and square integrable over t ∈ [0, ∞).

Remark 1. For each system i, the event-triggered controller (2) only updates when the event-triggered mechanisms ( 3) and ( 4) of itself or neighbors are triggered. From the eventtriggered mechanisms (3) and ( 4), it can be obtained that the triggering instants for the slow and fast states are asynchronous and independently generated. The functions δ 1i and δ 2i in ( 3) and ( 4) are introduced to exclude the Zeno behavior. The necessity of δ 1i and δ 2i being in such form will be clear from the theoretical analysis.

To convert the consensus problem of the interconnected TTSSs (1) into a stabilization problem, the following state and input transformations are performed

x(t) = (T ⊗ I nx )x(t), z(t) = (T ⊗ I nz )z(t), ũ(t) = (T ⊗ I q )u(t), ẽ1 (t) = (T ⊗ I nx )e 1 (t), ẽ2 (t) = (T ⊗ I nz )e 2 (t), ( 5 
)
where T is defined in Lemma 1 and

x = col(x 1 , . . . , x N ), z = col(z 1 , . . . , z N ), u = col(u 1 , . . . , u N ), e 1 =
col(e 11 , . . . , e 1N ), e 2 = col(e 21 , . . . , e 2N ). Then, the control law ũ(t) can be rewritten as follows, 2) can be decoupled into n independent TTSSs, for i = 1, . . . , n,

ũ(t) = -(T L ⊗ K 1 )x(t) -(T L ⊗ K 2 )z(t) -(T L ⊗ K 1 )e 1 (t) -(T L ⊗ K 2 )e 2 (t) = -(T LT T ⊗ K 1 )x(t) -(T LT T ⊗ K 2 )z(t) -(T LT T ⊗ K 1 )ẽ 1 (t) -(T LT T ⊗ K 2 )ẽ 2 (t) = -[(D ⊗ K 1 )x(t) + (D ⊗ K 2 )z(t)] -[(D ⊗ K 1 )ẽ 1 (t) + (D ⊗ K 2 )ẽ 2 (t)]. Denote ũ = col(ũ 1 , . . . , ũN ). Then, for i = 1, . . . , N , ũi (t) = -λ i K 1 (x i (t)+ẽ 1i (t))-λ i K 2 (z i (t)+ẽ 2i (t)).
ẋi ε żi = Λ i 11 Λ i 12 Λ i 21 Λ i 22 + Ξi xi zi -λiBK ẽ1i ẽ2i , (7) 
where

K = col(K 1 , K 2 ), Λ i 11 = A 11 -λ i B 1 K 1 , Λ i 12 = A 12 -λ i B 1 K 2 , Λ i 21 = A 21 -λ i B 2 K 1 , Λ i 22 = A 22 -λ i B 2 K 2 .
It can be easily obtained that, when the event-triggered control law (2) achieves the stabilization of system (7) for i = 2, . . . , N , the consensus problem of system (1) is also solved.

Consider the following global cost associated with consensus of interconnected TTSSs (1):

J = ∞ 0 x(t) T (L ⊗ I nx )x(t) + z(t) T (L ⊗ I nz )z(t) + u(t) T (I p ⊗ R)u(t)dt, (8) 
where R ∈ R q×q is a positive definite matrix that penalizes the control effort required for consensus.

Definition 2. The guaranteed-cost consensus of linear interacted TTSSs ( 1) is said to be achieved, if there exists a bounded J * such that the consensus is achieved and J ≤ J * , where J * is said to be a guaranteed cost.

The main goal of this paper is to characterize the feedback controllers (2) together with the event-triggered mechanism (3) and ( 4) such that the guaranteed-cost consensus of the interconnected systems (1) can be achieved.

III. MAIN RESULT

In this section, we firstly present an event-triggered control laws to achieve the guaranteed-cost consensus of the interconnected nominal TTSSs with fixed undirected topology. Then, the results are extended to take into account structured uncertainty on the systems dynamics.

A. Analysis of nominal interconnected TTSSs

In this subsection, we consider the following interconnected nominal TTSS:

ẋi (t) = A 11 x i (t) + A 12 z i (t) + B 1 u i (t), ε żi (t) = A 21 x i (t) + A 22 z i (t) + B 2 u i (t), (9) 
where i = 1, . . . , N . Unlike (1), nominal TTSSs ( 9) consider all the agents are driven by identical dynamics. Suppose the interaction topology satisfies Assumption 1.

To conduct the Chang transformation, the following assumptions and lemma are necessary.

Assumption 2. The matrix A 22 is invertible.

Assumption 3. The pairs (A 0 , B 0 ) and (A 22 , B 2 ) are stabilizable, where [START_REF] Hu | Output consensus of heterogeneous linear multi-agent systems by distributed event-triggered/self-triggered strategy[END_REF]). For any stabilizable pair (A, B), there always exists a unique symmetric matrix P > 0 satisfying the following algebraic Riccati equation:

A 0 = A 11 -A 12 A -1 22 A 21 , B 0 = B 1 -A 12 A -1 22 B 2 . Lemma 2 ( [
P A + A T P -2µ 1 P BB T P + µ 2 I n = 0, (10) 
where µ 1 , µ 2 are two positive constant.

