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NEGATIVE RESULTS IN COCONVEX APPROXIMATION

OF PERIODIC FUNCTIONS

GERMAN DZYUBENKO, VICTORIA VOLOSHINA,
AND LYUDMYLA YUSHCHENKO

Abstract. We prove, that for each r ∈ N, n ∈ N and s ∈ N there are
a collection {yi}2si=1 of points y2s < y2s−1 < · · · < y1 < y2s + 2π =: y0
and a 2π - periodic function f ∈ C(∞)(R), such that

(1) f ′′(t)

2s∏
i=1

(t− yi) ≥ 0, t ∈ [y2s, y0],

and for each trigonometric polynomial Tn of degree ≤ n (of order ≤
2n+ 1), satisfying

(2) T ′′n (t)

2s∏
i=1

(t− yi) ≥ 0, t ∈ [y2s, y0],

the inequality

nr−1‖f − Tn‖C(R) ≥ cr‖f (r)‖C(R)

holds, where cr > 0 is a constant, depending only on r. Moreover, we
prove, that for each r = 0, 1, 2 and any such collection {yi}2si=1 there is

a 2π - periodic function f ∈ C(r)(R), such that (−1)i−1f is convex on
[yi, yi−1], 1 ≤ i ≤ 2s, and, for each sequence {Tn}∞n=0 of trigonometric
polynomials Tn, satisfying (2), we have

lim sup
n→∞

nr‖f − Tn‖C(R)

ω4(f (r), 1/n)
= +∞,

where ω4 is the fourth modulus of continuity.

1. Introduction and the main results

Let s ∈ N and Ys := {Ys}, where the collections Ys = {yi}2si=1 of points
yi ∈ R are such that y2s < · · · < y1 < y2s + 2π =: y0. We say that a
2π-periodic function f ∈ C(R) is piecewise convex with respect to Ys, if it is
a convex function on [y1, y0] and changes its convexity at the points Ys, that

is, if (−1)i−1f is convex on [yi, yi−1], 1 ≤ i ≤ 2s. We denote by ∆(2)(Ys) the
collection of all such piecewise convex functions. Note that if, in addition,
f ∈ C(2)(R), then f ∈ ∆(2)(Ys), if and only if,

f (2)(t)
2s∏
i=1

(t− yi) ≥ 0, t ∈ [y2s, y0].
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Denote by C(r), r ∈ N, the space of 2π - periodic functions f ∈ C(r)(R). We
also need the notation W r, r ∈ N, for the Sobolev space of 2π-periodic
functions f ∈ AC(r−1)(R), such that

‖f (r)‖ < +∞,

where

‖g‖ := esssupx∈R|g(x)|.

If, in addition, g is continuous, then, of course,

‖g‖ = sup
x∈R
|g(x)|.

Let Tn be the space of trigonometric polynomials of degree ≤ n (of order

2n+ 1) and, for the function g ∈ ∆(2)(Ys), denote by

E(2)
n (g, Ys) := inf

Tn∈Tn∩∆(2)(Ys)
‖g − Tn‖,

the error of the best coconvex approximation of the function g. It is known
[10] that if f ∈ ∆(2), then

(1.1) E(2)
n (f, Ys) ≤ c(s)ω3(f, 1/n), n ≥ N,

where c(s) is a constant, depending only on s, N is a number, depending
only on Ys, and

ωk(f, t) = sup
h∈[0,t]

‖
k∑
j=0

(−1)k−j
(
k

j

)
f(·+ ih)‖, t ≥ 0,

is the modulus of continuity of a function f of order k ∈ N. For each
f ∈ ∆(2)(Ys) (1.1) implies

(1.2) E(2)
n (f, Ys) ≤

c(s)

n
ω2(f ′, 1/n), n ≥ N, if f ∈ C(1),

(1.3) E(2)
n (f, Ys) ≤

c(s)

n2
ω1(f ′′, 1/n), n ≥ N, if f ∈ C(2),

and

(1.4) E(2)
n (f, Ys) ≤

c(s, r)

nr
‖f (r)‖, n ≥ N, if f ∈W r,

1 ≤ r ≤ 3, where N is a number, depending only on Ys. Leviatan, Motorna
and Shevchuk [5] conjectured, that (1.4) holds for all r ∈ N.

However it turns out, that all these estimates in general are invalid with
N independent of Ys. In other words, unlike the classical Jackson inequality,
(1.4) cannot be had with N = 1. So, our first result is
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Theorem 1.1. Let r ∈ N and s ∈ N be given. For each n ≥ 1 there are a
collection Ys ∈ Ys and a function f ∈ ∆(2)(Ys) ∩W r, such that

(1.5) E(2)
n (f, Ys) >

c(r)

nr−1
‖f (r)‖,

where c(r) = const > 0 depends only on r.

Moreover, (1.3) cannot be improved by replacing ω1 with ωk, k ≥ 4. Our
second main result is

Theorem 1.2. For each Ys ∈ Y there is a function f ∈ ∆(2)(Ys) ∩ C(2),
such that

lim sup
n→∞

n2E
(2)
n (f, Ys)

ω4(f ′′, 1/n)
= +∞

Clearly, f 6= const in all Theorems in this paper. For the completeness
we formulate an easy corollary of Example 1 in [2].

Theorem 1.3. For each Ys ∈ Y there is a function f ∈ ∆(2)(Ys) ∩ C(1),
such that

(1.6) lim sup
n→∞

nE
(2)
n (f, Ys)

ω3(f ′, 1/n)
= +∞,

whence

(1.7) lim sup
n→∞

E
(2)
n (f, Ys)

ω4(f, 1/n)
= +∞.

We believe that Theorems 1.1 – 1.3 cover all negative results in the
question of the validity of Jackson type estimates in the coconvex approx-
imation of periodic functions. In particular, we conjecture, that for each
k ∈ N, r ∈ N, r ≥ 3, s ∈ N and f ∈ ∆(2)(Ys) ∩ C(r) we have

(1.8) E(2)
n (f, Ys) ≤

c(k, r, s)

nr
ωk(f

(r), 1/n), n ≥ N(k, r, Ys).

In other words, we conjecture, that the truth table of the validity of Jackson
type estimates in the coconvex approximation of periodic functions has the
same form as the truth table of Jackson type estimates in the coconvex
approximation of non-periodic functions by algebraic polynomials, see [6],
Page 114, Fig. 3, or [4], Page 62, Table 24.

Remark 1.4. We do not discuss the comonotone approximation in the In-
troduction, we only note, that in the comonotone approximation of periodic
functions more positive, but less negative results are known, see, [7], [8], [1]
for more details. However in the last Section we formulate the analogs of
Theorems 1.2 and 1.3 for the comonotone (co-1-monotone) approximation.
We do not discuss also co-q-monotone approximation of periodic functions
for q > 2, since, in opposite to coconvex (co-2-monotone) approximation,
the Jackson type estimates are invalid for all parameters, even if we allow
both constants c and N in (1.8) to depend on f . This is recently proved by
Leviatan, Motorna and Shevchuk [5].
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We prove Theorem 1.1 in the next Section, and Theorems 1.2 and 1.3 in
the last Section. In the proofs we apply the ideas from [3] and we have to
overcome the constrains and challenges of periodicity.

2. Proof of Theorem 1.1

We begin with the following Lemma 2.1

Lemma 2.1. Let an integer n ∈ N and a positive number δ ≤ 1
n be given.

If a polynomial T ∈ Tn satisfies

T ′(±δ) = 0 and T ′(t) ≥ 0, for δ ≤ |t| ≤ π,
then

(2.1) T ′(t) ≡ 0.