Remark 2. Assumptions 2, 3 are standard, they have been also used in [START_REF] Rejeb | Control design with guaranteed cost for synchronization in networks of linear singularly perturbed systems[END_REF] to ensure that stabilization of system (9) can be achieved. By Lemma 2, there exist

P 1 = P T 1 > 0, P 2 = P T 2 > 0, Q 1 > 0, Q 2 > 0 such that P 1 A 0 + A T 0 P 1 -2 λ * λ • P 1 B 0 B T 0 P 1 + Q 1 = 0, (11) 
P 2 A 22 + A T 22 P 2 -2λ * P 2 B 2 B T 2 P 2 + Q 2 = 0. ( 12 
)
Thus, there exist

K 0 = B T 0 P 1 , K 2 = B T 2 P 2 , such that, (A 0 - λ i λ • B 0 K 0 ) T P 1 +P 1 (A 0 - λ i λ • B 0 K 0 )+Q 1 ≤ 0, (13) (A 22 -λ i B 2 K 2 ) T P 2 +P 2 (A 22 -λ i B 2 K 2 )+Q 2 ≤ 0, ( 14 
)
for i = 2, . . . , N , which means the matrices A 0 -λi λ • B 0 K 0 and A 22 -λ i B 2 K 2 are all Hurwitz. The reason of P 1 and P 2 being designed to satisfy [START_REF] Ding | Distributed secondary control for active power sharing and frequency regulation in islanded microgrids using an event-triggered communication mechanism[END_REF] and ( 12) will be derived in the following theoretical analysis. Now, the Chang transformation is ready to be given. Define

T ic = I nx εH i -L i I nz -εL i H i , T -1 ic = I nx -εH i L i -εH i L i I nz ,
where the matrices L i and H i satisfy follow equations,

Λ i 21 -Λ i 22 L i +εL i Λ i 11 -εL i Λ i 12 L i = 0, Λ i 12 -H i Λ i 22 +εΛ i 11 H i -εΛ i 12 L i H i -εH i L i Λ i 12 = 0. (15) Then Chang transformation is performed xis (t) zif (t) = T -1 ic xi (t) zi (t) , (16) 
where xis (t), zif (t) are pure slow and pure fast state variables.

As Λ i 22 = A 22 -λ i B 2 K 2 is
Hurwitz, it is non-singular, equations ( 15) have approximate solution. Then, the following system can be obtained, for i = 2, . . . , N ,

ẋis (t) żif (t) = A iD xis (t) zif (t) -B iD K ẽ1i (t) ẽ2i (t) . ( 17 
)
where A iD is a block diagonal matrix with

A iD = A is -λ i B is K is 0 0 A if -λiB if K2 ε , B iD = λ i B is λiB if ε , A is = A 0 -εA 12 A -1 22 L i (A 11 -A 12 L i ), B is = B 0 -εA 12 A -1 22 B 1 , K is = K 1 -K 2 L i , A if = A 22 +εL i A 12 , B if = B 2 +εL i B 1 .
From ( 16), it can be obtained that if the proposed control stabilizes systems [START_REF] Yang | Decentralized event-triggered consensus for linear multi-agent systems under general directed graphs[END_REF], the stabilization of systems ( 7) is also achieved for i = 2, . . . , n. Thus, the consensus problem of ( 9) is converted to the stabilization problem of systems ( 17) for i = 2, . . . , N .

Before giving the event-triggered control scheme, we firstly design the emulation control scheme for the consensus of interconnected TTSSs [START_REF] Fan | Distributed event-triggered control of multi-agent systems with combinational measurements[END_REF], where e 1i ≡ 0, e 2i ≡ 0, i = 1, . . . , N .

Theorem 1. Suppose that Assumptions 1-3 hold. There exist two positive definite symmetric matrices P 1 and P 2 satisfying (11) and [START_REF] Zhang | An overview and deep investigation on sampled-data-based event-triggered control and filtering for networked systems[END_REF]. Let K 0 = B T 0 P 1 , K 2 = B T 2 P 2 . Then, there exists ε > 0 such that for all ε ∈ (0, ε], the interconnected TTSSs (9) achieve consensus with the following timecontinuous controller

u i (t) = K 1 N j=1 a ij (x j (t)-x i (t))+K 2 N j=1 a ij (z j (t)-z i (t)). (18) with K 1 = ( 1 λ • -K 2 A -1 22 B 2 )K 0 + K 2 A -1 22 A 21 .
Proof.

As K 1 = ( 1 λ • -K 2 A -1 22 B 2 )K 0 + K 2 A -1
22 A 21 , it can be obtained that from the first equation in ( 15)

L i =(A 22 -λ i B 2 K 2 ) -1 (A 21 -λ i B 2 K 1 )+O(ε) =(A 22 -λ i B 2 K 2 ) -1 (A 21 -λ i B 2 K 2 A -1 22 A 21 )+O(ε) -(A 22 -λ i B 2 K 2 ) -1 B 2 ( λ i λ • -λ i K 2 A -1 22 B 2 )K 0 =(A 22 -λ i B 2 K 2 ) -1 (A 22 -λ i B 2 K 2 )A -1 22 A 21 +O(ε) -(A 22 -λ i B 2 K 2 ) -1 ( λ i λ • A 22 -λ i B 2 K 2 )A -1 22 B 2 K 0 =A -1 22 A 21 -A -1 22 B 2 K 0 + O(ε) -( λ i λ • -1)(A 22 -λ i B 2 K 2 ) -1 B 2 K 0 .
Then

K is = 1 λ • K 0 +( λ i λ • -1)K 2 (A 22 -λ i B 2 K 2 ) -1 B 2 K 0 +O(ε), A is -λ i B is K is = A 0 - λ i λ • B 0 K 0 -λ i ( λ i λ • -1)B 0 K 2 × (A 22 -λ i B 2 K 2 ) -1 B 2 K 0 +O(ε), A if -λ i B if K 2 = A 22 -λ i B 2 K 2 + O(ε), B is = B 0 + O(ε), B if = B 2 + O(ε).
Define the following Lyapunov candidate

V = N i=2 xT is P 1 xis + ε N i=2 zT if P 2 zif . ( 19 
)
Since e 1i ≡ 0, e 2i ≡ 0, i = 1, . . . , N . The time derivative of V along the trajectories of ( 17) with controller ( 18) is

V = N i=2 ( ẋT is P1 xis + xT is P1 ẋis)+ε N i=2 ( żT if P2 zif + zT if P2 żif ) = N i=2
xT is ((Ais -λiBisKis) T P1 +P1(Ais -λiBisKis))xis

+ N i=2 zT if ((A if -λiB if K2) T P2 +P2(A if -λiB if K2))z if = N i=2 xT is ((A0 - λi λ • B0K0) T P1 +P1(A0 - λi λ • B0K0))xis +2 N i=2 (λi - λ 2 i λ • )x T is P1B0K2(A22 -λiB2K2) -1 B2K0 xis + N i=2 zT if ((A22 -λiB2K2) T P2 +P2(A22 -λiB2K2))z if + N i=2 xT is O(ε)xis + N i=2 zT if O(ε)z if ≤ N i=2 (λi - λ 2 i λ • )x T is P1B0K2(A22 -λiB2K2) -1 B2K0 xis - N i=2 xT is (Q1 +O(ε))xis - N i=2 zT if (Q2 +O(ε))z if , (20) 
where the last equation is deduced from ( 13) and ( 14). Furthermore, from ( 14), it can be obtained that

P 2 A 22 + A T 22 P 2 - 2λ i P 2 B 2 K 2 ≤ 0, i = 1, . . . , n. Thus, for i = 1, . . . , n, xT is P 1 B 0 K 2 (A 22 -λ i B 2 K 2 ) -1 B 2 K 0 xis =x T is K T 0 K 2 (P 2 A 22 -λ i P 2 B 2 K 2 ) -1 K T 2 K 0 xis =x T is (P 2 A 22 -λ i P 2 B 2 K 2 ) T xis =x T is ( 1 2 P 2 A 22 + 1 2 A T 22 P 2 -λ i P 2 B 2 K 2 )x is ≤ 0, where xis = (P 2 A 22 -λ i P 2 B 2 K 2 ) -T K T 2 K 0 xis . Thus V ≤ - N i=2 xT is (Q 1 +O(ε))x is - N i=2 zT if (Q 2 +O(ε))z if .
Then, there exists ε > 0 such that for all 0 < ε ≤ ε,

V ≤ -θ 1 N i=2 xT is xis -θ 2 N i=2 zT if zif ,
for some θ 1 > 0, θ 2 > 0. Then, from standard Lyapunov stability results, we have lim t→∞ xis = 0, lim t→∞ zif = 0, for i = 2, . . . , n. The consensus of interconnected TTSSs ( 9) is achieved.

Remark 3. It can be seen that the design of ( 11) and [START_REF] Zhang | An overview and deep investigation on sampled-data-based event-triggered control and filtering for networked systems[END_REF] for

P 1 and P 2 is to ensure that A is -λ i B is K is , A if -λ i B if K 2
are all Hurwitz for i = 2, . . . , N , and hence [START_REF] Hu | Output consensus of heterogeneous linear multi-agent systems by distributed event-triggered/self-triggered strategy[END_REF] holds, which leads to the stability of [START_REF] Yang | Decentralized event-triggered consensus for linear multi-agent systems under general directed graphs[END_REF]. Moreover, [START_REF] Ding | Distributed secondary control for active power sharing and frequency regulation in islanded microgrids using an event-triggered communication mechanism[END_REF] and ( 12) depend only on the size of the network, and so does the design of the control matrices K 1 and K 2 . Now a distributed event-triggered controller in form of ( 2) is ready to be designed. Unlike controller [START_REF] Hu | Consensus of linear multi-agent systems by distributed event-triggered strategy[END_REF], system [START_REF] Yang | Decentralized event-triggered consensus for linear multi-agent systems under general directed graphs[END_REF] needs to consider the impact of ẽ1i (t), ẽ2i (t) in this case.