Proof. Assume to the contrary, that (2.1) is invalid. Then without loss of
generality we assume that ‖T ′‖ = 1. Put τ := T ′. By Bernstein inequality,
‖τ ′‖ ≤ n and ‖τ ′′‖ ≤ n2. Let t0 ∈ [−δ, 2π − δ] be a point, such that
|τ(t0)| = ‖τ‖ = 1. Since, for t ∈ [−δ, δ],

|τ(t)| =|τ(t) +
t− δ
2δ

τ(−δ)− t+ δ

2δ
τ(δ)| = 1

2
|τ ′′(θ)|(δ − t)(δ + t)(2.2)

≤1

2
n2(δ2 − t2) < 1,

where θ ∈ (−δ, δ), we conclude, that t0 /∈ [−δ, δ], whence τ(t0) = 1. Then,

1− τ(t) = τ(t0)− τ(t) ≤ n|t− t0|, that is τ(t) ≥ 1− n|t− t0|, t ∈ R,

that implies

(−δ, δ) ∩ (t0 − 1/n, t0 + 1/n) = ∅
and ∫ t0+1/n

t0−1/n
τ(t) dt ≥ 1

n
.

Therefore

0 =T (2π − δ)− T (−δ) =

∫ 2π−δ

−δ
τ(t) dt ≥

∫ t0+1/n

t0−1/n
τ(t) dt+

∫ δ

−δ
τ(t) dt

≥ 1

n
− 1

2
n2

∫ δ

−δ
(δ2 − t2) dt =

1

n
− 2

3
n2δ3 ≥ 1

3n
6= 0

– a contradiction. �

Proof of Theorem 1.1. Let S̃ ∈ C(∞)(R), be a monotone odd function, such

that S̃(x) = sgnx, |x| ≥ 1, and

S(x) :=
1

2
+

1

2
S̃(x).

Put

sj := ‖S(j)‖, j ∈ N0.
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Take

h :=
1

3n
,

y2s = −3h, y1 = 3h,

and, if s ≥ 2, then let −h ≤ y2s−1 < .. < y2 ≤ h, say

yi = h− 2h
i− 2

2s− 3
, i = 2, . . . , 2s− 1.

We will prove, that the desired 2π periodic function f can be taken in the
form

f(x) :=

∫ x

0
f ′(t) dt,

where f ′ is a 2π-periodic odd function, defined on [0, π] by

(2.3) f ′(t) :=

{
−S

(
t−2h
h

)
, if t ∈ [0, 1],

S
(
t−π+h
h

)
− 1, if t ∈ [1, π].

Note that f ′(t) = −1 for 3h ≤ t ≤ π − 2h. Clearly, f ∈ ∆(2)(Ys) ∩W r.

Since 3h = 1
n , Lemma 2.1 yields T ′′n ≡ 0, if Tn ∈ ∆(2)(Ys) ∩ Tn, hence (the

periodic function) Tn ≡ const. Therefore

E(2)
n (f, Ys) ≥

1

2
(f(0)− f(π)) = −1

2
f(π) ≥ 1

2
(π − 5h) >

2

3
.

Thus,

E
(2)
n (f, Ys)

‖f (r)‖
= E(2)

n (f, Ys)
hr−1

sr−1
≥ 2hr−1

3sr−1
=

2

3rsr−1nr−1
.

Theorem 1.1 is proved with c(r) ≥ 2
3rsr−1

. �

3. Auxiliary results

Denote by Ŝ an even function Ŝ ∈ C(∞)(R), such that xŜ′(x) ≥ 0, x ∈ R,
and

(3.1) Ŝ(x) =

{
0, if |x| ≤ 1,

1, if |x| ≥ 2.

Put ŝj := ‖Ŝ(j)‖, j ∈ N. Fix a positive number d ≤ π/4 and for each
positive b ≤ d/2 denote by qb and gb the 2π-periodic functions, such that

qb(x) :=
(

1− Ŝ (x/d)
)

(cos b− cosx) sinx, x ∈ [−π, π],

and
gb(x) := Ŝ (x/b) qb(x), x ∈ [−π, π].