Let µ = max

λi∈[λ * ,λ • ] { T ic (λ i ) 2 }, λ = min i=1,2 {λ min (Q i )}, γ = 4λ • 2 λ ( P 1 B 0 K 2 + P 2 B 2 K 2 ), β 1 = λmin(Q1) 8µγλ • 2 +2λmin(Q1)λ • 2 , β 2 = λmin(Q2) 8µγλ • 2 +2λmin(Q2)λ • 2 , α 1 = max i=1,2 { K T i RK i 2 }. α 2 = 4µ λ (λ • + α1λ • 2 (λ+4µγ) µγ ). Since δ ij (t), i = 1, 2, j = 1, . . . , N are all square integrable over t ∈ [0, ∞), 0 < 2β 1 λ •2 < 1, there exists a positive constant α 3 such that α 3 ≥ ∞ 0 2γα2+8α1λ • 2 1-2β1λ • 2 N i=1 (δ 2 1i +δ 2 2i )dt > 0.
Theorem 2. Suppose that Assumptions 1-3 hold. There exists ε > 0 such that for all ε ∈ (0, ε], the consensus of the interconnected TTSSs ( 9) can be achieved by the controller (2), where the matrices K 1 , K 2 have the same definition as in Theorem 1 and the triggering instants t 1i k+1 , t 2i k+1 are defined by event-triggered mechanism ( 21) and ( 22) as follows,

t 1i k+1 = inf t>t 1i k {t ∈ R| e 1i 2 = β 1i q 1i 2 +δ 2 1i }, (21) 
t 2i k+1 = inf t>t 2i k {t ∈ R| e 2i 2 = β 2i q 2i 2 +δ 2 2i }, (22) 
where q 1i , q 2i , δ 1i , δ 2i have the same definition as in ( 3) and ( 4), 0 ≤ β 1i ≤ β 1 and 0 ≤ β 2i ≤ β 2 . Furthermore, no system exhibits the Zeno behavior and a guaranteed cost β = α 2 V 0 + α 3 is achieved for interconnected TTSSs [START_REF] Fan | Distributed event-triggered control of multi-agent systems with combinational measurements[END_REF], where

V 0 = N i=2 xT is (0)P 1 xis (0) + ε N i=2 zT if (0)P 2 zif (0).
Proof. Define Ẽi = col(ẽ 1i , ẽ2i ). As in the proof of Theorem 1 and by considering the effect of ẽ1i (t), ẽ2i (t), it can be obtained that the time derivative of V along the trajectories of (17) with controller ( 2) is

V = N i=2 ( ẋT is P1 xis + xT is P1 ẋis)+ε N i=2 ( żT if P2 zif + zT if P2 żif ) ≤- N i=2 xT is (Q1 +O(ε))xis - N i=2 zT if (Q2 +O(ε))z if -2 N i=2 λi(x T is P1Bis + zT if P2B if )K Ẽi =- N i=2 xT is (Q1 +O(ε))xis - N i=2 zT if (Q2 +O(ε))z if -2 N i=2 λi(x T is (P1B0 +O(ε))+ zT if (P2B2 +O(ε)))K Ẽi ≤- N i=2 xT is (Q1 -α1In x )xis - N i=2 zT if (Q2 -α2In z )z if + N i=2 λ 2 i ( P1B0K 2 α1 + P2B2K 2 α2 ) ẼT i Ẽi + N i=2 xT is O(ε)xis + N i=2 zT if O(ε)z if .
From the event-triggered mechanism (21), we have

e1i 2 ≤β1 N j=1 aij(xi -xj) 2 + δ 2 1i ≤2β1 N j=1 aij(e1i -e1j) 2 +2β1 N j=1 aij(xi -xj) 2 +δ 2 1i .
Then, we can obtain that

e T 1 e1 ≤2β1 (L ⊗ In x )e1 2 +2β1 (L ⊗ In x )x 2 + N i=1 δ 2 1i ≤2β1λ •2 e1 2 +2β1 xT (D 2 ⊗ In x )x+ N i=1 δ 2 1i ≤2β1λ •2 e1 2 +2β1λ •2 N i=2 xT i xi + N i=1 δ 2 1i .
Thus,

e T 1 e 1 ≤ 2β 1 λ •2 1 -2β 1 λ • 2 N i=2 xT i xi + 1 1 -2β 1 λ • 2 N i=1 δ 2 1i .
As

β 1 = λmin(Q1) 8µγλ • 2 +2λmin(Q1)λ • 2 , then e T 1 e 1 ≤ λ min (Q 1 ) 4µγ N i=2 xT i xi + 1 1 -2β 1 λ • 2 N i=1 δ 2 1i . (23) 
Similarly to [START_REF] Ball | Nonlinear controllability of singularly perturbed models of power flow networks[END_REF], it can be obtained that

e T 2 e 2 ≤ λ min (Q 2 ) 4µγ N i=2 zT i zi + 1 1 -2β 1 λ • 2 N i=1 δ 2 2i . (24) 
From [START_REF] Demir | Event-based synchronisation of multi-agent systems[END_REF],

col(x i , zi ) 2 = T ic col(x is , zif ) 2 ≤µ col(x is , zif ) 2 , thus xis 2 + zif 2 ≥ 1 µ ( xi 2 + zi 2 ). As N i=1 (ẽ T 1i ẽ1i +ẽ T 2i ẽ2i ) = N i=1 (e T 1i e 1i +e T 2i e 2i ), let α 1 = α 2 = 1 4 λ, then V ≤- N i=2 xT is ( 3Q1 4 + O(ε))xis - N i=2 zT if ( 3Q2 4 + O(ε))z if +γ N i=2 ẼT i Ẽi ≤- N i=2 xT is ( Q1 2 + O(ε))xis - N i=2 zT if ( Q2 2 + O(ε))z if + γ 1 -2β1λ • 2 N i=1 (δ 2 1i +δ 2 2i ) ≤-( λ 2µ + O(ε)) N i=2 (x T i xi + zT i zi)+ γ 1 -2β1λ • 2 N i=1 (δ 2 1i +δ 2 2i ).
Thus, there exists ε > 0 such that for all 0 < ε ≤ ε,