Clearly, qb and gb are odd functions,

(3.2) ‖gb‖ < 1, ‖qb‖ < 1,

and for each collection Y = {yi}2si=1, such that

y2 + 2d ≤ y1 = 0 ≤ y0 − 2d,
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we have

(3.3) gb(t)
2s∏
i=1

(t− yi) ≥ 0, t ∈ [y2s, y0].

Now, for a function f ∈ C[a, b] we denote by

‖f‖[a,b] := ‖f‖C[a,b] = max
x∈[a,b]

|f(x)|

and formulate Lemma 3.1, which is a particular case of Privalov Theorem
(see, e.g., [9], pg. 96-98.)

Lemma 3.1. For each polynomial Tn ∈ Tn and any positive number h ≤ π,
we have

(3.4) h|T ′n(0)| ≤ cn‖Tn‖[−h,h].

Here and in the sequel c stand for different absolute positive constants.
We conclude the Section with the following

Lemma 3.2. We have

(3.5) ω4(gb, t) ≤ c1(b3 + (t/d)4),

and for each polynomial Tn ∈ Tn, satisfying T ′n(0) ≥ 0, and a positive
number h ≤ d,

(3.6) ‖gb − Tn‖[−h,h] ≥ c2
hb2

n
− 3b3.

where c1 and c2 ≤ 1 are positive absolute constants.

Proof. First we show, that

(3.7) ‖gb − qb‖ ≤ 3b3.

Indeed, if |x| ≤ 2b, then

|gb(x)− qb(x)| =
(

1− Ŝ (x/b)
)
|(cos b− cosx) sinx|

≤ 2| sin x− b
2

sin
x+ b

2
sinx| ≤ 1

2
|x(x2 − b2)| ≤ 3b3.

If otherwise 2b ≤ |x| ≤ π, then gb(x) = qb(x), so (3.7) holds.

To prove (3.5) we note, that the equality ‖Ŝ(j)(·/d)‖ = ŝjd
−j yields

‖q(4)
b ‖ ≤ cd

−4. Therefore

ω4(gb, t) ≤ ω4(gb − qb, t) + ω4(qb, t) ≤ 24‖gb − qb‖+ t4‖q(4)
b ‖ ≤ 48b3 + cd−4t4,

that implies (3.5).
Finally, to prove (3.6), we apply Lemma 3.1. Since qb(x) = (cos b −

cosx) sinx for x ∈ [−d, d], we get

2 sin2 b

2
= −q′b(0) ≤ T ′n(0)− q′b(0) ≤ cn

h
‖Tn − qb‖[−h,h]

≤ cn

h
(‖Tn − gb‖[−h,h] + ‖qb − gb‖) ≤

cn

h
(‖T − gb‖[−h,h] + 3b3),
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that yields (3.6). �

4. Negative result in copositive approximation

For each collection Ys = {yi}2si=1 ∈ Ys denote by ∆(0)(Ys) the set of all
2π-periodic functions f ∈ C(R), such that

f(t)

2s∏
i=1

(t− yi) ≥ 0, t ∈ [y2s, y0].

For the function g ∈ ∆(0)(Ys), denote by

E(0)
n (g, Ys) := inf

Tn∈Tn∩∆(0)(Ys)
‖g − Tn‖,

the error of the best copositive approximation of the function g. We prove

Theorem 4.1. For each Ys ∈ Ys there is a function f ∈ ∆(0)(Ys), such that

(4.1) lim sup
n→∞

E
(0)
n (f, Ys)

ω4(f, 1/n)
= +∞

and

(4.2)

∫ π

−π
f(x) dx = 0.

Proof. Without loss of generality assume, that y1 = 0. Put d := 1
2 min{y0,−y2, π/2},

so that (3.3) implies, for all positive b ≤ d/2,

(4.3) gb ∈ ∆(0)(Ys),

where gb is defined in the previous Section. Following [3], pg.343-345, we
put

(4.4) bn :=

(
1

n

) 4
3

, fn(x) = gbn(x),

and note that (3.5) implies, for all n ≥ (2/d)3/4, so that 2bn ≤ d,

(4.5) ω4(gb; t) ≤ c1

(
1 + d−4

)
t4, t ≥ 1

n
.