V ≤ - λ 4µ N i=2 (x T i xi + zT i zi)+ γ 1 -2β1λ • 2 N i=1 (δ 2 1i +δ 2 2i ). (25)
Then, Zeno behavior will be excluded. As e 1i = xi -x i , the upper right-hand Dini derivative of e 1i (t)

2 along the trajectories of ( 9) are

D + e 1i 2 ≤2 e 1i ė1i ≤2 e 1i A 11 (x i -e 1i )+A 12 (ẑ i -e 2i )+B 1 u i ≤(2 A 11 + A 12 +1) e 1i 2 + A 12 e 2i 2 + A 11 xi + A 12 ẑi + B 1 u i 2 . ( 26 
)
Similarly, it can be obtained that

D + e 2i 2 ≤( A 21 + 2 A 22 + 1) e 2i 2 + A 21 e 1i 2 + A 21 xi + A 22 ẑi + B 2 u i 2 . ( 27 
)
Proof by contradiction will be used to ensure that no system will exhibit Zeno behavior. Firstly, the Zeno behavior will be excluded for event-triggered mechanism [START_REF] Wang | Modelling periodic oscillation of biological systems with multiple timescale networks[END_REF]. In order to seek a contradiction, suppose that lim 9), ( 21), ( 22) and ( 25), it can be obtained that e 1i (t), e 2i (t), xi (t), ẑi (t), u i (t) are all bounded on t ∈ (0, T 1i ]. Moreover, δ 1i is positive smooth function. Thus, there are two positive constants α 4 , δ 1i , such that, for t ∈ (0, T 1i ],

k→∞ t 1i k = T 1i < ∞. Since δ 1i (t), δ 2i (t), i = 1, . . . , N , are square integrable over t ∈ [0, ∞), from (
D + e 1i (t) 2 ≤ α 4 , 0 < δ 1i ≤ δ 1i (t).
From [START_REF] Wang | Modelling periodic oscillation of biological systems with multiple timescale networks[END_REF], it can be obtained that

t 1i k+1 -t 1i k ≥ β 1i q 1i (t 1i k+1 ) 2 +δ 2 1i (t 1i k+1 ) α 4 .
Then,

t 1i k =t 1i k -t 1i k-1 + . . . + t 1i 1 -t 1i 0 + t 1i 0 ≥ k δ 1i α 4 + t 1i 0 .
Thus, it can be obtained that lim

k→∞ t 1i k ≥ lim k→∞ k δ 1i
α4 + t 1i 0 = ∞, which yields a contradiction. Therefore, lim k→∞ t 1i k will not be bounded. Therefore, the Zeno behavior will not happen for event-triggered mechanism [START_REF] Wang | Modelling periodic oscillation of biological systems with multiple timescale networks[END_REF]. With a similar proof, it can also be obtained that the Zeno behavior will not happen for event-triggered mechanism [START_REF] Zagaris | Analysis of the computational singular perturbation reduction method for chemical kinetics[END_REF].

Since δ 1i (t), δ 2i (t), i = 1, . . . , N , are square integrable over t ∈ [0, ∞), according to [START_REF] Yoo | New designs of linear observers and observerbased controllers for singularly perturbed linear systems[END_REF], it can be obtained that V (t) is bounded and integrable on t ∈ [0, ∞). Then N i=2 (x T i xi + zT i zi ) is also bounded and integrable on t ∈ [0, ∞). Then xi , zi , ẽ1i , ẽ2i , i = 2, . . . , N , are all bounded on t ∈ [0, ∞). From ( 17), ẋi , żi , i = 2, . . . , N , are also bounded on t ∈ [0, ∞). By Barbalat's lemma, it can be concluded that lim t→∞ xi = 0, lim t→∞ zi = 0, for i = 2, . . . , N . Thus, the consensus of the interconnected TTSSs ( 9) is achieved.

In the following, we will prove that synchronization of ( 9) is achieved with a guaranteed cost.

From ( 5) and ( 6), one obtains that

J = ∞ 0 x T (t)(L ⊗ I nx )x(t) + z T (t)(L ⊗ I nz )z(t) + u T (t)(I p ⊗ R)u(t)dt = ∞ 0 xT (t)(D ⊗ I nx )x(t) + zT (t)(D ⊗ I nz )z(t) + ũT (t)(I p ⊗ R)ũ(t)dt ≤ ∞ 0 N i=2 λ i (x T i (t)x i (t)+ zT i (t)z i (t))+ ũT i (t)Rũ i (t)dt ≤ ∞ 0 N i=2 (λ • + 4α 1 λ •2 )(x T i (t)x i (t)+ zT i (t)z i (t)) +4α 1 λ •2 (e T 1i ( 
t)e 1i (t) + e T 2i (t)e 2i (t))dt. Then, from ( 23) and ( 24), we deduce that

J ≤ ∞ 0 N i=2 (λ • + 4α 1 λ •2 )(x T i (t)x i (t)+ zT i (t)z i (t)) + N i=1 4α 1 λ •2 (e T 1i (t)e 1i (t) + e T 2i (t)e 2i (t))dt ≤ ∞ 0 N i=2 (λ • + α 1 λ •2 (λ+4µγ) µγ )(x T i (t)x i (t)+ zT i (t)z i (t)) + 4α 1 λ •2 1 -2β 1 λ • 2 N i=1 (δ 2 1i +δ 2 2i )dt ≤ ∞ 0 -α 2 V (t)+ γα 2 + 4α 1 λ •2 1 -2β 1 λ • 2 N i=1 (δ 2 1i +δ 2 2i )dt ≤α 2 V 0 + α 3 . (28) 
Thus, the consensus of TTSSs ( 9) is achieved with a global guaranteed cost α 2 V 0 + α 3 .

Remark 4. There are several aspects needed to be highlighted for the event-triggered mechanism. 1) By using Chang Transformation, the states of systems [START_REF] Wu | Consensus of multiagent systems using aperiodic sampled-data control[END_REF] are decoupled as pure slow and fast states. Thus the event-triggered mechanism for slow states and fast states can be designed independently as ( 21) and ( 22). 2) Due to the coupling of the slow and fast states, the upper bound β 1 of the event-triggering parameters β 1i dependents not only on the solution of ( 13) but also on [START_REF] Garcia | Decentralised event-triggered cooperative control with limited communication[END_REF], and so does the upper bound β 2 of β 2i . 3) From ( 28), it can be obtained that the selection of δ 1i and δ 2i , i = 1, . . . , N , will not only affect the triggering instants but also the guaranteed cost. To exclude the Zeno behavior and achieve the consensus with a global guaranteed cost, the functions δ 1i and δ 2i , i = 1, . . . , N , are designed independently as in ( 3) and ( 4), and the detail will be given in the feasibility analysis later.

Remark 5. For each system i, the event-triggered mechanisms [START_REF] Wang | Modelling periodic oscillation of biological systems with multiple timescale networks[END_REF] and ( 22) depend on sampling states of itself and its neighbors, the measurement error and the designed function δ 1i and δ 2i . It is also feasible by setting β 1i = β 2i = 0. In this way, the event-triggered mechanisms ( 21) and ( 22) depend only on the measurement error and the designed function δ 1i and δ 2i , but the events will be triggered more frequently.

Remark 6. If δ 1i (t) and δ 2i (t) are designed to be zero as in [START_REF] Hu | Consensus of linear multi-agent systems by distributed event-triggered strategy[END_REF], [START_REF] Hu | Output consensus of heterogeneous linear multi-agent systems by distributed event-triggered/self-triggered strategy[END_REF], then Zeno behavior would be hard to exclude since δ 1i = δ 2i = 0. If δ 1i (t) and δ 2i (t) are designed to be a positive constant as in [START_REF] Xing | Event-triggered adaptive control for a class of uncertain nonlinear systems[END_REF] or a positive constant plus a positive function as in [START_REF] Bhandari | Event-triggered composite control of a two time scale system[END_REF], then

N i=1 δ 2 1i and N i=1 δ 2 2i
are not integrable on t ∈ [0, ∞), and the consensus of interconnected TTSSs (9) cannot be achieved and the global cost J is unbounded. Thus, in this paper, δ 1i (t) and δ 2i (t) are designed to be positive smooth functions and square integrable over t ∈ [0, ∞), which can exclude Zeno behavior and achieve the consensus with a global guaranteed cost.

B. Analysis of interconnected TTSSs with structured uncertainty

In this subsection, the previous results are extended to solve the guaranteed-cost consensus for interconnected TTSSs (1) with structured uncertainty under fixed undirected topology.

Considering TTSSs (1) with the distributed event-triggered controller (2), when Assumption 2 holds, by the state and input transformation similar to ( 5) and ( 16), it can be obtained that

ẋis (t) żif (t) =(A iD + T -1 ic E -1 Ξi T ic ) xis (t) zif (t) -B iD K ẽ1i (t) ẽ2i (t) . (29) 
where E = diag(I nx , εI nz ).

Similarly, when Assumption 3 holds, there exist

P 1 = P T 1 > 0, P 2 = P T 2 > 0, Q 1 > 0, Q 2 > 0 such that P 1 A 0 + A T 0 P 1 -2 λ * λ • P 1 B 0 B T 0 P 1 + 2Q 1 = 0, (30) 
P 2 A 22 + A T 22 P 2 -2λ * P 2 B 2 B T 2 P 2 + 2Q 2 = 0. (31) 
Then, the results in the interconnected TTSSs with structured uncertainty are given.

Theorem 3. Suppose that Assumptions 1-3 hold. There exist two positive definite symmetric matrices P 1 and P 2 satisfying (30) and [START_REF] Rejeb | Control design with guaranteed cost for synchronization in networks of linear singularly perturbed systems[END_REF].

Let K 0 = B T 0 P 1 , K 2 = B T 2 P 2 .
Then, there exists ε > 0 such that for all ε ∈ (0, ε], the interconnected TTSSs (1) achieve consensus when using controller (2) together with Zeno-free event-triggered mechanism ( 21) and [START_REF] Zagaris | Analysis of the computational singular perturbation reduction method for chemical kinetics[END_REF], if for i = 1, . . . , N mi k=1

q 2 ik ≤ max λ∈[λ * ,λ • ] {σ -1 max ( mi k=1 (Q -1 2 Ξik (λ)Q -1 2 ) 2 )}, ( 32 
)
where

Q = diag(Q 1 , Q 2 ), Ξik (λ) = P T -1 ic (λ)E -1 Ξ ik T ic (λ)+ T T ic (λ)Ξ T ik E -1 T -T
ic (λ)P , P = diag(P 1 , εP 2 ), K 1 and the parameters in [START_REF] Wang | Modelling periodic oscillation of biological systems with multiple timescale networks[END_REF] and [START_REF] Zagaris | Analysis of the computational singular perturbation reduction method for chemical kinetics[END_REF] have same definition in Theorem 2. Furthermore, consensus of interconnected TTSSs (1) is obtained with a guaranteed cost β = α 2 V 0 + α 3 , where α 2 and α 3 has same definition in Theorem 2.