We are now in a position to define the desired in Theorem 4.1 function f .
First we put ε = 0.1 and choose n0 ≥ (2/d)3/4, so big that

(4.6) c1

(
1 + d−4

)
< nε0.

Set d0 := d and

(4.7) dj :=
c2

4

bnj−1b
2
nj

nj
dj−1, j ≥ 1,
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where the increasing sequence {nν} is defined by induction as follows. Sup-
pose that {n0, . . . , nσ−1} have been defined, then put

Fσ−1(x) :=

σ−1∑
j=1

dj−1fnj (x), (F0(x) :≡ 0),

and take nσ > nσ−1 so big that

(4.8)
∥∥∥F (4)

σ−1

∥∥∥ ≤ dσ−1n
ε
σ,

and

(4.9) c2bnσ−1 > 2n−εσ .

Now put

Φσ(x) :=

∞∑
j=σ

dj−1fnj (x),

where the uniform convergence of the series is justified by (3.2) and the
inequality

(4.10) ‖Φσ‖ ≤
∞∑
j=σ

dj−1 ≤ dσ−1

(
1 +

1

4
+

1

42
+ ...

)
< 2dσ−1.

So we define

(4.11) f(x) :=
∞∑
j=1

dj−1fnj (x) = Fσ−1(x) + Φσ(x),

and note, that (4.3) and (4.4) yield

(4.12) f ∈ ∆(0)(Ys).

Recall also that gb and, hence, fn, are odd functions. Therefore, f is odd
as well, which implies (4.2).

It remains to verify (4.1). Inequalities (4.5), (4.10), and (4.6) lead to

ω4 (Φσ, 1/nσ) ≤ c1

(
1 +

1

d4

)
1

n4
σ

∞∑
j=σ

dj−1 < 2c1

(
1 +

1

d4

)
dσ−1

n4
σ

< 2
dσ−1

n4−ε
σ

,

as well as (4.8) provides

ω4

(
Fσ−1,

1

nσ

)
≤ 1

n4
σ

∥∥∥F (4)
σ−1

∥∥∥ ≤ dσ−1

n4−ε
σ

.

Hence, for all σ,

(4.13) ω4

(
f,

1

nσ

)
≤ 3

dσ−1

n4−ε
σ

.

Finally, let us prove that if Tnσ ∈ Tnσ ∩∆(0)(Ys), then

(4.14) ‖f − Tnσ‖ ≥ dσ−1

(
b2nσ
n1+ε
σ
− 3b3nσ

)
,
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(4.15) E(0)
nσ (f, Ys) ≥ dσ−1

(
n−ε−11/3
σ − 3n−4

σ

)
.

Indeed, since by (3.1) Fσ−1 is zero on [−bnσ−1 , bnσ−1 ] =: Jσ, we may write

f(x) = dσ−1fnσ(x) + Φσ+1(x), x ∈ Jσ.

Let τnσ := Tnσ/dσ−1. Since τnσ ∈ ∆(0)(Ys), we have τ ′nσ(0) ≥ 0, therefore
by virtue of (3.6)

(4.16) ‖fnσ − τnσ‖Jσ ≥ c2
b2nσ
nσ

bnσ−1 − 3b3nσ .

On the other hand, (3.2), (4.10), and (4.7) yield

‖Φσ+1‖ < 2dσ =
c2

2

bnσ−1b
2
nσ

nσ
dσ−1.

Hence

‖f − Tnσ‖ ≥ ‖Tnσ − f‖Iσ ≥ ‖Tnσ − dσ−1fnσ‖Iσ − ‖Φσ+1‖

= dσ−1‖τnσ − fnσ‖Iσ − ‖Φσ+1‖ ≥ dσ−1

(
c2bnσ−1b

2
nσ

2nσ
− 3b3nσ

)
.