Proof. As in the proof of Theorem 2, the time derivative of V in [START_REF] Ye | Distributed adaptive eventtriggered fault-tolerant consensus of multiagent systems with general linear dynamics[END_REF] along the trajectories of ( 29) with the controller [START_REF] Wang | Optimal persistent monitoring using second-order agents with physical constraints[END_REF] and event-triggered mechanism [START_REF] Wang | Modelling periodic oscillation of biological systems with multiple timescale networks[END_REF], ( 22) is

V ≤ - λ 4µ N i=2 (x T i xi + zT i zi )+ γ 1 -2β 1 λ • 2 N i=1 (δ 2 1i +δ 2 2i ) -ξT i (Q -P T -1 ic E -1 Ξi T ic -T T ic ΞT i E -1 T -T ic P ) ξi ,
where ξi = col(x is , zif ). Then, following [START_REF] Bien | A robust stability bound of linear systems with structured uncertainty[END_REF], using the condition [START_REF] Sivaranjani | Synchronization of nonlinear singularly perturbed complex networks with uncertain inner coupling via event triggered control[END_REF], it can be obtained that, for i, j = 1, . . . , N ,

Q -P T -1 ic E -1 Ξ j T ic + T T ic Ξ T j E -1 T -T ic P ≤ 0 (33) 
Denote T ij being the element in the i-th row and j-th column of T . Then Ξi =

N j=1 T 2 ij Ξ i . Since T T T = I, N j=1 T 2 ij = 1.
Thus, it can be obtained that

P T -1 ic E -1 Ξi T ic + T T ic ΞT i E -1 T -T ic P ≤ N j=1 T 2 ij Q = Q.
Thus [START_REF] Yoo | New designs of linear observers and observerbased controllers for singularly perturbed linear systems[END_REF] can also be obtained. Then, following the proof of Theorem 2, it can be concluded that Zeno behavior is excluded, lim t→∞ xi = 0, lim t→∞ zi = 0, for i = 2, . . . , N , and J ≤ α 2 V 0 +α 3 . Thus, consensus of interconnected TTSSs (1) is achieved with a guaranteed cost β = α 2 V 0 + α 3 .

Remark 7. Although we are not considering the consensus of heterogenous TTSSs, this section we are making an important step towards practical implementation of our results. Indeed, here we are allowing each dynamics to be slightly different from the others since the structured uncertainties are not the same for all systems. Thus, the coupling term of structured uncertainty has to be handled to achieve the consensus of interconnected TTSSs [START_REF] Bullo | Distributed control of robotic networks: a mathematical approach to motion coordination algorithms[END_REF], which would bring the difficulties in stability analysis.

IV. ILLUSTRATIVE EXAMPLE

In this section, two examples are presented to illustrate the obtained results on the event-triggered consensus of the linear interconnected TTSSs.

Example 1 : Consider the interconnected TTSSs containing three systems, the dynamic of each system is given by [START_REF] Fan | Distributed event-triggered control of multi-agent systems with combinational measurements[END_REF] with

A 11 = 2.5 -6 -2 2 , A 12 = 2 3 0 -2 , B 1 = 0.2 0.1 , A 21 = 0.5 2 -1 1 , A 22 = -2 1 0 -1 , B 2 = 0.1 0.1 .
and singular perturbation parameter ε = 0.01. Thus, the matrix A 22 is invertible. Assumption 2 holds. Meanwhile,

A 0 = A 11 -A 12 A -1 22 A 21 = -1 0 0 0 , B 0 = B 1 -A 12 A -1 22 B 2 = 0.7 -0.1 .
The pairs (A 0 , B 0 ) and (A 22 , B 2 ) are stabilizable. Assumption 3 holds. For system i, i = 1, 2, 3, denote its slow and fast states as (x i1 , x i2 ) and (z i1 , z i2 ), respectively. Let R = I 2 , then

J = ∞ 0 x(t) T (L⊗I nx )x(t)+z(t) T (L⊗I nx )z(t) (34) 
+u(t) T u(t)dt. ( 35 
)
The initial condition of system is taken as (x 11 (0), x 12 (0), z 11 (0), z 12 (0)) = (-4, -3, 2, 5), (x 21 (0), x 22 (0), z 21 (0), z 22 (0)) = (-1, 2, 4, 2), (x 31 (0), x 32 (0), z 31 (0), z 32 (0)) = (6, -3, 2, 3).

The interaction topology G is given in Figure 1, which is undirected and connected. Assumption 1 holds. Choose g m = g M = 1. From Lemma 1, it can be obtained that λ * = 1 36 and λ 11) and ( 12), it can be obtained that P 1 = 4.9 1.415 1.415 242.3

• = 3. Choose Q 1 = Q 2 = 10I 2 , from ( 
, P 2 = 2.5 0.829 0.829 5.817

.