Now (4.14) follows from (4.9). Thus, (4.13) and (4.15) lead to

E
(0)
nσ (f)

ω4 (f, 1/nσ)
≥ 1

3
n1/3−2ε
σ − 1

nεσ

for all σ, that implies (4.1), since the chosen ε is sufficiently small. �

5. Negative results in comonotone approximation, proofs of
Theorems 1.2 and 1.3

We say that a 2π-periodic function f ∈ C(R) is piecewise monotone with
respect to Ys ∈ Ys, if it is a nondecreasing function on [y1, y0] and it changes
its monotonicity at the points Ys, that is, if (−1)i−1f is nondecreasing on

[yi, yi−1], 1 ≤ i ≤ 2s. We denote by ∆(1)(Ys) the collection of all such

piecewise monotone functions. For a function g ∈ ∆(1)(Ys) denote by

E(1)
n (g, Ys) := inf

Tn∈Tn∩∆(1)(Ys)
‖g − Tn‖,

the error of the best comonotone approximation of the function g.
First we formulate the well known Lemma 5.1.

Lemma 5.1. For each function g ∈ C(1) and every polynomial Tn ∈ Tn the
inequality

(5.1) ‖g′ − T ′n‖ ≤ c(k)(ωk(g
′, 1/n) + n‖g − Tn‖)

holds, where the constant c(k) depends only on k.

Now we prove
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Theorem 5.2. For each Ys ∈ Ys there is a function F ∈ ∆(1)(Ys) ∩ C(1),
such that

lim
n→∞

sup
nE

(1)
n (F, Ys)

ω4(F ′, 1/n)
= +∞

Proof. Let f be a function, guaranteed by Theorem 4.1. Identity (4.2) im-
plies, that the function

F (x) :=

∫ x

0
f(t)dt

is also 2π periodic. Then, F ′ ≡ f and f ∈ ∆(0)(Ys) yield F ∈ ∆(1)(Ys). For

each polynomial Tn ∈ ∆(1)(Ys) ∩ Tn (5.1) implies

E(0)
n (f, Ys) ≤ ‖F ′ − T ′n‖ ≤ c(ω4(F ′, 1/n) + n‖F − Tn‖),

whence
nE(1)

n (F, Ys) ≥ cE(0)
n (f, Ys)− ω4(f, 1/n).

Therefore

lim sup
n→∞

nE
(1)
n (F, Ys)

ω4(F ′, 1/n)
≥ c lim sup

n→∞

E
(0)
n (f, Ys)

ω4(f, 1/n)
− 1 = +∞.

�

We are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let F be a function, guaranteed by Theorem 5.2.
Since F is a 2π-periodic function and F ∈ ∆(1)(Ys) ∩ C(1), the function

f(x) :=

∫ x

0
F (t)dt− x

2π

∫ 2π

0
F (t)dt

is also 2π-periodic and f ∈ ∆(2)(Ys) ∩ C(2). For each polynomial Tn ∈
∆(2)(Ys) ∩ Tn (5.1) implies

E(1)
n (F, Ys) ≤ ‖f ′ − T ′n‖ ≤ c(ω5(f ′, 1/n) + n‖f − Tn‖)

≤ c
(

1

n
ω4(f ′′, 1/n) + n‖f − Tn‖

)
,

whence
n2E(2)

n (f, Ys) ≥ cnE(1)
n (F, Ys)− ω4(f ′′, 1/n).

Therefore

lim sup
n→∞

n2E
(2)
n (f, Ys)

ω4(f ′′, 1/n)
≥ c lim sup

n→∞

nE
(1)
n (F, Ys)

ω4(F ′, 1/n)
− 1 = +∞.