Then K 0 = B T 0 P 1 = [3.29, -23.24], K 1 = B T 2 P 2 = [0.33, 0.67], and K 1 = ( 1 λ • -K 2 A -1 22 B 2 )K 0 + K 2 A -1 22 A 21 = [2.172, -11.227]. Based on Theorem 2, it can be obtained that β1 = β2 = 3.3 × 10 -5 . Let β ij = β, δ ij = δ, for i = 1, 2, j = 1, 2, 3. When β = 3.3×10 -5
, and δ = 2e -0.5t , simulation results of Theorem 1 and Theorem 2 show that consensus of both slow and fast states are achieved at a bounded cost, which confirms the effectiveness of Theorems 1 and 2. The cost and numbers of triggering events with different β, δ, are all shown in Table I, where n is , n if are the numbers of triggering instants for x i and z i , i = 1, 2, 3, respectively. It is noteworthy that the events of the slow and fast states are triggered at different time and different system has different triggering instants. Table I shows that the cost and triggering numbers are different with different β, δ and it would require more cost with fewer triggering numbers. 

Ξ i =     0.01i 0.02i 0 0 0 -0.01i 0.01i 0 0 0 0.02i 0.01i 0.01i 0 0 0     .
Choosing same Q 1 , Q 2 as above, then same K 1 , K 2 can be obtained. Then it can be obtained that β = 1.7 × 10 -5 . Let β ij = β, δ ij = 2e -0.5t , for i = 1, 2, j = 1, 2, 3. Then, the simulation result of Theorem 3 is shown in Fig. 23. Fig. 2 shows that consensus of both the slow and fast states are achieved at a cost of J = 1.237 and confirms the effectiveness of Theorem 3. Fig. 3 plots the triggering instants determined by the designed event-triggered mechanisms.

Example 2 : Let us now consider three interconnected DC motors. Since the dynamic described by the electromagnetic equilibrium equation is much faster than the one described by torque equation, interconnected DC-motors can be modeled as interconnected TTSSs. As in [START_REF] Yang | Adaptive composite suboptimal control for linear singularly perturbed systems with unknown slow dynamics[END_REF], the dynamics of the nominal interconnected DC-motors are as follows

J m dω i dt = -bω i + k m I i , L dI i dt = -k b ω i -R 0 I i + u i . ( 36 
)
where i = 1, 2, 3, I i , u i , ω i denote the armature current, voltage, and angular speed, R 0 = 0.6Ω is the resistance, J m = 0.093kg • m 2 is the equivalent moment of inertia, b = 0.008 is the equivalent viscous friction coefficient while k m = 0.7274N • m, k b = 560.6v • s/rad are respectively the torque and back e.m.f. developed with constant excitation flux. Finally L = 0.006H is the inductance which is very small and plays the role of the singular perturbation parameter of the system. Thus, system (36) can be described by system [START_REF] Bullo | Distributed control of robotic networks: a mathematical approach to motion coordination algorithms[END_REF] with A 11 = -0.086, A 12 = 7.82, A 11 = -0.6, A 12 = 0.6, ε = 0.006. Here, we consider the structured uncertainties Ξ i = 0.01i 0 2i i , i = 1, 2, 3. The initial condition of system is taken as (x 1 (0), z 1 (0)) = (-4, 2), (x 2 (0), z 2 (0), ) = (-1, 4), (x 3 (0), z 3 (0)) = (6, -2). The global cost J is also defined as in 34. The interaction topology G is also given in Figure 1. Thus, Assumption 1 holds. Choose g m = g M = 1, Q 1 = Q 2 = 10I 2 . Then, it can be obtained that P 1 = 0.0063, P 2 = 0.083, K 1 = 0.1218, K 2 = 0.0830. Similarly, Let β ij = 0, δ ij = 2e -0.5t , for i = 1, 2, j = 1, 2, 3. Then, simulation results of Theorem 3 are shown in Fig. 45. Fig. 4 shows that consensus of both the slow and fast states are achieved at a cost of J = 0.0083 and confirms the effectiveness of Theorem 3. Fig. 5 plots the triggering instants determined by the designed event-triggered mechanisms.

V. CONCLUSION

In this paper, we have investigated event-triggered consensus problem with guaranteed cost for a class of interconnected TTSSs. Due to the two-time-scale property of each system, two event-triggered mechanisms are designed to independently decide the sampling and transmitting instants for the slow and fast states respectively. Besides, by using the Chang transformation, an event-triggered controller is designed and combined with the two proposed event-triggered mechanisms to achieve guaranteed-cost consensus for the interconnected nominal TTSSs with fixed interaction topology. Zeno behavior is also excluded for each system to ensure the practical implementation of the proposed event-triggered strategies. Furthermore, the results take into account structural uncertainties on the interconnected TTSSs. Basically our results hold as far as the uncertainties satisfy a norm condition. Further considerations include the consensus of interconnected TTSSs with time-delay or with nonlinear dynamics via event-triggered strategies.

( 6 )

 6 Denote x = col(x 1 , . . . , xN ), z = col(z 1 , . . . , zN ), ẽ1 = col(ẽ 11 , . . . , ẽ1N ), ẽ2 = col(ẽ 21 , . . . , ẽ2N ), Ξ = diag{Ξ 1 , . . . , Ξ N } and Ξ = col( Ξ1 , . . . , ΞN ) = (T ⊗ I nx+nz )Ξ(T T ⊗ I nx+nz ). The closed-loop system (1) and (
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