�

Our last formulation is

Theorem 5.3 ([2]). For each Ys ∈ Y there is a function f ∈ ∆(1)(Ys), such
that

lim sup
n→∞

E
(1)
n (f, Ys)

ω3(f, 1/n)
= +∞.
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Proof of Theorem 1.3. In fact we repeat the previous proof with minor changes.
So, Let F be a function, guaranteed by Theorem 5.3. Since F is a 2π-periodic
function and F ∈ ∆(1)(Ys), the function

f(x) :=

∫ x

0
F (t)dt− x

2π

∫ 2π

0
F (t)dt

is also 2π-periodic and f ∈ ∆(2)(Ys) ∩ C(1). For each polynomial Tn ∈
∆(2)(Ys) ∩ Tn (5.1) implies

E(1)
n (F, Ys) ≤ ‖f ′ − T ′n‖ ≤ c(ω3(f ′, 1/n) + n‖f − Tn‖),

whence

nE(2)
n (f, Ys) ≥ cE(1)

n (F, Ys)− ω3(F, 1/n).

Therefore

lim sup
n→∞

nE
(2)
n (f, Ys)

ω3(f ′, 1/n)
≥ c lim sup

n→∞

E
(1)
n (F, Ys)

ω3(F, 1/n)
− 1 = +∞,

which is (1.6). Finally, (1.7) follows from (1.6) and the inequality ω4(f, t) ≤
tω3(f ′, t). �

References

[1] H. A. Dzyubenko, Comonotone approximation of twice differentiable periodic func-
tions, Ukr. Math. J. 61 (2009), 519–540. Translated from Ukrainskyi Matematychnyi
Zhurnal, Vol. 61, No. 4 (2009), 435–451.

[2] G. A. Dzyubenko, Contrexample in comonotone approximation of periodic functions,
Transactions of Institute of Mathematics, the NAS of Ukraine, 5 (2008), No. 1, 113-
123 (in Ukrainian).

[3] G. A. Dzyubenko, J. Gilewicz and I. A. Shevchuk Piecewise monotone pointwise
approximation, Constr. approx. 14 (1998), 311-348.

[4] K. A. Kopotun, D. Leviatan, A. Prymak and I. A. Shevchuk, Uniform and Pointwise
Shape Preserving Approximation by Algebraic Polynomials, Surveys in Approximation
Theory 5 (2011), 1–51.

[5] D. Leviatan, O.V. Motorna and I. A. Shevchuk, No Jackson-type estimates for
piecewise q-monotone, q ≥ 3, trigonometric approximation, arXiv:2004.03724v1
[math.CA] 7 Apr 2020.

[6] D. Leviatan, I.A. Shevchuk, Coconvex polynomial approximation, Journal of Approx-
imation Theory 121 (2003), 100–118.

[7] G. G. Lorentz and K. L. Zeller, Degree of Approximation by Monotone Polynomials
I, J. Approx. Theory, 1 (1968), 501–504.

[8] M. G. Pleshakov, Comonotone Jacksons Inequality, J. Approx. Theory, 99 (1999),
409–421.

[9] A. A. Privalov Theory of interpolation of functions, Book 1, Saratov University Pub-
lishing House, Saratov 1990, (In Russian).

[10] V. D. Zalizko, Coconvex approximation of periodic functions, Ukr. Math. J. 59,
(2007), 28–44. Translated from Ukrainskyi Matematychnyi Zhurnal, Vol. 59, No. 1,
pp. 29–43, January, 2007.



12 G. DZYUBENKO, V. VOLOSHYNA, AND L. YUSHCHENKO

(G. Dzyubenko) Institute of Mathematics NAS of Ukraine, 01024 Kyiv, Ukraine
Email address: dzyuben@gmail.com

(V. Voloshyna) Faculty of Mechanics and Mathematics, Taras Shevchenko
National University of Kyiv, 01601 Kyiv, Ukraine; University of Toulon,
83130, La Garde, France

Email address: victoria.voloshyna@yahoo.com

(L. Yushchenko) University of Toulon, 83130, La Garde, France
Email address: lyudmyla.yushchenko@univ-tln.fr


